
ar
X

iv
:2

11
2.

13
91

9v
2 

 [
m

at
h.

N
T

] 
 2

7 
Ju

n 
20

22

On the Generalization of the Gap Principle

Anton Mosunov

University of Waterloo

Abstract

Let α be a real algebraic number of degree d ≥ 3 and let β ∈ Q(α)
be irrational. Let µ be a real number such that (d/2) + 1 < µ < d and
let C0 be a positive real number. We prove that there exist positive real
numbers C1 and C2, which depend only on α, β, µ and C0, with the
following property. If x1/y1 and x2/y2 are rational numbers in lowest
terms such that

H(x2, y2) ≥ H(x1, y1) ≥ C1

and
∣

∣

∣

∣

α− x1

y1

∣

∣

∣

∣

<
C0

H(x1, y1)µ
,

∣

∣

∣

∣

β − x2

y2

∣

∣

∣

∣

<
C0

H(x2, y2)µ
,

then eitherH(x2, y2) > C−1
2 H(x1, y1)

µ−d/2, or there exist integers s, t, u, v,
with sv − tu 6= 0, such that

β =
sα+ t

uα+ v
and

x2

y2
=

sx1 + ty1
ux1 + vy1

,

or both. Here H(x, y) = max(|x|, |y|) is the height of x/y. Since µ− d/2
exceeds one, our result demonstrates that, unless α and β are connected
by means of a linear fractional transformation with integer coefficients,
the heights of x1/y1 and x2/y2 have to be exponentially far apart from
each other. An analogous result is established in the case when α and β
are p-adic algebraic numbers.

1 Introduction

The theory of Diophantine approximation concerns the question of how well
real numbers can be approximated by rationals, and its variations. If α is a real
number and x/y is a rational number, with x, y ∈ Z and y ≥ 1, then the quality
of approximation of α by x/y can be measured by means of a quantity µ such
that the inequality

∣

∣

∣

∣

α− x

y

∣

∣

∣

∣

<
1

yµ
(1)

is satisfied. The larger µ is, the better the approximation of x/y with respect
to α is. It was observed by Dirichlet that for µ = 2 the inequality above can be
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achieved for infinitely many integers x and y, as long as α is real and irrational.
On the other hand, Liouville pointed out that, if α is an irrational algebraic
number of degree d and µ > d, then (1) has only finitely many solutions in
integers x and y with y ≥ 1. In other words, algebraic numbers cannot be
approximated by rationals too well.

It is not difficult to count distinct x/y satisfying (1), with y varying in a
fixed range. Indeed, if it so happens that C1 ≤ y1 < y2 ≤ C2, then the fact that
x1/y1 6= x2/y2 yields

1

y1y2
≤
∣

∣

∣

∣

x1
y1

− x2
y2

∣

∣

∣

∣

≤
∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

+

∣

∣

∣

∣

α− x2
y2

∣

∣

∣

∣

<
1

yµ1
+

1

yµ2
<

2

yµ1
,

resulting in the inequality
2y2 > yµ−1

1 ,

which is known as the gap principle. For µ > 2 this inequality states that, if two
distinct rationals satisfy (1), then their denominators must be exponentially far
apart from each other.

Unfortunately, as the quantity C2 can be arbitrarily large, the gap principle
itself does not allow us to count the number of distinct solutions to (1). However,
it was established by Thue [15] that, when α is an irrational algebraic number
of degree d ≥ 3 and (d/2)+1 < µ < d, then there exist computable positive real
numbers C1 and η > 1, which depend only on α and µ, such that every solution
xi/yi with C1 ≤ y1 < . . . < yℓ satisfies yi < yη1 . This phenomenon is known as
the Thue-Siegel principle and it was vastly generalized by Bombieri and Mueller
[2]. When combined with the gap principle, the Thue-Siegel principle enables
us to count the number of solutions x/y to (1) such that y ≥ C1.

For a rational number x/y in lowest terms, let H(x, y) = max(|x|, |y|) denote
the height of x/y. In this article, we generalize the gap principle as follows.
Notice that the positive real numbers C1, C2, . . . occurring throughout the article
are all computable.

Theorem 1.1. (A generalized Archimedean gap principle) Let α be a real al-
gebraic number of degree d ≥ 3 over Q and let β be irrational and in Q(α). Let
µ be a real number such that (d/2) + 1 < µ < d and let C0 be a positive real
number. There exist positive real numbers C1 and C2, which depend only on
α, β, µ and C0, with the following property. If x1/y1 and x2/y2 are rational
numbers in lowest terms such that H(x2, y2) ≥ H(x1, y1) ≥ C1 and

∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

<
C0

H(x1, y1)µ
,

∣

∣

∣

∣

β − x2
y2

∣

∣

∣

∣

<
C0

H(x2, y2)µ
,

then at least one of the following holds:

• H(x2, y2) > C−1
2 H(x1, y1)

µ−d/2;

• There exist integers s, t, u, v, with sv − tu 6= 0, such that

β =
sα+ t

uα+ v
and

x2
y2

=
sx1 + ty1
ux1 + vy1

.
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Since the exponent µ−d/2 exceeds one, our result demonstrates that, unless
α and β are connected by means of a linear fractional transformation with
integer coefficients, the heights of x1/y1 and x2/y2 have to be exponentially far
apart from each other.

Next, let | |p denote the p-adic absolute value on the field of p-adic numbers
Qp, normalized so that |p|p = p−1. An analogous result for p-adic algebraic
numbers is as follows.

Theorem 1.2. (A generalized non-Archimedean gap principle) Let p be a ra-
tional prime. Let α ∈ Qp be a p-adic algebraic number of degree d ≥ 3 over
Q and let β be irrational and in Q(α). Let µ be a real number such that
(d/2) + 1 < µ < d and let C0 be a positive real number. There exist posi-
tive real numbers C3 and C4, which depend only on α, β, µ and C0, with the
following property. If x1/y1 and x2/y2 are rational numbers in lowest terms
such that H(x2, y2) ≥ H(x1, y1) ≥ C3 and

|y1α− x1|p <
C0

H(x1, y1)µ
, |y2β − x2|p <

C0

H(x2, y2)µ
,

then at least one of the following holds:

• H(x2, y2) > C−1
4 H(x1, y1)

µ−d/2;

• There exist integers s, t, u, v, with sv − tu 6= 0, such that

β =
sα+ t

uα+ v
and

x2
y2

=
sx1 + ty1
ux1 + vy1

.

We apply our result to establish an absolute bound on the number of large
primitive solutions of certain Thue inequalities. A Thue inequality is an inequal-
ity of the form

0 < |F (x, y)| ≤ m, (2)

where m is a positive integer and F ∈ Z[x, y] is an irreducible binary form of
degree d ≥ 3. A solution (x, y) ∈ Z2 to the above inequality is called primitive
when x and y are coprime. In [8, Theorem 1], Győry proved that there exists a
positive real number Y0, which depends only on m and F , such that the number
of primitive solutions (x, y) to (2) with H(x, y) ≥ Y0 does not exceed 25d (here
the solutions (x, y) and (−x,−y) are regarded as the same). Using Theorem
1.1, we can improve Győry’s result in the case when F is irreducible and the
field extension Q(α)/Q is Galois, where α is a root of F (x, 1).

To state our result, we need to introduce the notion of enhanced automor-
phism group of F . For a 2 × 2 matrix M = ( s u

t v ), with complex entries, define
the binary form FM by

FM (x, y) = F (sx+ uy, tx+ vy).

Let Q denote the algebraic closure of the rationals and letK be a field containing
Q. We say that a matrixM = ( s u

t v ) ∈ M2(K) is a K-automorphism of F (resp.,
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|F |) if FM = F (resp., FM = ±F ). The set of all K-automorphisms of F (resp.,
|F |) is denoted by AutK F (resp., AutK |F |). We define

Aut′ |F | =
{

1
√

|sv − tu|

(

s u
t v

)

: s, t, u, v ∈ Z

}

∩Aut
Q
|F | (3)

and refer to it as the enhanced automorphism group of F . One can verify that
Aut′ |F | is a group. In Section 7 we will show that, under the conditions on
F specified above, it is finite and contains at most 24 elements. We prove the
following.

Theorem 1.3. Let F ∈ Z[x, y] be an irreducible binary form of degree d ≥ 3.
Let α be a root of F (x, 1) and assume that the field extension Q(α)/Q is Galois.
For a positive integer m consider the Thue inequality (2). Let µ be a real number
such that (d/2) + 1 < µ < d. There exists a positive real number C5, which
depends only on m, F and µ, such that the number of primitive solutions (x, y)
to (2) with H(x, y) ≥ C5 does not exceed

#Aut′ |F | ·
⌊

1 +
11.51 + 1.5 log d+ logµ

log(µ− d/2)

⌋

.

Here the solutions (x, y) and (−x,−y) are regarded as the same.

Let µ = (3d+ 2)/4. Then the function

f(d) = 1 +
11.51 + 1.5 log d+ log((3d+ 2)/4)

log((d+ 2)/4)

is monotonously decreasing on the interval [3,∞). To see that this is the case,

it is sufficient to prove that g(x) = log x
log((x+2)/4) and h(x) = log((3x+2)/4)

log((x+2)/4) are

monotonously decreasing on the specified interval. We leave it as an exercise to
the reader to prove that the derivatives of g(x) and h(x) take negative values
when evaluated at any x0 ≥ 3. Since f(3) ≈ 64.5, we can use the upper bound
#Aut′ |F | ≤ 24 established in Lemma 7.2 as well as Theorem 1.3 to conclude
that the number of primitive solutions (x, y) to (2) such that H(x, y) ≥ C5 does
not exceed 24 · ⌊f(3)⌋ = 1536 when d ≥ 3. Furthermore, since f(1014) < 4 and
lim
d→∞

f(d) = 3.5, we can also conclude that it does not exceed 24 · ⌊f(1014)⌋ = 72

when d ≥ 1014. While it is an interesting task to compare the value of C5 to the
quantity YL in [10] (see equation 2.9) or to the quantity Y0 in [8, Theorem 1],
it lies outside the scope of this article.

The article is structured as follows. In Section 2 we outline a number of
auxiliary results, which are used in the later sections. We recommend the
reader to skip this section and use it as a reference. In Section 3 we intro-
duce the notion of a minimal pair P,Q ∈ Z[x] for a tuple of algebraic numbers
(α, β) ∈ Q× (Q(α) \Q), and summarize the properties of minimal pairs. Mini-
mal pairs enable us to construct a nonzero polynomial R(x, y) = P (x) + yQ(x),
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which vanishes at the point (α, β). When R(x, y) does not vanish at the ratio-
nal point (x1/y1, x2/y2), establishing the gap principle is a rather easy task.
In Section 4, we prove that despite the vanishing of R(x, y) at (x1/y1, x2/y2),
it is still possible to prove that the heights of (x1, y1) and (x2, y2) are exponen-
tially far apart, provided that α and β are not connected by means of a linear
fractional transformation with integer coefficients. In Sections 5 and 6 we prove
Theorems 1.1 and 1.2, respectively. In Section 7 we investigate the properties
of the enhanced automorphism group Aut′ |F |. Finally, in Section 8 we prove
Theorem 1.3.

