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INTEGRALITY AND THURSTON RIGIDITY FOR BICRITICAL PCF

POLYNOMIALS

HEIDI BENHAM, ALEXANDER GALARRAGA, BENJAMIN HUTZ, JOEY LUPO, WAYNE PENG,
AND ADAM TOWSLEY

Abstract. We give an algebraic proof of an important consequence of Thurston rigidity for
bicritical PCF polynomials with periodic critical points under certain mild assumptions. The
key result is that when the family of bicritical polynomials is parametrized using dynamical
Belyi polynomials, the PCF solutions are integral at certain special primes, which we term
“index divisor free primes.” We prove the existence of index divisor free primes in all but
finitely many cases and conjecture the complete list of exceptions. These primes are then
used to prove transversality.

Let f(z) ∈ Q(z) be a rational function of degree d ≥ 2, considered as an endomorphism
of P1. Define the n-th iterate of f recursively as fn(z) = f(fn−1(z)), with f 0(z) = z. There
is a natural conjugation action on f by α ∈ PGL2 given by fα = α−1 ◦ f ◦ α. Since the
dynamical behavior of f is preserved by this conjugation action, we may consider the set
of equivalence classes of degree d rational endomorphisms of P1 under PGL2 conjugation.
We denote this moduli space as Md, and denote by Pd ⊂ Md the moduli space of degree d

polynomials [18, 19]. We denote the conjugacy class in Md represented by the map f as [f ].
A critical point of f is a point with ramification index at least 2. When the forward orbits

of all the critical points are finite, we say the map is post-critically finite (PCF).
One can construct a new moduli space Pcrit

d by marking the critical points of a polynomial.
That is, Pcrit

d is equivalence classes of sets of tuples of the form (f, c1, . . . , cd−1), where
c1, . . . , cd−1 are critical points of the polynomial f , each appearing with the appropriate
multiplicity. See [19], or alternatively [10, Section 1.5], for details. If we require that the
critical points are periodic with periods n1, . . . , nd−1 (a special case of f being PCF) we
get a subvariety of Pcrit

d . One consequence of Thurston’s rigidity theorem [5] is that any
two such subvarieties intersect transversely in Pcrit

d . The earliest transversality result is
perhaps due to Gleason on the family of quadratic polynomials and published by Douady-
Hubbard [6] stating that the roots of fn

c (0) are simple for fc(z) = z2 + c. For other proofs
of transversality for these types of critical orbit relations see for example [3, 15]. Favre
and Gauthier use this transversality to prove that the PCF parameters equidistribute in the
moduli space Pd [9]. Note that in the cases where Theorem 1 holds, our results should allow
for a similar equidistribution statement.
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Thurston’s proof of rigidity relies on complex analytic techniques, which do not generalize
nicely. As such, there is interest in arithmetic proofs. Some results include Hutz-Towsley’s
proof for unicritical polynomials [12], Silverman’s proof for degree three polynomials [19],
and Epstein’s proof for polynomials of degree pn [7]. There is also an unpublished work of
Levy [16] giving an algebraic proof for a certain class of rational maps. Furthermore, a recent
preprint of Ji and Xie [13] gives a new method of proof that does not rely on Teichmüller
theory for a version of rigidity due to McMullen, which is based on Thurston’s rigidity.

We give an algebraic proof of Thurston rigidity for the case of bicritical polynomials, that
is, polynomials with two affine critical points. We restrict our attention to Bcrit

d,k , which we

define to be the subset of Pcrit
d of equivalence classes of the form (f, c1, . . . , c1, c2, . . . , c2),

where c1 occurs k times.

Theorem 1. For integers n,m ≥ 1 let

Cd,0,n = {(f, c1, . . . , c1, c2, . . . , c2) ∈ Bcrit
d,k | c1 is periodic with fn(c1) = c1}

Cd,1,m = {(f, c1, . . . , c1, c2, . . . , c2) ∈ Bcrit
d,k | c2 is periodic with fm(c2) = c2}.

With the exception of finitely many pairs (d, k), the curves Cd,0,m and Cd,1,n intersect trans-
versely.

Unfortunately, the methods used do not allow us to explicitly describe the finite exceptions
(d, k). We conjecture a list of all exceptions in Conjecture 3.

