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CENTRALLY HARMONIC SPACES

P. B. GILKEY AND J. H. PARK

Abstract. We construct examples of centrally harmonic spaces by generaliz-
ing work of Copson and Ruse. We show that these examples are generically
not centrally harmonic at other points. We use this construction to exhibit
manifolds which are not conformally flat but such that their density function
agrees with Euclidean space.

1. Introduction

1.1. Notational conventions. Any 2-dimensional manifold is Einstein; thus this
condition imposes no additional restrictions and the casem = 2 is often exceptional.
We shall therefore sometimes assume that m ≥ 3 to simplify the analysis. If
~ξ = (ξ1, . . . , ξm) ∈ R

m, set:

‖ξ‖2 := (ξ1)2 + · · ·+ (ξm)2, dξ := dξ1 . . . dξm,

ge := (dξ1)2 + · · ·+ (dξm)2, ∆0
e := −∂2ξ1 − · · · − ∂2ξm ,

S0(r) := {ξ : ‖ξ‖ = r}.

There is a radial solution to the equation ∆0
ef = 0 for ‖ξ‖ > 0 given by

f(ξ) :=

{

log ‖ξ‖2 if m = 2

‖ξ‖2−m if m > 2

}

.

Ruse [12] was the first to examine radial solutions to the Laplace equation in the
more general context of a Riemannian manifold M = (M, g) of dimension m ≥ 2.
Let ∆0

M (resp. ∆1
M) be the Laplace-Beltrami operator on functions (resp. 1-forms).

Let rP (Q) be the geodesic distance from a point P to another point Q of M . A
function f is said to be radial if f(Q) = f̌(rP (Q)) for some function f̌ of a single
variable; in the interests of notational simplification, we shall identify f with f̌
when no confusion is likely to result. Let ιP be the injectivity radius. If there
exists a non-constant radial function so that ∆0

Mf = 0 for 0 < r < ιP , then M
is said to be centrally harmonic about P . If M is centrally harmonic about every
point, then M is said to be a harmonic space (see Willmore [15]).

Much of the subsequent work in the field has focussed on harmonic spaces. But
in this note, we will go back to the original question and study spaces which are
centrally harmonic about a point P . There are a number of useful characterizations
of this property. Let (ξ1, . . . , ξm) be geodesic coordinates centered at a point P of
M . Such coordinate systems are characterized by the fact that the curves t → tξ
are unit speed geodesics from P if ‖ξ‖ = 1 and hence rP (ξ) = ‖ξ‖ if ‖ξ‖ < ιP . The

Riemannian measure defined by g is Θ̃Pdξ where Θ̃P :=
√

det gij is the associated
volume density function. Let SP (r) := {ξ ∈ TPM : ‖ξ‖ = r} be the geodesic sphere
of radius r centered at P and let (r, θ) → r · θ define geodesic polar coordinates
where θ ∈ SP (1) and 0 < r < ιP . If dθ is the Euclidean volume element of SP (1),
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2 P. B. GILKEY AND J. H. PARK

then dξ = rm−1drdθ so the volume density in geodesic polar coordinates is given
by ΘP := rm−1Θ̃P . Let

ΞP := ∂r log(ΘP (ξ)) ;

ΞP is the mean curvature of the geodesic sphere SP (‖ξ‖) at ξ ∈ TPM . For λ ∈ C,
let E0

P (λ) (resp. E1
P (λ)) be the eigen-space of radial functions (resp. 1-forms)

defined by λ, i.e.,

E
0
P (λ) :=

{

φ0 ∈ C∞(0, ιP ) : ∆
0
M(φ0(r)) = λφ0(r)

}

,

E
1
P (λ) :=

{

φ1dr ∈ C∞(0, ιP )dr : ∆
1
M(φ1(r)dr) = λφ1(r)dr

}

.

Note that we exclude the origin r = 0; these functions are permitted to be singular
at the center point P . If λ 6= 0, then d is an isomorphism from E0

P (λ) to E1
P (λ)

so it suffices to study E0
P (λ) in this instance. Let H0

P (resp. H1
P ) be the space of

radial harmonic functions (resp. 1-forms), i.e., H0
P := E0

P (0) and H1
P := E1

P (0).

1.2. Characterizations of centrally harmonic spaces. The following result
was established by the authors previously [8].

Theorem 1.1. The following assertions are equivalent and if any is satisfied, then
M is centrally harmonic about the point P . If they hold at every point, then M
is said to be a harmonic space. Let λ 6= 0.