2 Auxiliary Results

This section contains several definitions and results, which we utilize in the
remaining part of the article. We recommend the reader to skip this section
and refer to it when reading the proofs outlined in sections that follow it.

Let us begin with the number of definitions. For an arbitrary polynomial R ∈
Z[x1, x2, . . . , xn], we let H(R) denote the maximum of Archimedean absolute
values of its coefficients, and refer to this quantity as a height of R. For an
algebraic number α with the minimal polynomial f , we write H(α) = H(f).
For a point (x1, x2, . . . , xn) ∈ Cn, we define

H(x1, x2, . . . , xn) = max
i=1,2,...,n

{|xi|}

and refer to this quantity as the height of (x1, x2, . . . , xn).
In this section, as well as all the subsequent ones, we write

Di,j =
1

i!j!

∂i+j

∂X i∂Y j
and Di =

1

i!

di

dX i
.

Lemma 2.1. (Liouville’s Theorem) Let α ∈ C be an algebraic number of degree
d over Q. There exists a positive number C6, which depends only on α, such
that for all integers x and y, with y 6= 0 and x 6= yα, the inequality

∣

∣

∣

∣

α− x

y

∣

∣

∣

∣

≥ C6

H(x, y)d
(4)

holds.

Proof. See [13, Theorem 1E].

Lemma 2.2. (p-adic Liouville’s Theorem) Let p be a rational prime and α ∈ Qp

a p-adic algebraic number of degree d over Q. There exists a positive number
C7, which depends only on α, such that for all integers x and y, with x 6= yα,
the inequality

|yα− x|p ≥ C7

H(x, y)d
(5)

holds.

5



Proof. Let
f(x) = cdx

d + · · ·+ c1x+ c0

be the minimal polynomial of α and let F (x, y) = ydf(x/y) be its associated
binary form. Since f(α) = 0, it follows from Taylor’s Theorem that

F (x, y) = (x− αy)

d
∑

i=1

Dif(α)(x − αy)i−1yd−i

= (x− αy)
d
∑

i=1

Dif(α)

ci−1
d

(cdx− cdαy)
i−1yd−i.

Since cdα and cd−i
d Dif(α) are algebraic integers, their p-adic absolute values do

not exceed one, so

|F (x, y)|p ≤ |yα− x|p · max
i=1,...,d







∣

∣

∣

∣

∣

Dif(α)

ci−1
d

∣

∣

∣

∣

∣

p







= |yα− x|p · max
i=1,...,d







∣

∣

∣

∣

∣

cd−i
d Dif(α)

cd−1
d

∣

∣

∣

∣

∣

p







≤ |yα− x|p · |cd|−d+1
p .

Since x 6= yα, it must be the case that F (x, y) 6= 0. By the product formula,
the following trivial lower bound holds:

|F (x, y)|p ≥ 1

|F (x, y)| ≥
1

(d+ 1)H(α)H(x, y)d
.

The result follows once we combine the upper and lower bounds on |F (x, y)|p
and use the inequality |cd|p ≥ c−1

d .

Lemma 2.3. (Siegel’s lemma, [4]) Let N and M be positive integers with
N > M . Let ai,j be integers of absolute value at most A ≥ 1 for i = 1, . . . , N
and j = 1, . . . ,M . Then there exist integers t1, . . . , tN , not all zero, such that

|ti| ≤ (NA)
M

N−M ,

N
∑

i=1

ai,jti = 0, j = 1, . . . ,M.

Proof. See, for example, [16, Lemma 2.7].

Lemma 2.4. Let α be an algebraic number of degree d over Q. Then for every
non-negative integer r there exist rational numbers ar,i such that

αr = ar,d−1α
d−1 + · · ·+ ar,1α+ ar,0.

Furthermore, if we denote the leading coefficient of the minimal polynomial of
α by cα and put

C8 = 1 + max
0≤i≤d−1

{|ad,i|} ,
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then c
max{0,r−d+1}
α ar,i ∈ Z and |ar,i| ≤ C

max{0,r−d+1}
8 for all i such that 0 ≤ i ≤

d− 1.

Proof. See [16, Proposition 2.6].

Let P ∈ C[x] be a polynomial of degree d ≥ 1. The house of P , denoted P ,
is defined to be

P = max {|α1|, . . . , |αd|} ,
where α1, . . . , αd ∈ C are the roots of P . For an algebraic number α, we define
the house of α as α = f , where f is the minimal polynomial of α.

Let α be an algebraic number and O the ring of integers of Q(α). Let cα
denote the leading coefficient of the minimal polynomial of α. We define

θα = [O : Z[cαα]] . (6)

That is, θα is equal to the index of Z[cαα] in the additive group O.

Lemma 2.5. Let α be an algebraic number of degree d over Q and

β = bd−1α
d−1 + · · ·+ b1α+ b0,

where b0, b1, . . . , bd−1 ∈ Q. There exists a positive number C9, which depends
only on α and β, such that

max
1≤i≤d

{|bi|} ≤ C9.

Furthermore,
θαcββ ∈ Z[cαα],

where θα is defined in (6). In particular, θαcβbi ∈ Z for all i = 0, 1, . . . , d− 1.

Proof. Let α = α1, . . . , αd denote the conjugates of α. For j = 1, . . . , d, let

βj =

d−1
∑

i=0

biα
i
j .

Then each βj is a conjugate of β = β1. Further,











β1
β2
...
βd











=











1 α1 α2
1 . . . αd−1

1

1 α2 α2
2 . . . αd−1

2
...

...
...

. . .
...

1 αd α2
d . . . αd−1

d











·











b0
b1
...

bd−1











. (7)

Let us denote the Vandermonde matrix on the right-hand side of the above
expression by V . Then it follows from the inequality (4.1) in [7] that

‖V −1‖∞ ≤ max
1≤j≤d

∏

1≤i≤d
i6=j

1 + |αi|
|αi − αj |

,
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where ‖ · ‖∞ denotes the matrix infinity norm.

Now, let V −1 = (vij). Then it follows from (7) that bi =
∑d

j=1 vijβj , so

|bi| ≤
d
∑

j=1

|vij | · |βj | ≤ d · β · max
1≤j≤d

∏

1≤i≤d
i6=j

1 + |αi|
|αi − αj |

.

Next, let cα and cβ denote the leading coefficients of the minimal polynomials
of α and β, respectively. Note that θαcββ = (#O/Z[cαα])cββ ∈ Z[cαα] due to
the fact that cββ ∈ O. Finally, observe that

θαcββ =

d−1
∑

i=0

θαcβbiα
i ∈ Z[cαα]

Since Z[cαα] ⊆ Z[α], it must be the case that each coefficient θαcβbi is an
integer.

Let P ∈ C[x] be a polynomial that is not identically equal to zero, with
leading coefficient cP . The Mahler measure of P , denoted M(P ), is defined to
be M(P ) = |cP | if P is the constant polynomial and

M(P ) = |cP |
d
∏

i=1

max{1, |αi|}

otherwise, where α1, . . . , αd ∈ C are the roots of P . For a binary form Q ∈
C[x, y], we define the Mahler measure of Q as M(Q) =M(Q(x, 1)). Finally, for
an algebraic number α, we define the Mahler measure of α to be M(α) =M(f),
where f is the minimal polynomial of α.

The following lemma is a reformulation of a well-known result of Lewis and
Mahler [9].

Lemma 2.6. Let

F (x, y) = cdx
d + cd−1x

d−1y + · · ·+ c0y
d

be a binary form of degree d ≥ 2 with integer coefficients such that c0cd 6= 0.
Let x1 and y1 be nonzero integers. There exists a root α of F (x, 1) such that

min

{∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

,

∣

∣

∣

∣

α−1 − y1
x1

∣

∣

∣

∣

}

≤ C10|F (x1, y1)|
H(x1, y1)d

,

where

C10 =
2d−1d(d−1)/2M(F )d−2

|D(F )|1/2 .

Proof. Let α be a root of F (x, 1) that minimizes |α− x/y|. By [14, Lemma 3],
∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

≤ C10|F (x1, y1)|
|y1|d

.
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If |y1| ≥ |x1|, then H(x1, y1) = |y1|, and so the result holds. Otherwise, since
c0cd 6= 0, we see that the roots of F (x, 1) and F (1, x) are nonzero, meaning
that all roots of F (1, x) are of the form α−1, where α is a root of F (x, 1). If we
let β−1 be a root of F (1, x) that minimizes |β−1 − y1/x1|, then it follows from
[14, Lemma 3] that

∣

∣

∣

∣

β−1 − y1
x1

∣

∣

∣

∣

≤ C10|F (x1, y1)|
|x1|d

.

Since |x1| > |y1|, the result follows.

Lemma 2.7. Let K = R or Qp, where p is a rational prime, and let K denote
the algebraic closure of K. Denote the standard absolute value on K by | |.
Let α and β be distinct numbers in K. Let µ and C0 be positive real numbers.

If x1/y1 is a rational number such that H(x1, y1) ≥ (2C0/|α− β|)1/µ and

∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

<
C0

H(x1, y1)µ
,

then
∣

∣

∣

∣

β − x1
y1

∣

∣

∣

∣

≥ C0

H(x1, y1)µ
.

Proof. Suppose that the statement is false. Then it follows from the triangle
inequality that

|α− β| ≤
∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

+

∣

∣

∣

∣

β − x1
y1

∣

∣

∣

∣

<
2C0

H(x1, y1)µ
,

and so H(x1, y1) < (2C0/|α− β|)1/µ, leading us to a contradiction.

Corollary 2.8. Let K = R or Qp, where p is a rational prime, and let K
denote the algebraic closure of K. Denote the standard absolute value on K by
| |. Let f(x) ∈ Z[x] be an irreducible polynomial of degree d ≥ 2 with roots
α1, . . . , αd ∈ K. Let µ and C0 be positive real numbers. There exists a positive
number C11, which depends only on f , µ and C0, with the following property.
If x1/y1 is a rational number such that H(x1, y1) ≥ C11 and

∣

∣

∣

∣

αi −
x1
y1

∣

∣

∣

∣

<
C0

H(x1, y1)µ

for some i ∈ {1, . . . , d}, then
∣

∣

∣

∣

αj −
x1
y1

∣

∣

∣

∣

≥ C0

H(x1, y1)µ

for all j 6= i.

Lemma 2.9. (The Thue-Siegel Principle [2]) Let K = R or Qp, where p is
a rational prime, and denote the standard absolute value on K by | |. Let
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α1 ∈ K be an algebraic number of degree d ≥ 3 over Q and let α2 ∈ Q(α1) have
degree d. Let t and τ be such that

2 +
√
2d3 + 2d2 − 4d

d(d+ 1)
< t <

√

2

d
,
√

2− dt2 < τ < t− 2

d
, (8)

and put λ = 2/(t− τ), so that λ < d. Define

Ai =
t2

2− dt2

(

logM(αi) +
d

2

)

for i = 1, 2.