Our method of proof follows the general plan of attack used by both Silverman and Epstein:
find a prime at which we can reduce and demonstrate that the Jacobian does not vanish at a
point of intersection. In both Epstein and Silverman, finding a prime such that the points of
intersection are integral is simple: take the prime dividing the degree. Integrality in our case
turns out to be more complicated and requires careful selection of the prime. Overall, the
details of our proof are of a similar nature to Epstein’s proof in that we carefully analyze the
valuation of the forward orbit of the critical points to show that the critical points must be
p-adically integral. Finally, we calculate a specific Jacobian modulo p to show it is non-zero.

When compared to previous results, our result is more general in that it holds for polyno-
mials of any degree. Our result is also interesting in that we reduce modulo a prime which is
(almost always) a prime of bad reduction and the prime varies depending on the map being
considered. However, our results are limited in that we only consider bicritical polynomials,
as we rely on dynamical Belyi polynomials, and Belyi polynomials always have two affine
critical points. Both Silverman and Epstein work with monic centered form, and as Epstein
notes in [7], monic centered form is not sufficient in the non-prime power degree case as the
PCF solutions are not necessarily p-adically integral. Our use of dynamical Belyi polyno-
mials to parameterize bicritical polynomials avoids this issue, as we prove the following key
proposition.

Proposition 2. Let fa,c(z) = aBd,k(z) + c, where Bd,k(z) is a normalized Belyi polynomial.
With finitely many exceptions (d, k), there exists a prime p such that if fα,β(z) is PCF with
periodic critical points, then

vp(α) = 0 vp(β) ≥ 0

where vp is the normalized p-adic valuation.
2



Proposition 2 allows for the reduction of PCF polynomials in Belyi normal form with periodic
critical points modulo a nice prime p.

The prime appearing in Proposition 2 is from a special class of primes which we have not
seen in the literature, which we term index divisor free primes, or IDF primes. Given a tuple
(d, k) where k ≤

⌈

d−2
2

⌉

, we define an IDF prime for (d, k) to be a prime p such that

• p is greater than k.
• p divides d− r for some r less than or equal to k.
• r ∤ vp(d− r), where vp is the normalized p-adic valuation.

We prove that except for finitely many explicitly computable tuples (d, k), there exists an
IDF prime for (d, k). Our results inspire the following conjecture:

Conjecture 3. Except when (d, k) equals (27, 3), there exists an index divisor free prime for
(d, k)

While IDF primes themselves appear to be unstudied, they are closely related to prime
powers in products of consecutive integers, of which there is an extensive literature [8, 11, 14].
The following conjecture, due to Erdös and Selfridge [8], implies our conjecture when k is
greater than or equal to 5 and not a prime.

Conjecture 4 (Erdös and Selfridge). If k ≥ 4 and n + k ≥ p(k), where p(k) is the smallest
prime greater than or equal to k, then there is a prime greater than k which divides (n +
1) · · · (n+ k) to the first power.

Thus, the existence of an IDF prime can therefore be viewed as a weakening of Conjecture 4
in most cases.

Finally, as the strongest hypothesis of the main theorem is that the polynomial is bicritical,
one might wonder what happens if we try and replace bicritical with n-critical for some n

greater than 2. As Section 4 shows, we can construct a generalization of the dynamical Belyi
polynomials for any fixed number of critical points n, however, we produce a counterexample
to show that the same method of proof is fruitless. Consequently, a general algebraic proof
of transversality will require a new method.

This article is organized as follows. Sections 1 and 3 prove the essential ingredients of the
proof of Theorem 1 under the assumption of the existence of an index-divisor free prime.
Section 2 investigates the existence of IDF primes, showing that in all but finitely many
cases an IDF prime exists. Finally, Section 4 shows that the natural extension to more than
two critical points fails to provide similar results.

1. Integrality

Following the outline for proving rigidity given in Silverman [19], we first prove that when
the space of bicritical polynomials is appropriately parametrized, every PCF solution is p-
adically integral. We first parametrize the space of bicritical polynomials using dynamical
Belyi polynomials as done in Tobin [22]. Throughout let K be a field of characteristic 0 and
K an algebraic closure of K.