(a) ΘP is radial. (b) Θ̃P is radial. (c) ΞP is radial.
(d) dim{H0

P } = 2. (e) dim{H0
P} ≥ 2. (f) dim{H1

P } = 2.
(g) dim{H1

P} ≥ 1. (h) dim{E0
P (λ)} = 2. (i) dim{E0

P (λ)} ≥ 1.
(j) dim{E1

P (λ)} = 2. (k) dim{E1
P (λ)} ≥ 1. (l) ∆0

Mr is radial.
(m) Geodesic spheres about P have constant mean curvature.

1.3. Asymptotic expansion of the volume density function in geodesic
coordinates. If M a Riemannian manifold, then we can expand

ΘP (ξ) ∼ ‖ξ‖m−1

(

1 +

∞
∑

k=2

Hk(ξ)

)

(1.a)

in a power series about the origin where Hk(cξ) = ckHk(ξ) for c ∈ R; we omit the
dependence on the point P in the interests of notational simplification. Let R be
the curvature tensor of M and let Jk(ξ) be the endomorphism of TPM defined by
the identity

g(Jk(ξ)η1, η2) = (∇kR)(η1, ξ, ξ, η2; ξ, . . . , ξ) ;

J0(ξ) is the Jacobi operator and Jk(ξ) = (∇k
ξJ0)(ξ). We have, see for example the

discussion on page 229 of [15], that

H2(ξ) = −Tr{J (ξ)}
6 ,

H3(ξ) = −Tr{J1(ξ)}
12 ,

H4(ξ) =
Tr{J (ξ)}2

72 − Tr{J (ξ)2}
180 − Tr{J2(ξ)}

40 ,

H5(ξ) =
Tr{J (ξ)}Tr{J1(ξ)}

72 − Tr{J (ξ)J1(ξ)}
180 − Tr{J3(ξ)}

180 ,

H6(ξ) = −Tr{J (ξ)}3

1296 + Tr{J (ξ)}Tr{J (ξ)2}
1080 + Tr{J (ξ)}Tr{J2(ξ)}

240 − Tr{J (ξ)3}
2835

−Tr{J (ξ)J2(ξ)}
630 + Tr{J1(ξ)}

2

288 − Tr{J1(ξ)
2}

672 − Tr{J4(ξ)}
1008 .

(1.b)

Formulas for H7 and H8 were derived in [7]. More generally, one can show that

Hn(ξ) = cnTr{Jn−2(ξ)} + lower order terms

In particular, c2 = − 1
6 , c3 = − 1

12 , c4 = − 1
40 , c5 = − 1

180 , and c6 = − 1
1008 . We will

establish the following result in Section 2; it provides a leading term analysis which
will be crucial in what follows.
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Lemma 1.2. We have cn = −
n− 1

(n+ 1)!
.

1.4. Examples of harmonic spaces. If M is a simply connected 2-point homo-
geneous space, i.e., if M is either Rm or M is a rank one symmetric space, then the
isometry group of M acts transitively on the set of unit tangent vectors and hence
ΘP is radial for any P ; consequently any 2-point homogeneous space is centrally
harmonic about any point and hence is a harmonic space. In negative curvature,
the Damek-Ricci spaces are also harmonic spaces; these are solvmanifolds, but need
not be 2-point homogeneous spaces. All known harmonic spaces are locally homo-
geneous and modeled on one of these geometries. We refer to Berndt et. al. [1] for
further details.

1.5. Constructing centrally harmonic spaces. Copson and Ruse [6] gave ex-
amples of centrally harmonic spaces by noting that a radial conformal deformation
of the Euclidean metric ge is centrally harmonic about the origin. More generally,
if M = (M, g) is the germ of a Riemannian manifold, and if ψ is a smooth non-zero
function of 1-variable, we define a radial conformal deformation of M by setting

Mψ := (M,ψ(r2P )
−2g) .

In Section 3, we will establish the following result which shows if M is centrally
harmonic about P , then Mψ is centrally harmonic about P as well. Since we
can always take the base manifold M to be a harmonic space, this permits us to
construct many centrally harmonic spaces generalizing the examples of Copson and
Ruse [6].

Theorem 1.3. If M = (M, g) is the germ of a Riemannian manifold which cen-
trally harmonic about P , then Mψ is centrally harmonic about P as well.