Let x1/y1 and x2/y2 be rational numbers in lowest terms that satisfy the in-
equalities

∣

∣

∣

∣

αi −
xi
yi

∣

∣

∣

∣

<
1

(4eAiH(xi, yi))
λ

for i = 1, 2.

Then

log(4eA2) + logH(x2, y2) ≤ δ−1
(

log(4eA1) + logH(x1, y1)
)

,

where

δ =
dt2 + τ2 − 2

d− 1
.

Proof. Since d ≥ 3, the intervals in (8) are guaranteed to be non-empty, so the
statement is not vacuously true. Since

∣

∣

∣

∣

αi −
xi
yi

∣

∣

∣

∣

<
1

(4eAiH(xi, yi))
λ
<

1

(3eAiH(xi, yi))
λ

for i = 1, 2,

the case when |α1| ≤ 1 and |α2| ≤ 1 follows directly from [2, Section II]. More
precisely, the comment on p. 184 of [2] states that the triple (A1, A2, τ) is ad-
missible for the data (α1, α2, x1/y1, x2/y2, t, ϑ, δ), where we take ϑ = 1. Note
also that the comments on p. 74 of [3] apply in our situation:

(i) the hypothesis Kṽ = kv is not used in the proof and therefore may be
omitted;

(ii) c(ϑt) ≤ log 3;

(iii) the chosen value for Ai implies a fortiori
∣

∣

∣αi − xi

yi

∣

∣

∣ < ϑ(t− τ) for i = 1, 2;

(iv) h(xi/yi) = H(xi, yi) for i = 1, 2;

(v) the exponent in (5A), p. 179 of [2] should be 2ϑ/(t− τ), not 2ϑ−1/(t− τ).

Next, we consider the case when |αi| > 1 for some i ∈ {1, 2}. If K = R, then
|xi/yi| > 1, and so

∣

∣

∣

∣

α−1
i − yi

xi

∣

∣

∣

∣

< |αi|−1|yi/xi|
(

4eAiH(xi, yi)
)−λ

<
(

3eAiH(xi, yi)
)−λ

.
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If K = Qp, then |yi| ≤ 1 and we claim that |xi| = 1. For suppose not and
|xi| < 1. Since xi/yi is in lowest terms it must be the case that |yi| = 1, so

|xiα−1
i | = |xi| · |α−1

i | < 1 = |yi|.

Since |xiα−1
i | 6= |yi|, it follows from the strong triangle inequality that

|xiα−1
i − yi| = max

{

|xiα−1
i |, |yi|

}

= max
{

|xiα−1
i |, 1

}

≥ 1.

Thus,

1 ≤ |xiα−1
i − yi| = |yi||α−1

i |
∣

∣

∣

∣

αi −
xi
yi

∣

∣

∣

∣

<
(

4eAiH(xi, yi)
)−λ

,

which is impossible. Hence |xi| = 1, so

∣

∣

∣

∣

α−1
i − yi

xi

∣

∣

∣

∣

< |αi|−1|yi/xi|
(

4eAiH(xi, yi)
)−λ

<
(

3eAiH(xi, yi)
)−λ

.

We conclude that, as long as
∣

∣

∣αi − xi

yi

∣

∣

∣ <
(

4eAiH(xi, yi)
)−λ

for i = 1, 2, the

inequalities

∣

∣

∣

∣

αi −
xi
yi

∣

∣

∣

∣

<
1

(3eAiH(xi, yi))
λ

and

∣

∣

∣

∣

α−1
i − yi

xi

∣

∣

∣

∣

<
1

(3eAiH(xi, yi))
λ

hold whenever |αi| > 1 for some i ∈ {1, 2}. Consequently, we can always
choose r, s ∈ {−1, 1} so that |αr

1| ≤ 1, |αs
2| ≤ 1 and (A1, A2, τ) is admissible

for the data (αr
1, α

s
2, (x1/y1)

r, (x2/y2)
s, t, ϑ, δ). The result now follows from

[2, Section II].

3 Minimal Pairs

Let α be an algebraic number of degree d over Q and let β ∈ Q(α) be irrational.
With a pair (α, β) we associate two polynomials P,Q ∈ Z[x], which possess cer-
tain minimal properties listed in Definition 3.1. The properties of minimal pairs
summarized in Proposition 3.2 will play a crucial role in proofs of Archimedean
and non-Archimedean gap principles, which are outlined in Sections 5 and 6,
respectively.

Definition 3.1. Let α be an algebraic number of degree d and let β ∈ Q(α) be
irrational. We say that two univariate polynomials, P and Q, not both identi-
cally equal to zero, form a minimal pair for (α, β), if they satisfy the following
four properties:

(1) P,Q ∈ Z[x].

(2) P (α) + βQ(α) = 0.

11



(3) The quantity max{degP, degQ} is minimal among all polynomials satisfy-
ing properties (1) and (2).

(4) The quantity max{H(P ), H(Q)} is minimal among all polynomials satisfy-
ing properties (1), (2) and (3).

If P,Q is a minimal pair for (α, β), we write

r(α, β) = max{degP, degQ}.

If P,Q is a minimal pair for (α, β) then −P,−Q is also a minimal pair for
(α, β). This already demonstrates that minimal pairs are not unique. Further-
more, the uniqueness is not guaranteed even if we impose an additional condition
that the leading coefficient of Q is equal to one. Indeed, let

α = 2 cos

(

2π

15

)

and β = 2 cos

(

4π

15

)

.

Then both
P1(x) = −x2 + 2, Q1(x) = 1

and
P2(x) = −x2 + 2x− 1, Q2(x) = x2 − x− 1

are minimal pairs for (α, β).
If P,Q is a minimal pair for (α, β), then we can define a polynomial

R(x, y) = P (x) + yQ(x).

Polynomials of such form were used by Thue [15] for the purpose of establishing
the first instance of the Thue-Siegel principle [2]. More precisely, they were con-
structed as to achieve high vanishing at the point (α, α), i.e., DiR(α, α) = 0
for i = 0, 1, . . . , ℓ for some large ℓ (see the exposition of Thue’s method in
[16, Chapter 2]). In turn, we construct R(x, y) so to achieve R(α, β) = 0 for
arbitrary irrational β ∈ Q(α) for the purpose of obtaining a generalized gap
principle. The following proposition summarizes various properties of minimal
pairs.

Proposition 3.2. Let α be an algebraic number of degree d over Q and let
β ∈ Q(α) be irrational. Let P,Q be a minimal pair for (α, β) and put r = r(α, β).
Then the polynomials P , Q, and their Wronskian W = PQ′ −QP ′ possess the
following properties.

1.
1 ≤ r ≤ ⌊d/2⌋ . (9)

2. P and Q are coprime.

3. If P̂ , Q̂ ∈ Z[x] satisfy P̂ (α)+βQ̂(α) = 0 and max{deg P̂ , deg Q̂} ≤ d−1−r,
then P̂ = GP , Q̂ = GQ for some G ∈ Z[x].
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4. There exists a positive number C12, which depends only on α and β, such
that

max{H(P ), H(Q)} ≤ C12. (10)

5. If α ∈ C, there exists a positive real number C13, which depends only on
α and β, such that

|W (α)| ≥ C13. (11)

Similarly, if α ∈ Qp for some rational prime p, there exists a positive real
number C14, which depends only on α and β, such that

|W (α)|p ≥ C14. (12)

Proof. Let us prove each of the above statements.

1. First, we prove that r ≥ 1. If not, then r = max{degP, degQ} = 0,
which means that P = p and Q = q for some integers p and q, not both
equal to zero. If q 6= 0, then P (α) + βQ(α) = 0 implies β = −p/q, which
contradicts the fact that β is irrational. If q = 0, then p = 0, which is
impossible, since we assumed that both p and q cannot be equal to zero.
Thus, r ≥ 1.

Next, we prove that r ≤ s, where s = ⌊d/2⌋. Write

P̂ (x) =

s
∑

i=0

aix
i and Q̂(x) =

s
∑

i=0

as+1+ix
i. (13)

We view the 2s+2 integer coefficients a0, . . . , a2s+1 as variables. Since α is
algebraic of degree d over Q and β ∈ Q(α), the equation P̂ (α)+βQ̂(α) = 0
defines d linear equations over Q, which we will define in the proof of Part
4. Since 2s+ 2 > d, the existence of a non-trivial integer solution to the
system of d linear equations over Q in 2s + 2 variables is guaranteed by
Lemma 2.3. Therefore, there exist polynomials P̂ , Q̂, not both zero, such
that max{deg P̂ , deg Q̂} ≤ s. Consequently, the polynomials P,Q with
max{degP, degQ} minimal satisfy

max{degP, degQ} ≤ max{deg P̂ , deg Q̂} ≤ s.

2. Let G = gcd(P,Q) and suppose that degG ≥ 1. Then certainly G(α) 6= 0,
because α has degree d and degG ≤ degP < d. Put P̂ = P/G and
Q̂ = Q/G. Then

P̂ (α) + βQ̂(α) = 0

and
max{deg P̂ , deg Q̂} < max{degP, degQ},

in contradiction to our assumption that max{degP, degQ} is minimal.
This means that degG = 0, and so P and Q are coprime.
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3. Since
P (α) + βQ(α) = P̂ (α) + βQ̂(α) = 0,

we have
P (α)Q̂(α) −Q(α)P̂ (α) = 0.

Since α has degree d and

deg
(

PQ̂−QP̂
)

≤ max{degP, degQ}+max{deg P̂ , deg Q̂}

≤ r + (d− 1− r)

< d,

we conclude that PQ̂ − QP̂ is identically equal to zero. If Q̂ = 0, then
P̂ = 0, and so G = 0. Otherwise P/Q = P̂ /Q̂. If we put G = gcd(P̂ , Q̂),
then it becomes clear that P̂ = GP , Q̂ = GQ.

4. Define bi, ck,i ∈ Q as follows:

αk = ck,d−1α
d−1 + · · ·+ ck,1α+ ck,0,

β = bd−1α
d−1 + · · ·+ b1α+ b0.

Let P̂ , Q̂ be as in (13). Then,

P̂ (α) + βQ̂(α) =

s
∑

i=0

aiα
i +

(

d−1
∑

i=0

biα
i

)

·





s
∑

j=0

as+1+jα
j





=

s
∑

i=0

aiα
i +

s
∑

j=0

as+1+j

d−1
∑

i=0

biα
i+j

=

s
∑

i=0

aiα
i +

s
∑

j=0

as+1+j





d−1
∑

i=j

bi−jα
i +

d−1+j
∑

k=d

bk−jα
k





=

s
∑

i=0

aiα
i +

s
∑

j=0

as+1+j

d−1
∑

i=j

bi−jα
i +

s
∑

j=0

as+1+j

d−1+j
∑

k=d

bk−j

d−1
∑

i=0

ck,iα
i

=

s
∑

i=0



ai +

i
∑

j=0

bi−jas+1+j +

s
∑

j=0

d−1+j
∑

k=d

bk−jck,ias+1+j



αi+

+
d−1
∑

i=s+1

s
∑

j=0

(

bi−j +

d−1+j
∑

k=d

bk−jck,i

)

as+1+jα
i

=

d−1
∑

i=0

Li(~a)α
i,
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where ~a = (a0, a1, . . . , a2s+1) and

Li(~a) =















ai +
i
∑

j=0

(

bi−j +
d−1+j
∑

k=d

bk−jck,i

)

as+1+j +
s
∑

j=i+1

(

d−1+j
∑

k=d

bk−jck,i

)

as+1+j if i ≤ s,

s
∑

j=0

(

bi−j +
d−1+j
∑

k=d

bk−jck,i

)

as+1+j if i ≥ s+ 1.