First let us recall a normal form of a single-cycle Belyi map by [1, Proposition 3.1]

(1) Bd,k(z) :=
k
∑

i=0

(−1)k−i

(k − i)!i!

(

k
∏

j=0,j 6=i

d− j

)

zd−i.
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We state some results from Tobin [22] which we will use without proof.

Lemma 5 ([22, Proposition 4.0.2]). Let g ∈ K[z] be a bicritical polynomial of degree d ≥ 3.
Then g is conjugate to a map fa,c(z) = aBd,k(z) + c, where Bd,k(z) a single-cycle Belyi map
and a, c ∈ K. Moreover, fa,c(z) has affine critical points {0, 1}.

Note that the proof of [22, Proposition 4.0.2] implies that the ramification index of 0 with
respect to fa,c(z) = aBd,k + c is d − k, while the ramification index of 1 is k + 1 and that 0
is a critical point implies a ramification index of at least 2, so that k ≤ d− 2. Similarly, the
ramification index of 1 must be at least 2, so that 1 ≤ k ≤ d− 2.

Lemma 6 ([22, Proposition 4.0.6]). Let f0 6= f1 ∈ K[z] with f0(z) = a0Bd,k0 + c0 and
f1(z) = a1Bd,k1 + c1 . The polynomials f0 and f1 are conjugate if and only if k0+k1 = d−1,
a0 = a1, and c1 = 1− a0 − c0.

Combining Lemma 6 with the inequality 1 ≤ k ≤ d−2, we note that fa,c(z) = aBd,k(z)+c

can be chosen such that 1 ≤ k ≤
⌈

d−2
2

⌉

.

Lemma 7. Let g ∈ K[z] be a bicritical polynomial of degree d ≥ 3. Then g is conjugate to
a map fa,c(z) = aBd,k(z) + c, where 1 ≤ k ≤

⌈

d−2
2

⌉

.

Hence, by making an appropriate change of variables, we may assume that our bicritical
polynomial has the form fa,c(z) with marked critical points 0 and 1.

Now we write the equations in terms of a and c defining when the two critical points are
periodic, i.e., when f is a PCF bicritical polynomial. Define the polynomials

Fn(a, c) = fn
a,c(0) Gm(a, c) = fm

a,c(1)− 1.

The solutions (α, β) to

Fn(a, c) = Gm(a, c) = 0

and are exactly the pairs (α, β) such that fα,β(z) is post-critically finite with 0 and 1 being
periodic with periods n and m respectively. Thus, we want to prove that such solutions α

and β are p-adically integral for some prime p. For completeness, we restate the definition
given in the introduction for the class of primes we consider.

Definition 8. A prime p is a index divisor free prime for (d, k) when all the following
conditions hold.

• p is greater than k.
• p divides d− r for some r less than or equal to k. As p > k, this r is unique.
• For the unique r above, r ∤ vp(d− r), where vp is the normalized p-adic valuation.

Note that we do not require that p is a prime of good reduction for fa,c(z) = aBd,k(z) + c.
Also, note that r can not equal 1, as 1 divides every number, violating the third condition.
The third condition reads as the index r does not divide the power of p dividing d− r, hence
the name “index divisor free.” We abbreviate “index divisor free” as IDF. An IDF prime
ideal is defined in a similar fashion. When working in extensions of Q, we use IDF prime
ideals instead of primes.

Let us examine how index divisor free primes for (d, k) relate to Bd,k(z). We label the
coefficients of Bd,k(z) as b0, b1, . . . , bk. Note that the denominator of bi is (k − i)!i!, which
contains no powers of primes greater than k as both k − i and i are at most k, so that all
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bi are p-adically integral. Also note that since p divides d − r for some 0 ≤ r ≤ k, p must
divide every bi except for br, as d − r will occur in the product

∏k
j=0,j 6=i d − j except when

r = i. Moreover, we must have that vp(bi) = vp(d− r) except for vp(br), which is 0.
To further motivate the above definition, note that first two conditions together guarantee

that the reduction of fa,c(z) modulo an IDF prime is a monomial. This allows control of the
forward orbit of the critical points modulo p. The third condition arises as a technicality in
our proof that the post-critically finite solutions (α, β) are p-adically integral.