1.6. Space forms. M is said to be a space form if M has constant sectional
curvature. Let U be an open subset of R, let ψ be a non-zero analytic function on
U , let O := {ξ ∈ Rm : ‖ξ‖2 ∈ U}, and let Ψ(ξ) := ψ(‖ξ‖2) ∈ C∞(O). Define a
real-analytic radial conformal deformation of the standard Euclidean metric ge by
setting

Nψ := (O,Ψ−2ge) .

Let ψa,b(t) := a+ bt define Na,b for (a, b) 6= (0, 0). Although the following result is
well-known, we present a proof in Section 4 for the sake of completeness since we
will need to develop the requisite preliminaries in any event; we suppose m ≥ 3 as
that is the case of interest.

Lemma 1.4. Let m ≥ 3.

(1) If ψ is linear, then Nψ is a space form.

(2) If Nψ is a space form, then ψ is linear.

(3) Na,b has constant sectional curvature 4ab.
(4) If M has constant sectional curvature κ, M is locally isometric to Nψ1,4κ

.

1.7. Radial conformal deformations which are centrally harmonic about
an intermediate point. Let Lξ be the second fundamental form of the geodesic
sphere SP (‖ξ‖) about P which passes through ξ. We say SP (‖ξ‖) is totally umbillic

at ξ if Lξ is a multiple of the identity. As noted by Copson and Ruse [6], a radial
conformal deformation of Euclidean space is in general not centrally harmonic about
any other point. Recall that every harmonic space is Einstein and that every
Einstein manifold is real analytic. We will prove the following result in Section 5.
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Theorem 1.5. Let P be a point of an Einstein manifold M = (M, g) of dimension
m ≥ 3. Assume that ψ is real analytic and that Mψ is centrally harmonic about
some vector ξ with 0 < ‖ξ‖ < ιP in geodesic coordinates.

(1) If SP (‖ξ‖) is not totally umbillic at ξ, then ψ is constant.
(2) If M is a space form, then Mψ is a space form.

1.8. Totally umbillic geodesic spheres. The Jacobi operator J0(ξ) is a self-

adjoint endomorphism of TPM . Let J̃0(ξ) be the restriction of J0 to ξ⊥, let mP (ξ)

(resp. MP (ξ)) be the smallest (resp. largest) eigenvalue of J̃0(ξ), and let

sP := inf
|ξ|=1

{MP (ξ)−mP (ξ)}

be the minimal difference the largest and the smallest eigenvalue of J̃0(ξ) for ξ a
unit tangent vector at P . We will establish the following result in Section 6.

Lemma 1.6.

(1) M is a space form, then every geodesic sphere is totally umbillic.
(2) If every sufficiently small geodesic sphere is totally umbillic and if m ≥ 3,

then M is a space form.
(3) If an irreducible symmetric spaceM admits a totally umbilical hypersurface

N , then both M and N are space forms.
(4) If sP > 0, then there exists ε > 0 so that geodesic spheres of radius less

than ε at P are not totally umbillic at any point.
(5) If M is a rank one symmetric space or M is a Damek-Ricci space, and if

M is not a space form, then sP > 0.

1.9. Radial conformal deformations of the sphere. Theorem 1.3 and Theo-
rem 1.5 deal with points within the injectivity radius. Let S := (Sm, gSm) where
gSm is the standard round metric on the unit sphere Sm of Rm+1. Denote the north
and south poles of Sm by P± := (±1, 0, . . . , 0), respectively; dP±

(ξ) = arccos(±ξ1)
and ι± = π. Let ψ be a positive real analytic function of 1-variable and let
Sψ := (Sm, ψ((ξ1)2)−2gSm). We will establish the following result in Section 7.

Lemma 1.7. Sψ is centrally harmonic about the points P±. If Sψ is not a space
form and if m ≥ 3, then Sψ is centrally harmonic about no points of the sphere
other than P±.

1.10. A non-flat example with trivial volume density function. We will use
Theorem 1.3 to establish the following result in Section 8.

Theorem 1.8. If m ≥ 4 is even, then there exists a Riemannian metric g on Rm

which is centrally harmonic about the origin, which is not conformally flat, and
which has Θ0 = rm−1.

Remark 1.9. Since the metric g of Theorem 1.8 is not conformally flat, g is not
flat. Since any harmonic space with trivial volume density function is flat, g is
not a harmonic metric. We will show in Section 8 that g is essentially geodesically
incomplete in dimensions 4, 6, and 8.