We conclude that the equation P̂ (α) + βQ̂(α) = 0 is equivalent to the
system of d linear equations L0(~a) = . . . = Ld−1(~a) = 0 over Q.

Put
B = max

0≤i≤d−1
{|bi|} and C = max

0≤k≤d−1+s
0≤i≤d−1

{|ck,i|}.

Then we can bound the (rational) coefficients of Li(~a) from above by
B(1 + sC):

∣

∣

∣

∣

∣

bi−j +

d−1+j
∑

k=d

bk−jck,i

∣

∣

∣

∣

∣

≤ B + jBC ≤ B(1 + sC),

∣

∣

∣

∣

∣

d−1+j
∑

k=d

bk−jck,i

∣

∣

∣

∣

∣

≤ jBC ≤ sBC < B(1 + sC).

By Lemma 2.5 we have θαcβbi ∈ Z for all i and B ≤ C9. Further, by

Lemma 2.4 we have c
max{0,k−d+1}
α ck,i ∈ Z for all i, k and C ≤ Cs

8 . Hence
the linear forms

L̂i(~a) = θαcβc
s
αLi(~a)

have integer coefficients and the size of these coefficients is at most

A = θαcβc
s
αC9(1 + sCs

8).

By Lemma 2.3,

max{H(P̂ ),H(Q̂)} = max
0≤i≤2s+1

{|ai|}

≤ ((2s+ 2)A)d/(2s+2−d)

≤ ((2s+ 2)θαcβc
s
αC9(1 + sCs

8))
d/(2s+2−d) .

Now that we know an upper bound on max{H(P̂ ), H(Q̂)}, we can deter-
mine an upper bound on max{H(P ), H(Q)} by considering the following
two cases.

Case 1. Suppose that max{deg P̂ , deg Q̂} > d − 1 − r. Then it follows from
Part 1 and the inequality max{deg P̂ , deg Q̂} ≤ ⌊d/2⌋ that

d ≤ r +max{deg P̂ , deg Q̂} ≤ 2⌊d/2⌋.
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Thus, d is even and max{deg P̂ , deg Q̂} = r = d/2. Therefore the pair
P̂ , Q̂ satisfies Properties (1), (2), (3) in Definition 3.1. By Property
(4), the polynomials P and Q satisfy

max{H(P ), H(Q)} ≤ max{H(P̂ ), H(Q̂)},

and so the result follows.

Case 2. Suppose that max{deg P̂ , deg Q̂} ≤ d − 1 − r. Then we can use
Part 3 to conclude that P̂ = GP , Q̂ = GQ for some G ∈ Z[x]. Since
either P̂ or Q̂ is nonzero, we have H(G) ≥ 1. By Gelfond’s Lemma
[1, Lemma 1.6.11],

H(P ) ≤ H(G)H(P ) ≤ 2deg(GP )H(GP ) ≤ 2d/2H(P̂ ).

An analogous estimate for H(Q) yields the result.

5. Since P and Q are coprime and r ≥ 1, they are linearly independent
over Q, so the WronskianW = PQ′−QP ′ is not identically equal to zero.
Since α has degree d and

degW = deg(PQ′ −QP ′)

≤ max{degP, degQ}+max{degP ′, degQ′}
≤ d/2 + (d/2− 1)

< d,

we conclude that W (α) 6= 0.

With the basic properties of heights listed in [16, Section 2.4.1], we find
the following upper bound on H(W ):

H(W ) ≤ H(PQ′) +H(QP ′)

≤ r(H(P )H(Q′) +H(Q)H(P ′))

≤ 2r2H(P )H(Q)

≤ 2r2 max{H(P ), H(Q)}2

≤ 2(d/2)2C2
12.

Suppose that α ∈ C. Then cdegW
α W (α) is a nonzero algebraic integer, so

NQ(α)/Q

(

cdegW
α W (α)

)

= cd degW
α

d
∏

i=1

W (αi)
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is a nonzero rational integer. Thus,

|W (α)|−1 ≤ cd degW
α

d
∏

i=2

|W (αi)|

≤ cd degW
α

d
∏

i=2

(degW + 1)H(W )max{1, |αi|}degW

≤ (2rH(W ))d−1

(

cd−1
α M(α)

max{1, |α|}

)2r−1

≤
(

(d3/2)C2
12

)d−1
(

cd−1
α M(α)

max{1, |α|}

)d−1

.

Suppose that α ∈ Qp. Let f(x) denote the minimal polynomial of α with the
leading coefficient cα. By [12, Theorem 1.3.2], there exist polynomials ϕ, ψ ∈
Z[x] such that degϕ < degW , degψ < d, and

ϕ(x)f(x) + ψ(x)W (x) = Res(f,W ).

Here Res(f,W ) denotes the resultant of f and W . Since Res(f,W ) 6= 0 and
α is a root of f(x), we see that ψ(α)W (α) = Res(f,W ). Since cd−1

α ψ(α) is an
algebraic integer, its p-adic absolute value does not exceed one, so

|W (α)|p ≥ |cd−1
α ψ(α)W (α)|p = |cd−1

α Res(f,W )|p.
Further, it follows from Hadamard’s inequality, as well as the upper bound on
H(W ) established previously, that

|Res(f,W )| ≤ (deg f + 1)degW/2(degW + 1)deg f/2H(α)degWH(W )deg f

≤ (d+ 1)(2r−1)/2(2r)d/2H(α)2r−1(2(d/2)2C2
12)

d

≤ (d+ 1)(d−1)/2dd/2H(α)d−1((d2/2)C2
12)

d.

Combining the lower bound on |W (α)|p with an upper bound on |Res(f,W )|
yields the result:

|W (α)|p ≥ |cd−1
α Res(f,W )|p

≥ |cd−1
α Res(f,W )|−1

≥ H(α)−(d−1)|Res(f,W )|−1

≥ (d+ 1)−(d−1)/2d−d/2H(α)−2d+2((d2/2)C2
12)

−d.

4 A Gap Principle in the Presence of Vanishing

Let α be an algebraic number over Q of degree d ≥ 2 and let β ∈ Q(α) be
irrational. Let P,Q ∈ Z[x] be polynomials such that

P (α) + βQ(α) = 0.
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In this section we prove Proposition 4.1, which states that despite the vanishing

of P (x)+ yQ(x) at the point
(

x1

y1
, x2

y2

)

∈ Q2, it is still possible to produce a gap

principle, provided that the quantity r = max{degP, degQ} exceeds one.

Proposition 4.1. Let P,Q ∈ Z[x] be coprime and such that

r = max{degP, degQ} ≥ 1.

Let x1/y1, x2/y2 be rational numbers in lowest terms such that H(x2, y2) ≥
H(x1, y1) and

P

(

x1
y1

)

+
x2
y2
Q

(

x1
y1

)

= 0. (14)

Then

H(x2, y2) ≥
H(x1, y1)

r

C15 max{H(P ), H(Q)}2r2+3r
,

where
C15 = 2r

2

(r + 1)(3r
2+2r)/2.

The proof of Proposition 4.1 is given at the end of the section, and it follows
directly from the results established below.

Lemma 4.2. Let P,Q ∈ Z[x] be coprime polynomials of degrees r and s, re-
spectively, such that r ≥ max{1, s}. Let cP be the leading coefficient of P ,

P (x, y) = yrP (x/y) and Q(x, y) = yrQ(x/y).

Then for all coprime integers a and b the number g = gcd (P (a, b), Q(a, b))
divides

̺ =
∣

∣cr−s
P Res(P,Q)

∣

∣ ,

where Res(P,Q) denotes the resultant of P and Q. Furthermore,

1 ≤ ̺ ≤ (r + 1)r max{H(P ), H(Q)}2r.

Proof. Let a and b be coprime integers and suppose that a prime power pn

exactly divides g = gcd (P (a, b), Q(a, b)). Since a and b are coprime, either a
or b is not divisible by p. Suppose that p does not divide b. By [12, Theorem
1.3.2], there exist polynomials ϕ, ψ ∈ Z[x] such that

ϕ(x)P (x) + ψ(x)Q(x) = Res(P,Q).

Let t = max{degϕ, degψ}. We evaluate the polynomial on the left-hand side
at x = a/b and multiply both sides of the above equality by br+t:

btϕ(a/b)P (a, b) + btψ(a/b)Q(a, b) = Res(P,Q)br+t

By definition of t, the numbers btϕ(a/b) and btψ(a/b) are integers. Since p does
not divide b and pn divides both P (a, b) and Q(a, b), we conclude that pn divides
Res(P,Q).
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Suppose that p divides b. Then p does not divide a, and so by analogy
with the previous case we see that pn divides Res(P (1, x), Q(1, x)). Let R(f) =
xdeg ff(1/x) denote the reciprocal of a polynomial f(x). Then

P (1, x) = R(P ) and Q(1, x) = xr−sR(Q),

so

Res(P (1, x), Q(1, x)) = Res
(

R(P ), xr−sR(Q)
)

= Res(R(P ), x)r−s Res(R(P ),R(Q))

= ((−1)rcP )
r−s

(−1)rs Res(P,Q)

= (−1)rcr−s
P Res(P,Q).

Therefore, pn divides
∣

∣cr−s
P Res(P,Q)

∣

∣, and the result follows.
Finally, since P (x) and Q(x) are coprime and r ≥ 1, we have Res(P,Q) 6= 0,

so ̺ ≥ 1. Applying Hadamard’s inequality and r ≥ s, we obtain

|cr−s
P Res(P,Q)| ≤ |cP |r−s(r + 1)s/2(s+ 1)r/2H(P )sH(Q)r

≤ (r + 1)r max{H(P ), H(Q)}2r.

Lemma 4.3. Let

P (x, y) =

r
∏

i=1

(αix+ βiy) and Q(x, y) =

r
∏

j=1

(γjx+ δjy)

be binary forms of degree r ≥ 1, with complex coefficients. Let

C = C(P,Q) =
mini,j{|αiδj − βiγj |}

maxi,j {max{|αi|+ |γj |, |βi|+ |δj |}}
. (15)

Suppose that P and Q do not have a linear factor in common, so that C > 0.
Then for all pairs (a, b) ∈ C2 we have

max{|P (a, b)|, |Q(a, b)|} ≥ CrH(a, b)r.