We now investigate the valuation with respect to an IDF prime of the image of a point
under fa,c(z), showing that the hypothesis of IDF primes give some control of the valuation
of the image.

Lemma 9. Let p be an IDF prime for (d, k), and let fa,c(z) = aBd,k(z) + c. Let α and β

be algebraic over Q, and let x ∈ Q(α, β). Let p be a prime ideal of Q(α, β) lying above p.
Then, if vp(x) is zero, we have that

(2) vp(fα,β(x)) ≥ min{vp(α), vp(β)}

while if vp(x) is negative, we have that

(3) vp(fα,β(x)) ≥ min{vp(α) + vp(d− r) + dvp(x), vp(α) + (d− r)vp(x), vp(β)}.

Both of the inequalities (2) and (3) are equalities if and only if the minimum is unique.
Further, vp(α) + vp(d− r) + dvp(x) does not equal vp(α) + (d− r)vp(x).

Proof. We assume for simplicity that α, β ∈ Q and thus that p is p, as the proof is not
substantially different when α, β 6∈ Q. Let x ∈ Q(α, β). Consider vp(fα,β(x)). Using the
labels b0, . . . , bk for the coefficients of Bd,k(z) as above, we have

vp(fα,β(x)) = vp(α(Bd,k(x)) + β) = vp(α(b0x
d + b1x

d−1 + . . .+ bkx
d−k) + β)

≥ min{vp(αb0x
d), vp(αb1x

d−1), . . . , vp(αbkx
d−k), vp(β)}

= min{vp(α) + vp(b0) + dvp(x), . . . , vp(α) + vp(bk) + (d− k)vp(x), vp(β)},

where equality occurs if there is a unique minimum. Since p is an IDF prime, fix r so that
p | (d − r). We know that vp(bi) = vp(d − r) for all i, with the exception that vp(br) = 0.
Substituting into the set we are minimizing, we find that

vp(fα,β(x)) ≥ min{vp(α) + vp(d− r) + dvp(x), . . . , vp(α) + (d− r)vp(x), . . . ,

vp(α) + vp(d− r) + (d− k)vp(x), vp(β)}.

If vp(x) is zero, then we have that

vp(fα,β(x)) ≥ min{vp(α) + vp(d− r), . . . , vp(α), . . . , vp(α) + vp(d− r), vp(β)}

which gives Equation (2) as vp(d− r) > 0.
If vp(x) is negative, then vp(α)+vp(d−r)+dvp(x) is less than vp(α)+vp(d−r)+(d−1)vp(x),

and less than vp(α)+ vp(d− r)+ (d−2)vp(x), etc. So in this case we can ignore all but three
terms when we minimize, giving Equation (3). As we are concerned with when the minimum
is unique, we note here that vp(α) + vp(d− r) + dvp(x) cannot equal vp(α) + (d− r)vp(x), as
then we would have that

vp(d− r) = −rvp(x)

which is not possible since p is an IDF prime so that r does not divide vp(d− r). �
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We will need the following technical lemma to handle Case 4.iii in the proof of the main
result in this section (Proposition 11).

Lemma 10. Assume vp(β) < 0 < vp(α) and min{vp(α) + vp(d − r) + dvp(β), vp(α) + (d −
r)vp(β)} = vp(β). For any integer n ≥ 0, we can express

(4) fn
α,β(X + Y ) = fn

α,β(X) + hn(X, Y )

for some polynomial hn(X, Y ). Further, if x, y ∈ Q(α, β), with vp(x) ≥ vp(β) and vp(y) ≥
vp(α), then vp(hn(x, y)) is greater than or equal to vp(α) and vp(f

n
α,β(x)) is greater than or

equal to vp(β).

Proof. Begin with the case n = 0. Then, f 0
α,β(X + Y ) = X + Y = f 0

α,β(X) + Y , and we can
verify all the claims immediately. Thus, we can assume that n > 0. Observe that

fα,β(X + Y ) = α(bd(X + Y )d + · · ·+ bd−k(X + Y )d−k) + β

= α(bdX
d + · · ·+ bd−kX

d−k) + β + α

d
∑

j=d−k

bj

j
∑

i=1

(

j

i

)

Xj−iY i

= fα,β(X) + h1(X, Y ).