2. The proof of Lemma 1.2: A leading term analysis

We use Equation (1.b) to assume n ≥ 7 in the proof of Lemma 1.2. We express
Hn(ξ) = cnTr{Jn−2(ξ)} + lower order terms. By considering product formulas,
we see that the coefficients cn are dimension free so we may take m = 2. We
set ds2 = dr2 + f(r, θ)dθ2 where f(r, θ) := {r(1 + bn(θ)r

n)}2. We then have
Θ(r, θ) = r(1 + bn(θ)r

n) so Hn(∂
θ
r ) = bn(θ) where ∂θr is the radial vector field

pointing from the origin to θ ∈ S1. We adapt an argument from Gilkey and
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Park [7]. Let fr := ∂θrf , frr = ∂θr∂
θ
r f , and so forth. We use the Koszul formula to

compute:

Γrrr = 0, Γrrθ = 0, Γrr
r = 0, Γrr

θ = 0,

Γrθr = 0, Γrθθ =
1
2fr, Γrθ

r = 0, Γrθ
θ = 1

2frf
−1,

Γθθr = − 1
2fr, Γθθθ =

1
2fθ, Γθθ

r = − 1
2fr, Γθθ

θ = 1
2fθf

−1.

Thus we have that

∇θ∇r∂
θ
r = 0,

∇r∇θ∂
θ
r = ∇r{Γθr

θ∂θ} = { 1
2frrf

−1 − 1
2frfrf

−2 + 1
4frfrf

−2}∂θ,

R(∂θ, ∂
θ
r , ∂

θ
r , ∂θ) = − 1

2frr +
1
4frfrf

−1,

Tr{J0(∂
θ
r )} = f−1{− 1

2frr +
1
4frfrf

−1} .

We compute:

f(r, θ) = r2 + 2bn(θ)r
n+2 +O(rn+3),

f−1(r, θ)=r−2(1− 2bn(θ)r
n +O(rn+1)),

− 1
2frr = −1− (n+ 2)(n+ 1)bn(θ)r

n +O(rn+1),
1
4f

2
r f

−1 = (r + (n+ 2)bn(θ)r
n+1 +O(rn+2))2r−2(1− 2bn(θ)r

n +O(rn+1))

= 1 + (2(n+ 2)− 2)bn(θ)r
n +O(rn+1),

− 1
2frr +

1
4f

2
r f

−1 = bn(θ)(−(n+ 2)(n+ 1) + 2(n+ 1))rn +O(rn+1)

= −n(n+ 1)bn(θ)r
n +O(rn+1),

Tr{J (∂θr )} = f−1{− 1
2frr +

1
4f

2
r f

−1}

= r−2(1− 2bn(θ)r
n +O(rn+1))(−n(n+ 1)bn(θ)r

n +O(rn+1))

= −n(n+ 1)bn(θ)r
n−2 +O(rn−1),

∇n−2
∂θr

Tr{J (∂θr )|r=0} = − (n+1)!
n−1 bn(θ).

Consequently, cn = − n−1
(n+1)! . �

3. Proof of Theorem 1.3: Constructing centrally harmonic spaces

Let (r, θ) be geodesic polar coordinates centered at a point P . Choose local co-
ordinates θ = (θ1, . . . , θm−1) on the unit sphere to express g = dr2+gab(r, θ)dθ

adθb

and ΘP (r, θ) = det(gab(r, θ))
1

2 ν(θ) where dθ = ν(θ)dθ1 · · · dθm−1. Let r(r) satisfy
r(0) = 0 and dr = ψ(r2)−1dr. Let r(r) be the inverse function. We have

gψ = ψ(r2)−2g = ψ−2dr2 + ψ−2gab(r, θ)dθ
adθb

= dr2 + ψ−2(r(r)2)gab(r(r), θ)dθ
adθb .

Consequently, (r, θ) → r(r) · θ gives geodesic polar coordinates for the metric gψ
and r is the geodesic distance function for gψ. We then have

ΘP,gψ(r, θ) = ψ(r(r)2)1−mΘP,g(r(r)) (3.a)

and gψ is harmonic at the point P as well. �

4. Proof of Lemma 1.4: Space forms

We adopt the following notational conventions in Section 4. LetM = (M, g) be a
Riemannian manifold and let Mψ := (M,Ψ−2g) be a conformal radial deformation
of M. Let ρ and ρψ be the Ricci tensors of g and gψ. If φ is a smooth function on
M , let Hessg(φ) := ∇2φ be the Hessian of φ with respect to g;

Hessg(φ) = ∇2φ = {∂ξi∂ξjφ− Γij
k∂ξkφ}dξ

i ⊗ dξj . (4.a)
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Fix ξ ∈ TPM with 0 < ‖ξ‖ < ιP . Choose the coordinate system on TPM so
ξ = (‖ξ‖, 0, . . . , 0). The following is a crucial technical result that will play a
central role in the proof of Lemma 1.4 and of Theorem 1.5.