Proof. We claim that either

min
i=1,...,r

{|αia+ βib|} ≥ C|b| or min
j=1,...,r

{|γja+ δjb|} ≥ C|b|.

For suppose not. Then for all i, j we have

|(αiδj − βiγj)b| = |αi(γja+ δjb)− γj(αia+ βib)|
≤ (|αi|+ |γj |)max {|αia+ βib|, |γja+ δjb|}
< (|αi|+ |γj |)C|b|
≤ min{|αiδj − βiγj |}|b|,
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so we reach a contradiction. Without loss of generality, suppose that min{|αia+
βib|} ≥ C|b|. Then

|P (a, b)| =
r
∏

i=1

|αia+ βib| ≥ min {|αia+ βib|}r ≥ Cr|b|r.

Analogously, either

min
i=1,...,r

{|αia+ βib|} ≥ C|a| or min
j=1,...,r

{|γja+ δjb|} ≥ C|a|.

In the first case we can immediately conclude that |P (a, b)| ≥ CrH(a, b)r and the
result follows. Otherwise we have |Q(a, b)| ≥ Cr|a|r. Combining this inequality
with |P (a, b)| ≥ Cr |b|r yields the result.

For the proof of the following result, recall the definition of the Mahler
measure and the house of a polynomial introduced in Section 2.

Corollary 4.4. Let P,Q ∈ Z[x] be coprime polynomials of degrees r and s,
respectively, such that r ≥ max{1, s}. Define

P (x, y) = yrP (x/y) and Q(x, y) = yrQ(x/y).

Then for all pairs (a, b) ∈ C2 we have

max{|P (a, b)|, |Q(a, b)|} ≥ H(a, b)r

2r2(r + 1)3r2/2 max{H(P ),H(Q)}2r2+r
.

Proof. Let cP and cQ be the leading coefficients of P and Q, respectively. Then

|cP | ·max{1, P } ≤M(P ) and |cQ| ·max{1, Q } ≤M(Q),

and so it follows from [1, Lemma 1.6.7] that

|cP | ·max{1, P } ≤ (r + 1)1/2H(P ) and |cQ| ·max{1, Q } ≤ (s+ 1)1/2H(Q). (16)

Let µ1, . . . , µr be the roots of P (x) and write

P (x, y) = cP

r
∏

i=1

(x− µiy) =

r
∏

i=1

(αix+ βiy),

where αi = c
1/r
P , βi = −c1/rP µi. We consider the following two cases.

Case 1. Suppose that s = 0, i.e., Q(x) = cQ. Then

Q(x, y) = cQy
r =

r
∏

j=1

(γjx+ δjy),
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where γj = 0 and δj = c
1/r
Q . Using (16), the constant C in (15) can be estimated

from below as follows:

C =
|cP cQ|1/r

maxi
{

max{|cP |1/r, |cP |1/r|µi|+ |cQ|1/r}
}

=
|cQ|1/r

maxi{ max{1, |µi|+
∣

∣

∣

cQ
cP

∣

∣

∣

1/r

} }

=
1

maxi{ max{
∣

∣

∣

1
cQ

∣

∣

∣

1/r

,
∣

∣

∣

µi

cQ

∣

∣

∣

1/r

+
∣

∣

∣

1
cP

∣

∣

∣

1/r

} }

=
1

max{
∣

∣

∣

1
cQ

∣

∣

∣

1/r

, P
|cQ|1/r

+
∣

∣

∣

1
cP

∣

∣

∣

1/r

}

≥ 1

|cP | ·max{1, P }+ |cQ| ·max{1, Q }

≥ 1

2(r + 1)1/2 max{H(P ), H(Q)} .

Case 2. Suppose that s ≥ 1. Let ν1, . . . , νs be the roots of Q(x) and write

Q(x, y) = cQy
r−s

s
∏

j=1

(x− νjy) =

r
∏

j=1

(γjx+ δjy),

where

γj =

{

c
1/r
Q , if 1 ≤ i ≤ s,

0, if s+ 1 ≤ i ≤ r,
and δj =

{

−c1/rQ νi, if 1 ≤ i ≤ s,

c
1/r
Q , if s+ 1 ≤ i ≤ r.

Using (16), the constant C in (15) can be estimated from below as follows:

C =
mini,j{|αiδj − βiγj |}

maxi,j {max{|αi|+ |γj |, |βi|+ |δj |}}

≥ |cP cQ|1/r min{1,mini,j{|µi − νj |}}
|cP |1/r ·max{1, P }+ |cQ|1/r ·max{1, Q }

≥ min{1,mini,j{|µi − νj |}}
2(r + 1)1/2 max{H(P ), H(Q)} .

By [5, Theorem A],

min
1≤i≤r
1≤j≤s

{|µi − νj |} ≥ 21−r(r + 1)(1−3r)/2 max{H(P ), H(Q)}−2r.

Since P,Q ∈ Z[x] and r ≥ 1, we have max{H(P ), H(Q)} ≥ 1, so the quantity
on the right-hand side of the above inequality does not exceed one. Combining
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the lower bound on mini,j{|µi − νj |} with the lower bound on C established
above, we obtain

C ≥ 2−r(r + 1)−3r/2max{H(P ), H(Q)}−2r−1.

The result now follows from Lemma 4.3.

Proof of Proposition 4.1. From equation (14) it follows that Q(x1/y1) 6= 0, for
otherwise P (x1/y1) = 0, which means that P and Q are not coprime. Let

P (x, y) = yrP (x/y) and Q(x, y) = yrQ(x/y).

Since |y1| ≥ 1, it must be the case that Q(x1, y1) = yr1Q(x1/y1) 6= 0, so

x2
y2

= −P (x1/y1)
Q(x1/y1)

= −P (x1, y1)
Q(x1, y1)

.

Since x2 and y2 are coprime, and P (x1, y1) and Q(x1, y1) are integers, we see
that

|x2| =
|P (x1, y1)|

g
and |y2| =

|Q(x1, y1)|
g

,

where g = gcd (P (x1, y1), Q(x1, y1)). By Lemma 4.2, g ≤ (r+1)r max{H(P ), H(Q)}2r.
Thus,

H(x2, y2) =
max{|P (x1, y1)|, |Q(x1, y1)|}

g
≥ max{|P (x1, y1)|, |Q(x1, y1)|}

(r + 1)r max{H(P ), H(Q)}2r .

Finally, since P and Q are coprime, Corollary 4.4 applies:

H(x2, y2) ≥
max{|P (x1, y1)|, |Q(x1, y1)|}
(r + 1)r max{H(P ), H(Q)}2r

≥ H(x1, y1)
r

2r2(r + 1)(3r2+2r)/2max{H(P ), H(Q)}2r2+3r
.

5 A Generalized Archimedean Gap Principle

In this section we prove Theorem 1.1. Recall that, for any h ∈ Z[x] and i such
that 0 ≤ i ≤ deg h, the inequality

|Dih(α)| ≤ H(h)

(

deg h+ 1

i+ 1

)

max{1, |α|}degh−i (17)

holds.
Let P,Q be a minimal pair for (α, β), and define R(x, y) = P (x) + yQ(x),

so that R(α, β) = 0. Choose C1 so that

C1 ≥ C
1/µ
0 .
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Then
∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

< 1 and

∣

∣

∣

∣

β − x2
y2

∣

∣

∣

∣

< 1.

If R(x1/y1, x2/y2) 6= 0, then it follows from the triangle inequality, (17), and
the two inequalities established above that

1

H(x1, y1)rH(x2, y2)
≤
∣

∣

∣

∣

R

(

x1
y1
,
x2
y2

)∣

∣

∣

∣

≤
r
∑

i=0

1
∑

j=0

|Di,jR(α, β)|
∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

i ∣
∣

∣

∣

β − x2
y2

∣

∣

∣

∣

j

<
C0

H(x1, y1)µ

r
∑

i=0

(|Di,0R(α, β)| + |Di,1R(α, β)|)

≤ C0

H(x1, y1)µ

r
∑

i=0

(|DiP (α)| + (1 + |β|) · |DiQ(α)|)

≤ C0

H(x1, y1)µ

r
∑

i=0

((

r + 1

i+ 1

)

H(P ) + (1 + |β|)
(

r + 1

i+ 1

)

H(Q)

)

max{1, |α|}r−i

≤ C0

H(x1, y1)µ
(2 + |β|)max{H(P ), H(Q)}max{1, |α|}r

r
∑

i=0

(

r + 1

i+ 1

)

<
C0

H(x1, y1)µ
2r+1(2 + |β|)C12 max{1, |α|}r

≤ C0

H(x1, y1)µ
2(d/2)+1(2 + |β|)C12 max{1, |α|}d/2

=
C2

H(x1, y1)µ
,

where the second-to-last inequality follows from (10). By (9),

H(x2, y2) > C−1
2 H(x1, y1)

µ−r ≥ C−1
2 H(x1, y1)

µ−d/2,

which means that case 1 holds.
Suppose that R(x1/y1, x2/y2) = 0. If r = 1, then by definition R(x, y) =

(sx + t) − y(ux + v) for some integers s, t, u and v. Note that sv − tu 6= 0,
for otherwise the number β would have to be rational. Since R(α, β) = 0 and
R(x1/y1, x2/y2) = 0, case 2 holds.

It remains to consider the case when R(x1/y1, x2/y2) = 0 and r ≥ 2. We
will prove that H(x1, y1) < C for some positive real number C, which depends
only on α, β, µ and C0. By choosing C1 so that C1 ≥ C, we then arrive to a
contradiction. Note that
∣

∣

∣

∣

β − x2
y2

∣

∣

∣

∣

=

∣

∣

∣

∣

P (α)

Q(α)
− P (x1/y1)

Q(x1/y1)

∣

∣

∣

∣

=
|P (α)Q(x1/y1)−Q(α)P (x1/y1)|

|Q(α)Q(x1/y1)|
. (18)
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Further,

|Q(α)| ≤ (r + 1)max{H(P ), H(Q)}max{1, |α|}r ≤ (r + 1)C12 max{1, |α|}r,
(19)

∣

∣

∣

∣

Q

(

x1
y1

)∣

∣

∣

∣

≤
r
∑

i=0

|DiQ(α)| ·
∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

i

(20)

<

r
∑

i=0

|DiQ(α)|

≤ H(Q)
r
∑

i=0

(

r + 1

i+ 1

)

max{1, |α|}r−i

< 2r+1C12 max{1, |α|}r.