Letting

hn(X, Y ) = α

d
∑

j=k

bj

j
∑

i=1

(

j

i

)

(fn−1
α,β (X))j−i(hn−1(X, Y )i),

it is easy to check Equation (4).
Let us now focus on the second part of this lemma. We begin by proving that vp(f

n
α,β(x))

is greater than or equal to vp(β) for all n by induction. As f 0
α,β(x) equals x, the base case

is true by assumption. Let us consider the general case. We can start by applying the
assumptions, and then use the same logic that lead to Equation (3):

vp(f
n
α,β(x)) ≥ min{vp(α) + vp(bd) + dvp(f

n−1
α,β (x)), . . . , vp(α) + vp(bd−k)+

(d− k)vp(f
n−1
α,β (x)), vp(β)}

≥ min{vp(α) + vp(bd) + dvp(β), . . . , vp(α) + vp(bd−k) + (d− k)vp(β), vp(β)}

≥ min{vp(α) + vp(d− r) + dvp(β), vp(α) + (d− r)vp(β), vp(β)} = vp(β),

and, hence, we have shown the desired result.
We proceed in a similar manner to prove that vp(hn(x, y)) is greater than or equal to vp(α)

for all n. The base case n = 1 is almost identical to the general case, so we only consider
the general case. Using the definition of hn(x, y), we find that

vp(hn(x, y)) ≥ min{vp(α) + vp(bj) + vp

((

j

i

))

+ (j − i)vp(f
n−1
α,β (x)) + iv(hn−1(x, y))

| j = d− k, . . . , d, and i = 1, . . . , j}

≥ min{vp(bj) + vp

((

j

i

))

+ (j − i)vp(β) + (i+ 1)vp(α)

| j = d− k, . . . , d, and i = 1, . . . , j}.
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We know that vp(bj) equals vp(d − r) except when j = d − r, in which case vp(bd−r) equals
zero. Similarly, vp

((

j
i

))

equals either vp(d− r) or 0. Using these facts and the assumptions
that vp(β) is negative and vp(α) is positive, we find that minimum must occur when (j, i)
equals either (d, 1) or (d− r, d− r) so we have

(5) vp(hn(x, y)) ≥ min{vp(d− r) + (d− 1)vp(β) + 2vp(α), (d− r + 1)vp(α)},

where we have dropped vp
((

j
i

))

as it is positive. The second term of the above minimum is
clearly greater than vp(α). The assumption

min{vp(α) + vp(d− r) + dvp(β), vp(α) + (d− r)vp(β)} = vp(β)

implies

min{vp(α) + vp(d− r) + (d− 1)vp(β), vp(α) + (d− r − 1)vp(β)} = 0.

It follows that the first term of the minimum in Equation (5) is also greater than vp(α),
which is our desired result. �

We are now ready to state the main result of this section (Proposition 11), which is a
restatement of part of Proposition 2. The remaining part of Proposition 2, the existence of
IDF primes, is treated in Section 2.

Proposition 11. Let p be an IDF prime for (d, k) and let fa,c(z) = aBd,k(z) + c. Then the
solutions (α, β) to Fn(a, c) = Gm(a, c) = 0 are p-adically integral.

Proof. Our general approach will be to show that if vp(α) or vp(β) is negative, the p-adic
valuation of the forward orbit of either 0 or 1 is negative and bounded from above.

Since the proof for an algebraic extension is not substantially different from the rational
case, we will assume α and β are rational for simplicity.

In order to prove the proposition, we divide into the following cases.

Case 1. vp(α) < 0, vp(β) < 0;

Case 2. vp(α) < 0 ≤ vp(β);

Case 3. vp(β) < 0, vp(α) = 0;

Case 4. vp(β) < 0 < vp(α).

Case 1. We show by induction that vp(f
n
α,β(0)) tends towards −∞ by showing that

vp(f
n+1
α,β (0)) is strictly less than vp(f

n
α,β(0)) so that 0 cannot be periodic. For the base case,

fα,β(0) = β and hence vp(fα,β(0)) = vp(β) < vp(0). Now consider vp(f
2
α,β(0)). In this case

we have assumed vp(β) < 0, so we can use Equation (3) to find that

vp(f
2
α,β(0)) = vp(fα,β(β)) ≥ min{vp(α) + vp(d− r) + dvp(β), vp(α) + (d− r)vp(β), vp(β)}.