Lemma 4.1.

(1) If M is centrally harmonic about P , then M is Einstein at P .
(2) ρgψ − ρg = Ψ−1(m− 2)Hessg(Ψ) + {−Ψ−1∆0

MΨ− (m− 1)Ψ−2‖dΨ‖2g}g.

(3) Lξ(∂ξi , ∂ξj ) = −‖ξ‖−1δij + Γij
1(ξ).

(4) Assume M and Mψ are Einstein at ξ and that m ≥ 3.
(a) If Lξ is not a multiple of the identity, then ψ′(‖ξ‖2) = 0.
(b) If ψ′(‖ξ‖2) = 0, then ψ′′(‖ξ‖2) = 0.

Proof. If M is centrally harmonic about P , then H2 only depends on ‖ξ‖ so we
shall write H2(ξ) = H2(‖ξ‖). In particular, by Equation (1.b), ρg(ξ, ξ) = Tr{Jg(ξ)}
only depends on ‖ξ‖ so ρg(ξ, ξ) = c‖ξ‖2 and Assertion (1) follows. We refer
to Kühnel and Rademacher [9] for the proof of Assertion (2). If i > 1, let
σi(θ) := ‖ξ‖ cos(θ)∂ξ1 +‖ξ‖ sin(θ)∂ξi define a curve in SP (‖ξ‖) with σ̇i(0) = ‖ξ‖∂ξi .
Assertion (3) follows by polarizing the identity

Lξ(∂ξi , ∂ξi) = ‖ξ‖−2
{

g(∇g,σ̇i σ̇i, ∂ξ1)
}∣

∣

θ=0

= ‖ξ‖−2
{

(∂2θσi, ∂ξ1) + ‖ξ‖2(∇g,∂
ξi
∂ξi , ∂ξ1)

}∣

∣

∣

θ=0

= −‖ξ‖−1 + Γii
1 .

Suppose that M and Mψ are Einstein at ξ. Since m ≥ 3, Assertion (2) implies
that Hessg(Ψ)(ξ) is a multiple of g; if m = 2, then we obtain no information
from the Einstein condition and it is for this reason we assume m ≥ 3 henceforth
whenever using Lemma 4.1. Since Ψ = ψ((ξ1)2+ · · ·+(ξm)2) and we are evaluating
at ξ = (‖ξ‖, 0, . . . , 0), we use Equation (4.a) to compute:

Hessg(Ψ)(ξ) = {∂ξi∂ξjΨ− Γij
k∂ξkΨ}(ξ)dξi ⊗ dξj

= {2δijψ
′(‖ξ‖2) + 4‖ξ‖2δ1iδ1jψ

′′(‖ξ‖2)− 2‖ξ‖Γij
1ψ′(‖ξ‖2)}dξi ⊗ dξj

= (2ψ′(‖ξ‖2) + 4‖ξ‖2ψ′′(‖ξ‖2))dr ⊗ dr

−2ψ′(‖ξ‖2) ‖ξ‖
∑

i,j>1 L(∂i, ∂j)dξ
i ⊗ dξj .

(4.b)

Suppose first that L is not a multiple of g and that ψ′(‖ξ‖2) 6= 0. We may then use
Equation (4.b) to see that Hessg(Ψ)(ξ) is not a multiple of g. Since m ≥ 3, Asser-
tion 2 then shows ρgψ − ρg is not a multiple of g. This contradicts the assumption
that M and Mψ are Einstein at ξ and establishes Assertion (4a). Suppose finally
that ψ′(‖ξ‖2) = 0 and that ψ′′(‖ξ‖2) 6= 0. Again, examining Equation (4.b) shows
that Hessg(Ψ)(‖ξ‖2) is not a multiple of g which is a contradiction; this establishes
Assertion (4b). �

4.1. Analytic radial conformal deformations of Rm. We adopt the notation
of Section 1.6 for the remainder of this section. Let ga,b := (a+ b‖ξ‖2)−2ge on the
appropriate domain for (a, b) 6= (0, 0).

Lemma 4.2. Let c 6= 0.

(1) ga,b and gb,a are isometric.
(2) ga,b and gac−1,bc are isometric.
(3) gca,cb are homothetic.