It remains to estimate |P (α)Q(x1/y1) − Q(α)P (x1/y1)| from below. Let
W = PQ′−QP ′ denote the Wronskian of P and Q. By Taylor’s Theorem, (17)
and (11),
∣

∣

∣P (α)Q
(

x1

y1

)

−Q(α)P
(

x1

y1

)∣

∣

∣

=

∣

∣

∣

∣

P (α)
r
∑

i=0

DiQ(α)
(

x1

y1
− α

)i

−Q(α)
r
∑

i=0

DiP (α)
(

x1

y1
− α

)i
∣

∣

∣

∣

=
∣

∣

∣
α− x1

y1

∣

∣

∣
·
∣

∣

∣

∣

r−1
∑

i=0

(P (α)Di+1Q(α)−Q(α)Di+1P (α))
(

x1

y1
− α

)i
∣

∣

∣

∣

=
∣

∣

∣
α− x1

y1

∣

∣

∣
·
∣

∣

∣

∣

W (α) +
(

x1

y1
− α

) r−1
∑

i=1

(P (α)Di+1Q(α)−Q(α)Di+1P (α))
(

x1

y1
− α

)i−1
∣

∣

∣

∣

>
∣

∣

∣
α− x1

y1

∣

∣

∣

(

|W (α)| − C0

H(x1,y1)µ

r−1
∑

i=1

|P (α)Di+1Q(α)−Q(α)Di+1P (α)|
)

≥
∣

∣

∣
α− x1

y1

∣

∣

∣

(

|W (α)| − C0

H(x1,y1)µ
2(r + 1)max{H(P ), H(Q)}2

r−1
∑

i=1

(

r+1
i+2

)

max{1, |α|}2r−i−1

)

≥
∣

∣

∣α− x1

y1

∣

∣

∣

(

C13 − C−µ
1 C02

r+2(r + 1)C2
12 max{1, |α|}2r

)

,

where the last inequality follows from H(x1, y1) ≥ C1, (10) and (11). Thus, if
we choose C1 so that

Cµ
1 ≥ 2(d/2)+3((d/2) + 1)C0C

2
12C

−1
13 max{1, |α|}d,

then it follows from r ≤ d/2 that
∣

∣

∣

∣

P (α)Q

(

x1
y1

)

−Q(α)P

(

x1
y1

)∣

∣

∣

∣

≥
∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

(

C13 − C−µ
1 C02

r+2(r + 1)C2
12 max{1, |α|}2r

)

≥
∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

(

C13 − C−µ
1 C02

(d/2)+2((d/2) + 1)C2
12 max{1, |α|}d

)

≥ C13

2

∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

.
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Combining the above result with (18), (19) and (20) yields

∣

∣

∣

∣

β − x2
y2

∣

∣

∣

∣

=
|P (α)Q(x1/y1)−Q(α)P (x1/y1)|

|Q(α)Q(x1/y1)|
>

C13

2r+2(r + 1)C2
12 max{1, |α|}2r

∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

.

By Proposition 4.1,

H(x2, y2) ≥
H(x1, y1)

r

C15 max{H(P ), H(Q)}2r2+3r
≥ H(x1, y1)

r

C15C
2r2+3r
12

,

where
C15 = 2r

2

(r + 1)(3r
2+2r)/2 ≤ 2d

2/4((d/2) + 1)(3d
2+4d)/8. (21)

Consequently,

∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

<
2r+2(r + 1)C2

12 max{1, |α|}2r
C13

∣

∣

∣

∣

β − x2
y2

∣

∣

∣

∣

<
2r+2(r + 1)C2

12 max{1, |α|}2r
C13

· C0

H(x2, y2)µ

≤ 2r+2(r + 1)C0C
(2r2+3r)µ+2
12 Cµ

15 max{1, |α|}2r
C13H(x1, y1)rµ

.

Thus, we obtain an upper bound on |α − x1/y1|. On the other hand, by
Lemma 2.1, the lower bound (4) holds. Combining upper and lower bounds,

C6

H(x1, y1)d
≤
∣

∣

∣

∣

α− x1
y1

∣

∣

∣

∣

<
2r+2(r + 1)C0C

(2r2+3r)µ+2
12 Cµ

15 max{1, |α|}2r
C13H(x1, y1)rµ

Since µ > (d/2) + 1 and r ≥ 2, we see that rµ− d > 0, so

H(x1, y1) <
(

2r+2(r + 1)C0(C6C13)
−1C

(2r2+3r)µ+2
12 Cµ

15 max{1, |α|}2r
)1/(rµ−d)

≤
(

2d
2µ/4((d/2) + 1)(3d

2+4d)µ/8C0(C6C13)
−1C

(d2+3d)µ/2+2
12 max{1, |α|}d

)1/(2µ−d)

= C.

Notice how in the second-to-last inequality we have utilized the upper bound
on C15 given in (21). Thus, if we choose C1 so that C1 ≥ C, then H(x1, y1) ≥
C1 ≥ C, and so we arrive to a contradiction.

6 A Generalized Non-Archimedean Gap Princi-

ple

In this section we prove Theorem 1.2. Let P,Q be a minimal pair for (α, β), and
defineR(x, y) = P (x)+yQ(x), so thatR(α, β) = 0. Suppose thatR(x1/y1, x2/y2) 6= 0.
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Then the following trivial lower bound holds:
∣

∣

∣

∣

yr1y2R

(

x1
y1
,
x2
y2

)∣

∣

∣

∣

p

≥ 1

|yr1y2R(x1/y1, x2/y2)|

≥ 1

2(r + 1)max{H(P ), H(Q)}H(x1, y1)rH(x2, y2)

≥ 1

2((d/2) + 1)C12H(x1, y1)d/2H(x2, y2)
.

Let cα and cβ denote the leading coefficients of the minimal polynomials of α
and β, respectively. Note that for each (i, j) ∈ {0, . . . , r} × {0, 1} the p-adic
number cr−i

α c1−j
β DijR(α, β) is an algebraic integer. Thus, its p-adic absolute

value does not exceed one. Via the application of Taylor’s Theorem we obtain
the following upper bound:
∣

∣

∣

∣

yr1y2R

(

x1
y1
,
x2
y2

)∣

∣

∣

∣

p

≤ max
(i,j) 6=(0,0)

{

|DijR(α, β)|p · |y1α− x1|ip · |y2β − x2|jp
}

= max
(i,j) 6=(0,0)







∣

∣

∣

∣

∣

cr−i
α c1−j

β DijR(α, β)

cr−i
α c1−j

β

∣

∣

∣

∣

∣

p

· |y1α− x1|ip · |y2β − x2|jp







≤ |crαcβ|−1
p max

(i,j) 6=(0,0)

{

|y1cαα− cαx1|ip · |y2cββ − cβx2|jp
}

≤ crαcβ max{|y1cαα− cαx1|p, |y2cββ − cβx2|p}
≤ crαcβ max{|cα|p, |cβ |p}max{|y1α− x1|p, |y2β − x2|p}

<
C0c

r
αcβ

H(x1, y1)µ
.

Upon combining the upper and lower bounds, we obtain

1

2((d/2) + 1)C12H(x1, y1)d/2H(x2, y2)
<

C0c
r
αcβ

H(x1, y1)µ
.

If we now set C4 = (d+ 2)C0C12c
d/2
α cβ, then

H(x2, y2) > C−1
4 H(x1, y1)

µ−d/2,

which means that case 1 holds.
Suppose that R(x1/y1, x2/y2) = 0. If r = 1, then by definition R(x, y) =

(sx + t) − y(ux + v) for some integers s, t, u, v. Note that sv − tu 6= 0, for
otherwise the number β would have to be rational. Since R(α, β) = 0 and
R(x1/y1, x2/y2) = 0, case 2 holds.

It remains to consider the case when R(x1/y1, x2/y2) = 0 and r ≥ 2. We
will prove that H(x1, y1) < C for some positive number C, which depends only
on α and β. By choosing C3 so that C3 ≥ C, we then arrive to a contradiction.

First, we claim that by choosing C3 so that

C3 ≥ C
1/µ
0
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we can ensure that |y1|p ≥ c−1
α . This inequality clearly holds when p does not

divide y1, so we assume that p | y1. Since x1 and y1 are coprime, it must be the
case that p does not divide x1. Suppose that |y1α|p 6= |x1|p. Then it follows
from the strong triangle inequality that

|y1α− x1|p = max {|y1α|p, |x1|p} = max {|y1α|p, 1} ≥ 1.

Since |y1α − x1|p < C0H(x1, y1)
−µ, we find that H(x1, y1) < C

1/µ
0 ≤ C3, so

we reach a contradiction. Thus, |y1α|p = |x1|p = 1. Since cαα is an algebraic
integer, it must be the case that |cαα|p ≤ 1, so

|y1|p =
∣

∣α−1
∣

∣

p
≥ |cα|p ≥ c−1

α ,

as claimed.
Now that we have chosen C3 so that |y1|p ≥ c−1

α , we turn our attention to
the equation R(x1/y1, x2/y2) = 0, which implies that

|x2| =
|P (x1, y1)|

g
and |y2| =

|Q(x1, y1)|
g

,

where g = gcd(P (x1, y1), Q(x1, y1)). Consequently,

|y2β − x2|p =
|P (α)Q(x1, y1)−Q(α)P (x1, y1)|p

|gQ(α)|p
. (22)

Since g is an integer, we have
|g|p ≤ 1. (23)

Since crαQ(α) is an algebraic integer,

|Q(α)|p ≤ |cα|−r
p ≤ crα ≤ cd/2α . (24)

It remains to estimate |P (α)Q(x1, y1)−Q(α)P (x1, y1)|p from below. Before
we proceed, note that for any i the number

c2r−i−1
α (P (α)Di+1Q(α) −Q(α)Di+1P (α))

is an algebraic integer, so its p-adic absolute value does not exceed one. Conse-
quently,

∣

∣

∣

∣

P (α)Di+1Q(α)−Q(α)Di+1P (α)

ciα

∣

∣

∣

∣

p

=

∣

∣

∣

∣

c2r−1−i
α (P (α)Di+1Q(α) −Q(α)Di+1P (α))

c2r−1
α

∣

∣

∣

∣

p

≤ |cα|−(2r−1)
p

≤ c2r−1
α

≤ cd−1
α .

27



Now, let W = PQ′ − QP ′ denote the Wronskian of P and Q. By Taylor’s
Theorem and (12),

|P (α)Q(x1, y1)−Q(α)P (x1, y1)|p
=

∣

∣

∣

∣

P (α)
r
∑

i=0

DiQ(α) (x1 − αy1)
i yr−i

1 −Q(α)
r
∑

i=0

DiP (α) (x1 − αy1)
i yr−i

1

∣

∣

∣

∣

p

= |y1α− x1|p
∣

∣

∣

∣

r−1
∑

i=0

(P (α)Di+1Q(α)−Q(α)Di+1P (α)) (x1 − αy1)
i yr−1−i

1

∣

∣

∣

∣

p

≥ |y1α− x1|p
(

|W (α)yr−1
1 |p − |y1α− x1|p max

i=0,...,r−1

{

∣

∣

∣

P (α)Di+1Q(α)−Q(α)Di+1P (α)

ciα

∣

∣

∣

p

})

> |y1α− x1|p
(

|W (α)yr−1
1 |p − C0

H(x1,y1)µ
c2r−1
α

)

≥ |y1α− x1|p
(

C14c
−(r−1)
α −C−µ

3 C0c
2r−1
α

)

,

where the last inequality follows from H(x1, y1) ≥ C3, (12) and |y1|p ≥ c−1
α . Thus, if

we choose C3 so that
Cµ

3 ≥ 2C0C
−1
14 c(3d−4)/2

α ,

then

|P (α)Q(x1, y1)−Q(α)P (x1, y1)|p > |y1α− x1|p
(

C14c
−(r−1)
α − C−µ

3 C0c
2r−1
α

)

≥ C14

2c
(d−2)/2
α

|y1α− x1|p .