The above inequality is an equality if there is a unique minimum. We have shown in Lemma
9 that vp(α) + vp(d− r) + dvp(β) is not equal to vp(α) + (d− r)vp(β).

We show that vp(α) + (d− r)vp(β) is less than vp(β). If vp(α) + (d− r)vp(β) were greater
than or equal to vp(β), then we would have vp(α) is greater than or equal to (1−d+ r)vp(β).
As r ≤ k <

⌈

d−2
2

⌉

, (1 − d + r)vp(β) is positive and hence vp(α) would also be positive, a
contradiction. Hence, the minimum is unique, and

vp(fα,β(β)) = min{vp(α) + vp(d− r) + dvp(β), vp(α) + (d− r)vp(β)}.

7



Thus, vp(f
2
α,β(0)) equals vp(α) + vp(d − r) + dvp(β) or vp(α) + (d − r)vp(β) and it must

be less than vp(β). As vp(β) equals vp(fα,β(0)), we thus have that vp(f
2
α,β(0)) is less than

vp(fα,β(0)). Application of Equation (3) in the inductive step combined with the fact that
vp(α)+ vp(d− r)+ dvp(β) and vp(α)+ (d− r)vp(β) are less than vp(β) show that in this case
vp(f

n+1
α,β (0)) is less than vp(f

n
α,β(0)).

As vp(f
n
α,β(0)) is always negative, 0 is not periodic and fα,β is not post-critically finite, so

that (α, β) is not a solution to Fn(a, c) = Gm(a, c) = 0.
Case 2. We show by induction that vp(f

n
α,β(1)) tends to −∞ by showing that vp(f

n+1
α,β (1))

is strictly less than vp(f
n
α,β(1)). In particular, 1 is not periodic. To start the base case, we

can use Equation (2) and the assumptions that vp(α) is negative and vp(β) is non-negative

vp(fα,β(1)) = min{vp(α), vp(β)} = vp(α)

with equality since vp(α) is less than vp(β). Now consider vp(f
2
α,β(1)). As vp(fα,β(1)) is

negative, we can use Equation (3)

vp(f
2
α,β(1)) ≥ min{vp(α) + vp(d− r) + dvp(α), vp(α) + (d− r)vp(α), vp(β)}

= min{vp(d− r) + (d+ 1)vp(α), (d− r + 1)vp(α)}.

Lemma 9 shows that the minimum is unique, and, hence, the inequality becomes an equal-
ity. Thus, we have that vp(f

2
α,β(1)) is strictly less than vp(fα,β(1)). By repeated use of

Equation (3), induction on n shows that vp(f
n+1
α,β (1)) is strictly less than vp(f

n
α,β(1)) for all

n.
Case 3. We show by induction that vp(f

n
α,β(1)) tends to −∞, so that 1 is not periodic.

For the base case, we have

vp(fα,β(1)) = min{vp(α), vp(β)} = vp(β)

with equality as vp(β) is less than vp(α). Using Equation (3), we find that

vp(f
2
α,β(1)) ≥ min{vp(α) + vp(d− r) + dvp(β), vp(α) + (d− r)vp(β), vp(β)}

= min{vp(d− r) + dvp(β), (d− r)vp(β)}

and Lemma 9 shows that the minimum is unique, and, hence, the inequalities become equal-
ity. Thus, we have that vp(f

2
α,β(1) is strictly less than vp(fα,β(1)). By repeated use of

Equation (3), induction on n shows that vp(f
n+1
α,β (1)) is strictly less than vp(f

n
α,β(1)) for all

n.
Case 4. To deal with this case, which is by far the most difficult, we further divide into

3 subcases.

Case 4.i. min{vp(α) + vp(d− r) + dvp(β), vp(α) + (d− r)vp(β)} < vp(β);

Case 4.ii. min{vp(α) + vp(d− r) + dvp(β), vp(α) + (d− r)vp(β)} > vp(β);

Case 4.iii. min{vp(α) + vp(d− r) + dvp(β), vp(α) + (d− r)vp(β)} = vp(β).