Proof. Let η = ‖ξ‖−2ξ for ξ 6= 0 define inversion about the origin. Express ξ = r ·θ
and η = t · θ in polar coordinates where r = ‖ξ‖, t = ‖η‖, θ = ξ/‖ξ‖ = η/‖η‖, and
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rt = 1. We prove Assertion (1) by computing:

ga,b =
dr2 + r2dθ2

(a+ br2)2
=
t−4dt2 + t−2dθ2

(a+ bt−2)2
=
dt2 + t2dθ2

(at2 + b)2
= gb,a .

Next set ξ = cη. Since r = ct, we prove Assertion (2) by computing:

ga,b =
dr2 + r2dθ2

(a+ br2)2
=
c2dt2 + c2t2dθ2

(a+ bc2t2)2
=

dt2 + t2dθ2

(ac−1 + bct2)2
= gac−1,bc .

Asseretion (3) is immediate. �

4.2. The proof of Lemma 1.4 (1). We must show that a radial conformal defor-
mation of the Euclidean metric defined by a linear function is a space form. Since
g1,0 = ge is the Euclidean flat metric, g1,0 is a space form metric. Stereographic
projection shows that g 1

2
, 1
2

= 4(1 + ‖ξ‖2)−2ge is the standard round metric on the

sphere of radius 1 and hence is a space form metric. The hyperbolic metric on the
unit disk is g 1

2
,− 1

2

= 4(1 − ‖ξ‖2)−2ge and hence is a space form metric. Inversion

about the origin, which was discussed the proof of Lemma 4.2, interchanges the
region 0 < ‖ξ‖2 < 1 and ‖ξ‖2 > 1 and shows g 1

2
,− 1

2

is a space form metric on the

region ‖ξ‖2 > 1 as well. Thus g 1

2
,± 1

2

are space form metrics on the appropriate do-

mains. Any metric homothetic or isometric to a space form metric is again a space
form metric. Thus Lemma 4.2 applies to show gc−1d,±cd is a space form metric if
c 6= 0 and d 6= 0. Set

c =

∣

∣

∣

∣

b

a

∣

∣

∣

∣

1/2

, d = a

∣

∣

∣

∣

b

a

∣

∣

∣

∣

1/2

, ε := sign

(

b

a

)

= ± .

We then have a = c−1d and b = εcd. This shows that ga,b = gc−1d,εcd is a space
form metric. If a 6= 0, then ga,0 is homothetic to the Euclidean metric and is a
space form metric. Finally by Lemma 4.2 (1), ga,0 and g0,a are isometric and hence
g0,a is a space form metric. �

4.3. The proof of Lemma 1.4 (2). Suppose that a radial analytic conformal
deformation Nψ of Euclidean space is a space form and m ≥ 3. Since gψ and ge are
Einstein at any point ξ in the domain of definition and since m ≥ 3, we may apply
Lemma 4.1 to see Hessge(Ψ) is a multiple of ge. Since Γij

1(ge) = 0, Equation (4.b)
shows that ψ′′(‖ξ‖2) = 0 and hence ψ is linear. �

4.4. Proof of Lemma 1.4 (3,4). We must show that the metric ga,b has constant
sectional curvature 4ab. The metrics ga,0 and g0,b are flat and have sectional cur-
vature 0. We may therefore assume a 6= 0 and b 6= 0. The metrics 4(1±‖ξ‖2)−2ds2e
have constant sectional curvature ±1, i.e. g 1

2
,± 1

2

has constant sectional curvature

±1. Thus Assertion (3) holds if (a, b) = (12 ,±
1
2 ). Isometric metrics have the same

sectional curvature and thus by Lemma 4.2 (2), g 1

2
c−1,± 1

2
c has constant sectional

curvature ±1. Rescaling the metric by a homothetic constant d−2 rescales the sec-
tional curvature by d2. Thus g 1

2
c−1d,± 1

2
cd has constant sectional curvature±d

2. The

argument of Section 4.2 now establishes the result in general. Since any two man-
ifolds of the same constant sectional curvature are locally isometric, Assertion (4)
follows from Assertion (3). �

5. Proof of Theorem 1.5: Radial conformal deformations

The notation of Equation (1.b) for the covariant deformation of the Jacobi op-
erator does not distinguish between the two metrics g and gΨ. We evaluate at ξ.
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Let η, η1, and η2 belong to TξM . We define the following endomorphisms of TξM :

g(Jk,g(η)η1, η2) := {∇k
gRg(ξ)}(η1, η, η, η2; η, . . . , η),

gΨ(Jk,gΨ(η)η1, η2) = {∇k
gΨRgΨ(ξ)}(η1, η, η, η2; η, . . . , η) .