Combining this observation with (22), (23) and (24),

|y2β − x2|p =
|P (α)Q(x1, y1)−Q(α)P (x1, y1)|p

|gQ(α)|p
>

C14

2cd−1
α

|y1α− x1|p.

By Proposition 4.1,

H(x2, y2) ≥ H(x1, y1)
r

C15 max{H(P ),H(Q)}2r2+3r
≥ H(x1, y1)

r

C15C
2r2+3r
12

,

where C15 satisfies the upper bound (21). Consequently,

|y1α− x1|p <
2cd−1

α

C14
|y2β − x2|p <

2cd−1
α C0

C14H(x2, y2)µ
≤ 2cd−1

α C0C
(2r2+3r)µ
12 Cµ

15

C14H(x1, y1)rµ

Thus, we obtain an upper bound on |y1α − x1|p. On the other hand, by Lemma 2.2
we have the lower bound (5). Combining upper and lower bounds,

C7

H(x1, y1)d
≤ |y1α− x1|p <

2cd−1
α C0C

(2r2+3r)µ
12 Cµ

15

C14H(x1, y1)rµ

Since µ > (d/2) + 1 and r ≥ 2, we have

H(x1, y1) <
(

2cd−1
α C0C

−1
7 C

(2r2+3r)µ
12 C−1

14 Cµ
15

)1/(rµ−d)

≤
(

2d
2µ/4((d/2) + 1)(3d

2+4d)µ/8cd−1
α C0C

−1
7 C

(d2+3d)µ/2
12 C−1

14

)1/(2µ−d)

= C.

Notice how in the second-to-last inequality we have utilized the upper bound on C15

given in (21). Thus, if we choose C3 so that C3 ≥ C, then H(x1, y1) ≥ C3 ≥ C, and
so we arrive to a contradiction.

28



Group Generators Group Generators

C1

(

1 0
0 1

)

D1

(

0 1
1 0

)

C2

(

−1 0
0 −1

)

D2

(

0 1
1 0

)

,

(

−1 0
0 −1

)

C3

(

0 1
−1 −1

)

D3

(

0 1
1 0

)

,

(

0 1
−1 −1

)

C4

(

0 1
−1 0

)

D4

(

0 1
1 0

)

,

(

0 1
−1 0

)

C6

(

0 −1
1 1

)

D6

(

0 1
1 0

)

,

(

0 1
−1 1

)

Table 1: Representatives of equivalence classes of finite subgroups of GL2(Q)
under GL2(Q)-conjugation.

7 The Enhanced Automorphism Group

In this section we establish several results about the enhanced automorphism group
Aut′ |F | of a binary form F . At the end we prove Proposition 7.3, where we explain
the relation between automorphisms of F and the roots of F (x, 1).

Lemma 7.1. Let F ∈ Z[x, y] be a binary form of degree d ≥ 3 and nonzero discrimi-
nant D(F ). Then AutQ |F | is GL2(Q)-conjugate to one of the groups from Table 1.

Proof. See [11].

Lemma 7.2. Let F ∈ Z[x, y] be a binary form of degree d ≥ 3 and nonzero discrimi-
nant D(F ). Let Aut′ |F | be as in (3). Then Aut′ |F | ∼= Cn or Aut′ |F | ∼= Dn, where
n ∈ {1, 2, 3, 4, 6, 8, 12}.

Proof. Note that AutQ |F | is a subgroup of Aut′ |F |. Furthermore, for any M ∈
Aut′ |F | we have M2 ∈ AutQ |F |. By Lemma 7.1, AutQ |F | is finite, and so any
M ∈ Aut′ |F | has finite order. In fact, since the orders of elements in AutQ |F | are
{1, 2, 3, 4, 6}, the only possible orders of elements in Aut′ |F | are {1, 2, 3, 4, 6, 8, 12}.

Next, recall a classical result that any finite subgroup of GL2(R) is GL2(R)-
conjugate to a finite subgroup of the orthogonal group O2(R). Since finite subgroups
of O2(R) correspond to rotations and reflections on a plane, we conclude that each
finite subgroup of GL2(R), including Aut′ |F |, is isomorphic to either a cyclic group
Cn of order n or a dihedral group Dn of order 2n.

Now suppose that Aut′ |F | contains at least 25 distinct elements M1, . . . ,M25. By
Schur’s Theorem [6], any finitely generated torsion subgroup of GLn(C) is finite. Hence
〈M1, . . . ,M25〉 is a finite subgroup of GL2(R), so it is isomorphic to either Cn or Dn

for some n. In the former case we see that n ≥ 25, while in the latter case n ≥ 13.
In both cases we obtain a contradiction, since the largest order that an element of
Aut′ |F | can have is 12. Therefore Aut′ |F | contains at most 24 elements.
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Let us give an example of a group of the form (3) that is not a subgroup of GL2(Q).
Consider

G =

〈(

0 1
1 0

)

,

(

1/
√
3 1/

√
3

−1/
√
3 2/

√
3

)〉

.

Then G ∼= D12. If we choose coprime integers a and b so that a ≡ 3b (mod 10), then
any (reciprocal) binary form

F (x, y) = a(x12 + y12)− 6axy(x10 + y10)

+
231a + 2b

5
x2y2(x8 + y8)− (176a+ 2b)x3y3(x6 + y6)

+
495a + 5b

2
x4y4(x4 + y4) + 2bx5y5(x2 + y2)

− 1122a + 29b

5
x6y6

will have integer coefficients and satisfy FM = F for any M ∈ G. Consequently, if
(x, y) is a solution to the Thue equation F (x, y) = m, then so are (y,−x+ y), (−x+
y,−x), (−x,−y), (−y, x− y), (x−y, x), (y, x), (−x+y, y), (−x,−x+y), (−y,−x), (x−
y,−y), (x, x − y). This phenomenon was observed by Stewart in [14, Section 6] with
respect to binary forms invariant under D6, which is a subgroup of G. In addition
to these 12 solutions, we have F (x′, y′) = 729m for any (x′, y′) ∈ {(x+ y,−x+ 2y) ,
(−x+2y,−2x+y), (−2x+y,−x−y), (−x−y,x−2y), (x−2y,2x−y), (2x−y, x+y),
(−x+2y,x+y), (−2x+y,−x+2y), (−x−y,−2x+y), (x−2y,−x−y), (2x−y, x−2y),
(x+ y, 2x− y)}.

Proposition 7.3. Let F (x, y) = cdx
d + cd−1x

d−1y + · · · + c0y
d ∈ Z[x, y] be an ir-

reducible binary form of degree d ≥ 3. Let α1, . . . , αd be the roots of F (x, 1). There
exists an index j ∈ {1, . . . , d} such that

αj =
vα1 − u

−tα1 + s

for some integers s, t, u and v if and only if the matrix

M =
1

√

|sv − tu|

(

s u
t v

)

is an element of Aut′ |F |. Furthermore, if M ∈ Aut′ |F |, then |sv − tu| =
∣

∣

∣

F (s,t)
cd

∣

∣

∣

2/d

.

Proof. Suppose that there exists an index j ∈ {1, . . . , d} such that αj = vα1−u
−tα1+s

for some integers s, t, u and v. Since F (x, 1) is irreducible, its Galois group acts
transitively on the roots α1, α2, . . . , αd. Therefore,

vα1 − u

−tα1 + s
,

vα2 − u

−tα2 + s
, . . . ,

vαd − u

−tαd + s
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is a permutation of α1, . . . , αd. Thus,

F (x, y) = cd

d
∏

i=1

(

x− vαi − u

−tαi + s
y

)

=
cd

∏d
i=1(s− tαi)

d
∏

i=1

((−tαi + s)x− (vαi − u)y)

=
cd

F (s, t)
F (sx+ uy, tx+ vy)

= ±ηdF (sx+ uy, tx+ vy)

= ±FM (x, y),

where η = |cd/F (s, t)|1/d and M = η ( s u
t v ). Since

D(FM ) = (detM)d(d−1)D(F )

and FM = ±F , we see that |D(FM )| = |D(F )|, so |detM | = 1. Hence |η|2·|sv−tu| = 1,
which leads us to the conclusion that η = |η| = |sv − tu|−1/2 and M ∈ Aut′ |F |.

Conversely, suppose that M = |sv − tu|−1/2 ( s u
t v ) is in Aut′ |F |. Then

±F (x, y) = FM (x, y)

=
cd

|sv − tu|d/2
d
∏

i=1

(sx+ uy − αi(tx+ vy))

=
F (s, t)

|sv − tu|d/2
d
∏

i=1

(

x− vαi − u

−tαi + s
y

)

.

We see that the polynomial FM (x, 1) vanishes at vαi−u
−tαi+s

for i = 1, . . . , d. Since FM =

±F , the polynomials FM (x, 1) and F (x, 1) have the same roots, so there exists some
index j such that αj = vα1−u

−tα1+s
. Furthermore, the leading coefficients of F (x, 1) and

FM (x, 1) must equal up to a sign, i.e., |cd| = |F (s,t)|
|sv−tu|d/2 . Of course, this is the same as

|sv − tu| =
∣

∣

∣

F (s,t)
cd

∣

∣

∣

2/d

.

8 Counting Primitive Solutions of Large Height

to Certain Thue Inequalities

In this section we prove Theorem 1.3. It follows from a more general result stated in
Theorem 8.1, where we count approximations x/y of large height to distinct algebraic
numbers α1, . . . , αn such that Q(αi) = Q(α1) for all i = 1, 2, . . . , n. In order to state
the main result of this section we need to introduce the notion of an orbit. For an
irrational number α, the orbit of α is the set

orb(α) =

{

vα− u

−tα+ s
: s, t, u, v ∈ Z, sv − tu 6= 0

}

.

Theorem 8.1. Let K = C or Qp, where p is a rational prime, and denote the standard
absolute value on K by | |. Let α1 ∈ K be an algebraic number of degree d ≥ 3 over Q

31



and α2, α3, . . . , αn be distinct elements of Q(α1), different from α1, each of degree d.
Let µ be such that (d/2)+1 < µ < d. Let C0 be a real number such that C0 > (4eA)−1,
where

A = 5002
(

log max
i=1,...,n

{M(αi)}+ d

2

)

. (25)

There exists a positive real number C16, which depends on α1, α2, . . . , αn, µ and C0,
with the following property. The total number of rationals x/y in lowest terms, which
satisfy H(x, y) ≥ C16 and

∣

∣

∣

∣

αj −
x

y

∣

∣

∣

∣

<
C0

H(x, y)µ
(26)

for some j ∈ {1, 2, . . . , n} is less than

γ

⌊

1 +
11.51 + 1.5 log d+ log µ

log(µ− d/2)

⌋

,

where
γ = max{γ1, . . . , γn}, γi = #{j : αj ∈ orb(αi)}. (27)

Let us see why Theorem 1.3 follows from Theorem 8.1.