Cases 4.i. and 4.ii. are easy to deal with. We apply similar arguments to those used for
Case 1 to show that in Case 4.i., vp(f

n
α,β(0)) tends to −∞. As fα,β(0) equals β, we have

that vp(fα,β(0)) is strictly less than vp(f
0
α,β(0)), and thus the base case is satisfied. Using

Equation (3) and the Case 4.i. assumption, we have that

vp(fα,β(β)) = min{vp(α) + vp(d− r) + dvp(β), vp(α) + (d− r)vp(β)}

8



with equality by Lemma (9). Thus, vp(f
2
α,β(0)) is less than vp(β), and induction combined

with Equation (3) shows that vp(f
n+1
α,β (0)) is strictly less than vp(f

n
α,β(0)), giving the desired

result.
In Case 4.ii., we can show that vp(f

n
α,β(0)) equals vp(β) for all n ≥ 1. For the base case

n = 1, we have that fα,β(0) equals β, and thus the base case holds. Then, the inductive
hypothesis shows that the assumption for Equation (3) is satisfied, and hence we have that

vp(f
n+1
α,β (0)) ≥ min{vp(α) + vp(d− r) + dvp(f

n
α,β(0)), vp(α) + (d− r)vp(f

n
α,β(0)), vp(β)}

≥ min{vp(α) + vp(d− r) + dvp(β), vp(α) + (d− r)vp(β), vp(β)}

By the assumption for Case 4.ii, this minimum is vp(β) and is unique, and thus we have that
vp(f

n+1
α,β (0)) equals vp(β) as desired.

We now proceed with the proof of Case 4.iii. The first two assumptions of Lemma 10 are
satisfied by our assumptions. Now as fα,β is post-critically finite with 0 and 1 being periodic,
we have that

fn
α,β(0) = 0 and fn

α,β(1) = 1

for some integer n. We then have that

vp(f
n−1
α,β (fα,β(0))) = ∞, vp(f

n−1
α,β (fα,β(1))) = 0,

vp(f
n−1
α,β (β)) = ∞, and vp(f

n−1
α,β (αBd,k(1) + β)) = 0.

We proceed by setting X to β and Y to αBd,k(1) in Lemma 10. In order to apply the full
power of Lemma 10 we must check the remaining two assumptions of Lemma 10 are satisfied.
As X equals β, the third assumption is satisfied. Finally, the last assumption is that vp(Y )
is greater than vp(α). We bound vp(Y ) as follows

vp(Y ) = vp(αBd,k(1)) = vp

(

α
∑

i

bi

)

≥ min{vp(α) + vp(bd), . . . , vp(α) + vp(bd−k)} ≥ vp(α),

since vp(bi) is always non-negative. Therefore, the last assumption is satisfied, and by
Lemma 10 we have that

0 = vp(f
n−1
α,β (β + αBd,k(1))) = vp(f

n−1
α,β (β) + hn−1(β, αBd,k(1)))

≥ min{vp(f
n−1
α,β (β)), vp(hn−1(β, αBd,k(1)))}

≥ {∞, vp(α)}

= vp(α)

which is a contradiction as vp(α) is strictly greater than 0.
�

Careful analysis of where the assumptions are used in the proof of Proposition 11 shows
that even with weaker assumptions proofs of certain cases still hold. Cases 1 and 4 only rely
on 0 being periodic, while Cases 2 and 3 rely only on 1 being periodic. Thus, we get that

Proposition 12. Let p be an IDF prime for (d,k) and let fa,c(z) = aBd,k(z) + c. If (α, β)
is a solution to Fn(a, c) = 0, then one of α and β are p-integral. If (α, β) is a solution to
Gm(a, c) = 0 and β is p-integral, then so is α.
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Proof. If (α, β) is a solution to Fn(a, c) = 0, then 0 is periodic under fα,β. Hence, the proofs
of Cases 1 and 4 apply, which shows that at least one of α and β are p-integral. Similarly,
if (α, β) is a solution to Gm(a, c) = 0, then 1 is periodic under fα,β and, hence, the proofs
of Cases 2 and 3 apply. Thus, if vp(β) is non-negative, we can not be in Cases 1 or 4, and,
hence, α must also be p-integral. �

Cases 1 and 2 both show the valuation of the orbit of a critical point is unbounded, so
that the same proof works even if the critical point was only assumed to be preperiodic.
Formally, let

H(n0,m0)(a, c) = fn0

a,c(0)− fm0

a,c (0), K(n1,m1)(a, c) = fn1

a,c(1)− fm1

a,c (1)

so that the solutions (η, γ) to H(n0,m0)(a, c) = K(n1,m1)(a, c) = 0 are such that fη,γ is PCF
with 0 having preperiod (n0, m0) and 1 having preperiod (n1, m1).