We emphasize that everything is evaluated at ξ. We continue our discussion.

Lemma 5.1. If M is Einstein, if m ≥ 3, if ψ′(‖ξ‖2) = 0, and if Mψ is centrally

harmonic about ξ, then ψ(k)(‖ξ‖2) = 0 for all k.

Proof. By Assertion (4a) of Lemma 4.1, ψ′′(‖ ξ‖2) = 0 as well. Suppose the Lemma
is false. Choose n ≥ 2 minimal so that ψ(j)(‖ξ‖2) = 0 for 1 ≤ j ≤ n but so that
ψ(n+1)(‖ξ‖2) 6= 0. We argue for a contradiction. SinceM is Einstein, ∇j

gρg vanishes

identically for j ≥ 1. Since ψ(j)(‖ξ‖2) = 0 for 1 ≤ j ≤ n, we have∇j
g = ∇j

gψ at ξ for
1 ≤ j ≤ n and we need not distinguish the two. We may covariantly differentiate
Assertion (2) of Lemma 4.1 to see

{∇jρgψ}(ξ) = ∇j{ρgψ − ρg}(ξ) = 0 for j ≤ n− 2 . (5.a)

Since Mψ is centrally harmonic about ξ, Hgψ ,ξ,n+1(η) is a multiple of ‖η‖n+1.

Since Mψ is Einstein, J0(η) = c‖ξ‖2 id. We use Equation (5.a) and Assertion (2)
of Lemma 4.1 to see that Jj(η) is zero and hence a multiple of id for 1 ≤ j ≤ n− 2
(if n = 2, this assertion is vacuous). We may therefore use Lemma 1.2 to see that
Tr{Jgψ ,ξ,n−1(η)} is a multiple of ‖η‖n−1. In particular, Tr{Jgψ,ξ,n−1(η)} = 0 if n
is even.

Consequently we must differentiate the coefficients appearing in Assertion (2) of
Lemma 4.1 to study ∇n−1{ρgψ − ρg}(ξ). We have

∇(n−1)ρgψ (∂ξi , ∂ξi ; ∂ξi , . . . , ∂ξi)(ξ)

= ∇(n−1){ρgψ − ρg}(∂ξi , ∂ξi ; ∂ξi , . . . , ∂ξi)(ξ)

= Ψ−1(ξ)

{

(m− 1)ψn+1(‖ξ‖2) if i = 1
0 if i > 1

}

.

Since this must depend only on ‖∂ξi‖, we conclude as desired ψ
(n+1)(‖ξ‖2) = 0. �

5.1. The proof of Theorem 1.5 (1). Let M = (M, g) be an Einstein manifold
of dimension m ≥ 3. Suppose that ψ is real analytic and that Mψ is centrally
harmonic about some ξ with 0 < ‖ξ‖ < ιP . Assume the geodesic sphere about P
is not totally umbillic at ξ. By Lemma 4.1 4, we have ψ′(‖ξ‖2) = ψ′′(‖ξ‖2) = 0.
By Lemma 5.1, we have ψ(k)(‖ξ‖2) = 0 for all k ≥ 1. Since ψ is real analytic, this
implies ψ is constant. �

5.2. The proof of Theorem 1.5 (2). We may work locally and assume without
loss of generality that M is flat space and g = ge. Suppose ψ is real analytic and
that Mψ is centrally harmonic about some ξ with 0 < ‖ξ‖ < ιP . We assume m ≥ 3
and use Lemma 5.1.

5.2.1. Suppose that ψ(‖ξ‖2) 6= ‖ξ‖2ψ′(‖ξ‖2). Express Mψ = {N1,a}φa where we
set φa(t) := (1 + at)−1ψ(t). We then have

φ′a(t) =
−aψ(t) + (1 + at)ψ′(t)

(1 + at)2
.

We solve the equation φ′a(‖ξ‖
2) = 0 to obtain

a = −
ψ′(‖ξ‖2)

‖ξ‖2ψ′(‖ξ‖2)− ψ(‖ξ‖2)
.
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By Lemma 1.4, N1,a is a space form. Since Nφa is centrally harmonic about ξ and
φ′a(‖ξ‖

2) = 0, we may use Lemma 5.1 to see that φ′a(‖ξ‖
2) = 0 and hence φa is

constant so M is homothetic to N1,a and hence is a space form.