Proof of Theorem 1.3. Let α1, α2, . . . , αd be the roots of F (x, 1). Notice that, since
F (x, y) is irreducible, the roots of F (1, x) are given by α−1

1 , . . . , α−1
d . Furthermore,

since the field extension Q(α)/Q is Galois, we have Q(αi) = Q(α1) for all i = 1, . . . , d.
Choose C5 so that

Cd−µ
5 >

2d−1d(d−1)/2M(F )d−2m

|D(F )|1/2 .

Let (x, y) be a primitive solution to (2) such that H(x, y) ≥ C5. Then it follows
from the result of Lewis and Mahler stated in Lemma 2.6 that there exists an index
j ∈ {1, 2, . . . , d} such that

min

{
∣

∣

∣

∣

αj −
x

y

∣

∣

∣

∣

,
∣

∣

∣
α−1
j − y

x

∣

∣

∣

}

≤ 2d−1d(d−1)/2M(F )d−2m

|D(F )|1/2H(x, y)d
<

1

H(x, y)µ
.

Next, adjust the choice of C5 so that Theorem 8.1 applies:

C5 ≥ max
{

C16(α1, . . . , αd, µ, C0), C16(α
−1
1 , . . . , α−1

d , µ, C0)
}

,

where C0 = 1. If we let γ be as in (27), then it follows from Theorem 8.1 that x/y is
one of at most

2γ

⌊

1 +
11.51 + 1.5 log d+ log µ

log(µ− d/2)

⌋

rationals in lowest terms that satisfy either of the two inequalities
∣

∣

∣

∣

αj − x

y

∣

∣

∣

∣

<
C0

H(x, y)µ
,
∣

∣

∣
α−1
j − y

x

∣

∣

∣
<

C0

H(x, y)µ
.

It now follows from Proposition 7.3 that γ ≤ Aut′ |F |
2

. The division by 2 appears due
to the presence of the matrix

(−1 0
0 −1

)

in Aut′ |F |, which maps (x, y) to (−x,−y).

We conclude this section with the proof of Theorem 8.1.
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Proof of Theorem 8.1. Throughout the proof we will be adjusting our choice of C16

four times. First, let C16 ≥ C11, where the positive real number C11 is defined in
Corollary 2.8. Then it follows from Lemma 2.8 that for each x/y satisfying (26) the
index j ∈ {1, 2, . . . , n} is unique.

Let x1/y1, x2/y2, . . . , xℓ/yℓ be the list of rational numbers in lowest terms that
satisfy the following conditions.

1. C16 ≤ H(x1, y1) ≤ H(x2, y2) ≤ . . . ≤ H(xℓ, yℓ).

2. gcd(xj , yj) = 1 for all j = 1, 2, . . . , ℓ.

3. For each j ∈ {1, 2, . . . , ℓ}, there exists the index ij ∈ {1, 2, . . . , n} such that
∣

∣

∣

∣

αij − xj

yj

∣

∣

∣

∣

<
C0

H(xj , yj)µ
.

By the discussion above, this index is unique.

4. For every j, k ∈ {1, 2, . . . , ℓ}, if αik ∈ orb(αij ), i.e.,

αik =
sαij + t

uαij + v

for some integers s, t, u and v, then

xk

yk
6= sxj + tyj

uxj + vyj
.

Due to the fourth condition this list need not be uniquely defined. This fact, however,
does not affect our estimates. The fourth property requires additional clarification: to
each rational approximation in the list

x1

y1
,

x2

y2
, . . . ,

xℓ

yℓ

correspond several rational approximations, which we call derived. To be more precise,
from xj/yj one can naturally construct a (possibly bad) rational approximation to
arbitrary α ∈ orb(αij ) as follows. Let

α =
sαij + t

uαij + v
and

x′
j

y′
j

=
sxj + tyj
uxj + vyj

for some integers s, t, u and v. Then

α− x′
j

y′
j

=
tu− sv

(uαij + v)(u(xj/yj) + v)

(

αij − xj

yj

)

,

so rational approximations to α and αij are connected. Thus, by imposing condition
(4), we insist that x′

j/y
′
j does not appear in the list x1/y1, x2/y2, . . . , xℓ/yℓ.

In order to account for the presence of derived rational approximations, we intro-
duce the value γi defined in (27). Note that the value γij is equal to the number of
rational approximations derived from xj/yj , including xj/yj itself. Consequently, if
we let N denote the total number of rationals satisfying the conditions specified in the
hypothesis, then N does not exceed

∑ℓ
j=1 γij . Therefore,

N ≤
ℓ
∑

j=1

γij ≤ γℓ,
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where γ is defined in (27). Thus, it remains to estimate ℓ.
To derive an upper bound on ℓ, we begin by applying a generalized gap principle

to the ordered pair (αik , αik+1
). Choose C16 and define C as follows:

C16 ≥ max
j,k

{C1(αj , αk, µ, C0), C3(αj , αk, µ, C0)},

C = max
j,k

{C2(αj , αk, µ, C0), C4(αj , αk, µ, C0)},

where the positive real numbers C1, C2, C3 and C4 are taken from Theorems 1.1 and
1.2, respectively. Note that if K = Qp, then |yk| ≤ 1, and so

|ykαik − xk| = |yk| ·
∣

∣

∣

∣

αik − xk

yk

∣

∣

∣

∣

<
C0

H(xk, yk)µ
.

Analogously,

|yk+1αik+1
− xk+1| <

C0

H(xk+1, yk+1)µ
.

It follows from Theorems 1.1 and 1.2 that, for every k ∈ {1, 2, . . . , ℓ− 1},

H(xk+1, yk+1) > C−1H(xk, yk)
E,

where
E = µ− d/2. (28)

Notice that case 2 in the aforementioned theorems is impossible due to the fact that the
list x1/y1, . . . , xℓ/yℓ does not contain derived rational approximations. Consequently,

logH(xℓ, yℓ) > E logH(xℓ−1, yℓ−1)− logC

> E2 logH(xℓ−2, yℓ−2)− (1 + E) logC

> · · ·
> Eℓ−1 logH(x1, y1)− (1 + E + · · ·+ Eℓ−2) logC.

Thus, we obtain the following lower bound on logH(xℓ, yℓ):

logH(xℓ, yℓ) > Eℓ−1 logH(x1, y1)− Eℓ−1 − 1

E − 1
logC. (29)

Next, we apply the Thue-Siegel principle from Lemma 2.9 to the pair (α, β) =
(αi1 , αiℓ). Observe that, since all αi’s have degree d, we have Q(αi1) = Q(αiℓ ), so
αiℓ ∈ Q(αi1). For a = 1/500, set

t =

√

2

d+ a2
, τ = 2at.

Then

λ =
2

t− τ
=

2

(1− 2a)t
< 1.42

√
d.

Further,
t2

2− dt2
=

1

a2
= 5002,

A1 = 5002
(

logM(αi1) +
d

2

)

, Aℓ = 5002
(

logM(αiℓ) +
d

2

)

,
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δ =
dt2 + τ 2 − 2

d− 1
=

6a2

(d+ a2)(d− 1)
.

Note that
δ−1 < 41667d2. (30)

We further adjust our definition of C16 by choosing it so that

C16 ≥ C
1

µ−1.42
√

d

0

(

4eA
) 1.42

√
d

µ−1.42
√

d , (31)

where A is defined in (25). Now with the help of inequalities λ < 1.42
√
d and

H(xj, yj) ≥ C16 we obtain
∣

∣

∣

∣

αij − xj

yj

∣

∣

∣

∣

<
C0

H(xj, yj)µ
≤ 1

(4eAH(xj, yj))
1.42

√
d
<

1

(4eAH(xj, yj))λ
,

so that the hypothesis of Lemma 2.9 is satisfied. Thus, we arrive at the conclusion
that

logH(xℓ, yℓ) ≤ δ−1
(

log(4eA1) + logH(x1, y1)
)

− log(4eAℓ)

< 41667d2
(

log(4eA1) + logH(x1, y1)
)

,

where the last inequality follows from (30). Thus

logH(xℓ, yℓ) < 41667d2
(

log
(

4eA1

)

+ logH(x1, y1)
)

.

We combine the above upper bound on logH(xℓ, yℓ) with the lower bound given in
(29):

Eℓ−1 logH(x1, y1)−
Eℓ−1 − 1

E − 1
logC < 41667d2

(

log
(

4eA1

)

+ logH(x1, y1)
)

.

Reordering the terms yields

(

Eℓ−1 − 41667d2
)

logH(x1, y1)−
Eℓ−1 − 1

E − 1
logC < 41667d2 log

(

4eA1

)

. (32)

Let us assume that

ℓ ≥ 1 +
log(41667d2)

log(µ− d/2)
,

for otherwise the statement of our theorem holds. Then Eℓ−1 ≥ 41667d2 , so we may
use the inequality H(x1, y1) ≥ C16 to replace H(x1, y1) with C16 in (32):

(

Eℓ−1 − 41667d2
)

logC16 −
Eℓ−1 − 1

E − 1
logC < 41667d2 log

(

4eA1

)

.

Since E = µ− d/2,

(µ− d/2)ℓ−1

(

logC16 − logC

E − 1

)

< 41667d2 logC16 + 41667d2 log
(

4eA1

)

+
logC

E − 1
.

We make a final adjustment to C16 by choosing it so that

C16 ≥ C2/(E−1). (33)
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Then

(µ− 0.5d)ℓ−1 logC16

2
<

(

41667d2 +
1

2

)

logC16 + 41667d2 log
(

4eA1

)

,

leading us to a conclusion

(µ− 0.5d)ℓ−1 < 1 + 83334d2
(

1 +
log
(

4eA1
)

logC16

)

. (34)

By our choice of C16,

logC16 ≥ 1

µ− 1.42
√
d
logC0 +

1.42
√
d

µ− 1.42
√
d
log(4eA),

which means that

log(4eA)

logC16
≤ µ− 1.42

√
d

1.42
√
d+ logC0/ log(4eA)

<
µ− 1.42

√
d

1.42
√
d− 1

,

where the last inequality follows from the fact that C0 > (4eA)−1. Plugging the above
inequality into (34), we obtain

(µ−0.5d)ℓ−1 < 1+83334d2
(

1 +
µ− 1.42

√
d

1.42
√
d− 1

)

= 1+83334d2
µ− 1

1.42
√
d− 1

≤ 1+98896d3/2µ,

where the last inequality follows from d ≥ 3. We conclude that

ℓ < 1 +
log(98897d3/2µ)

log(µ− d/2)
< 1 +

11.51 + 1.5 log d+ log µ

log(µ− d/2)
.

The result follows once we multiply the right-hand side by the constant γ defined in
(27).
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