5.2.2. Suppose that ψ(‖ξ‖2) = ‖ξ‖2ψ′(‖ξ‖2). Express Mψ = {N0,1}φ where we set
φ(t) = t−1ψ(t). We then have φ′(‖ξ‖2) = {t−2{−ψ(t) + tψ′(t)}}|t=‖ξ‖2 = 0 and
again we can use Lemma 5.1 to complete the proof. �

6. The proof of Lemma 1.6: Totally umbillic geodesic spheres

The local isometry group of a space form acts transitively on the unit tangent
bundle of the geodesic spheres; consequently, the geodesic spheres in a space form
are totally umbillic. This proves Assertion (1). We refer to Chen and Vanhecke [5],
Kulkarni [10], and Vanhecke and Willmore [14] for the proof the converse assertion
to establish Assertion (2). We use Chen [4] to establish Assertion (3). Let σab(rξ)
be the second fundamental form of the geodesic sphere about P passing thru the
point rξ. Chen and Vanhecke [5] show σab = r−1δab −

r
3Rξaξb(P ) + O(r2). Since

sP > 0, Rξaξb is not a multiple of δab and show Assertion (4) follows. We use Berndt,
Tricerri and Vanhecke [1] to derive Assertion (5) from Assertion (4). The eigenvalues
of the Jacobi operator are given in the first Theorem on page 96 of Section 4.2. By
hypothesis, M does not have constant sectional curvature but the remaining rank
one symmetric spaces are included. There are 6 cases in the classification (i)–(vi).
In cases (i)–(v), the eigenvalues of the Jacobi operator are {0,− 1

4 ,−1} and the
eigenvalue 0 appears with multiplicity 1 which yields the eigenvalues of the reduced
Jacobi operator are {− 1

4 ,−1} so M(ξ) −m(ξ) = 3
4 . The situation in case (vi) is

more complicated. Still, there is a 4-dimensional subspace where the eigenvalues
are {0,− 1

4 ,−1} where − 1
4 has multiplicity 2. The computation of the remaining

eigenvalues is more difficult. Nevertheless, we obtain M(ξ)−m(ξ) ≥ 3
4 so s > 0 as

desired. �

7. The proof of Lemma 1.7

We adopt the notation of Section 1.9. The round sphere S is a space form. Since
Sψ is conformally radially rotationally symmetric about the north and south poles
P±, Sψ is centrally harmonic about these two points by Theorem 1.3. Suppose Sψ
is centrally harmonic about some other point. Since we are within the injectivity
radius, we can apply Theorem 1.5 to see Sψ is a space form as we have assumed
m ≥ 3. This is a contradiction. �

8. The proof of Theorem 1.8: A non-flat example with trivial

volume density function

Let m = 2m ≥ 4. Let M := (CPm − CP
m−1, g) where g is the Fubini-Study

metric. We have removed the cut-locus and consequently, the underlying manifold
is an open geodesic ball of radius π

2 . Choose ψ so ψ(r2)−1Θ̃P,g(r) = 1. Then the

Equation (3.a) ensures Θ̃P,gψ = 1. �

Remark 8.1. We examine CP
1

2
m near the cut locus by setting set u = π

2 − r. Set

Θ(u) := sin
(π

2
− u
)(m−1)

cos
(π

2
− u
)

,

Ψ(u) =
sin
(

π
2 − u

)

π
2 − u

cos
(π

2
− u
)1/(m−1)

.
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Then gψ(∂u, ∂u) = ψ(u)−2 so the curves γ(u) = (u, 0, . . . , 0) have length
∫ π

2

u=0

ψ−1(u)du .

Since ψ(u) = 2
πu

1

m−1 + O(1), the unparametrized geodesics have finite length and
the resulting manifold is not geodesically complete. We use Lemma 4.1 to compute

ρg(ψ(u)∂u, ψ(u)∂u) = O(1),

ρgψ (ψ(u)∂u, ψ(u)∂u) = (ρgψ − ρg)(ψ(u)∂u, ψ(u)∂u)

= (m− 2)ψ(u)ψ′′(u) + ψ(u)Θ(u)−1∂u{Θ(u)ψ(u)} − (m− 1)ψ′(u)2 +O(1)

A mathematica computation yields

ρg(ψ(u)∂u, ψ(u)∂u) =















− 28
9π2 u

− 4

3 +O(u−
1

3 ) if m = 4

− 84
25π2 u

− 8

5 +O(u−
3

5 ) if m = 6

− 172
49π2 u

−12/7 +O(u−
5

7 ) if m = 8















so this is singular at u = 0 and Mψ is essentially geodesically incomplete.
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