Then, we have the following proposition.

Proposition 13. Let p be an IDF prime for (d,k) and let fa,c(z) = aBd,k(z) + c. If (η, γ)
is a solution to H(n0,m0)(a, c) = K(n1,m1)(a, c) = 0, then either both η and γ are p-integral or
vp(γ) < 0 and 0 < vp(η).

Proof. Suppose not. Then, we are in one of Cases 1, 2, or 3 from the proof of Proposition
11. In these cases, we showed that the valuation of the orbit of a critical point under fη,γ is
unbounded. Thus, fη,γ can not be PCF, because if the orbit of the critical point is finite the
valuation of the orbit is necessarily bounded, which is a contradiction. �

Using similar methods as for Proposition 11, we also prove the following lemma, which
will be important in Section 3.

Lemma 14. Let p be an IDF prime for (d,k) and let fa,c(z) = aBd,k(z) + c. If (α, β) is a
solution to Fn(a, c) = Gm(a, c) = 0, then α is non-zero modulo p.

Proof. Since the proof for an algebraic extension is not substantially different from the ra-
tional case, we will assume α and β are rational for simplicity.

We begin by establishing an equation similar to Equation (3) for x with positive valuation.
Let x be an arbitrary element in Q(α, β), and let vp be a normalized valuation on Q(α, β).

Using similar logic as we used for Equation (3), we find that

(6) vp(fα,β(x)) ≥ min{vp(α) + vp(d− r) + (d− k)vp(x), vp(α) + (d− r)vp(x), vp(β)}.

Now, we consider the following two cases:

Case 1. vp(α) > 0, vp(β) > 0;

Case 2. vp(α) > 0, vp(β) = 0.

Case 1. We show vp(f
n
α,β(1)) is positive for all positive n. We begin by using Equation (2)

vp(fα,β(1)) ≥ min{vp(α), vp(β)} > 0.

Now, for the inductive step, we can use Equation (6)

vp(f
n
α,β(1)) ≥ min{vp(α) + vp(d− r) + (d− k)vp(f

n−1
α,β (1)),

vp(α) + (d− r)vp(f
n−1
α,β (1)), vp(β)},

which is positive as every term is positive.
10



Case 2. For this case, we show that vp(f
n
α,β(0)) is zero for all positive n. As fα,β(0) equals

β, vp(fα,β(0)) is zero by assumption. For the inductive step, we can use Equation (2)

vp(f
n(0)) ≥ min{vp(α), vp(β)} = 0,

and the inequality becomes equality since the minimum is unique.
In both Case 1 and Case 2, our conclusions contradicted that 0 and 1 are periodic, so are

not possible. Combined with cases 3 and 4 in Proposition 11, we see that vp(α) must be 0,
and our desired result is proved. �

2. Existence of IDF Primes

As our proof of p-integrality relies on the existence of an IDF prime p, we turn our attention
to proving when such a prime exists. We begin proving the existence of an IDF prime by
considering the cases where k is small.

Lemma 15. For k ≤ 3, there exists an IDF prime p for (d, k) except when (d, k) equals
(27, 3). Further, for any given k, there are only finitely many d for which an IDF prime does
not exist.

Proof. The case where k equals 1 is trivial, so we begin with k = 2. For this case, the
conditions for being an IDF prime p are equivalent to

• p is greater than 2
• p divides d, or p divides d− 2 and vp(d− 2) is odd.

If d has a prime divisor greater than 2, we are done. Otherwise, d = 2i for some i. Then,
we can apply Zsigmondy’s theorem [23] to conclude that d− 2 = 2(2i−1 − 1) has a primitive
prime divisor when i is greater than 6. Checking the remaining cases computationally where
i is less than 6, we find that there is always an IDF prime.

We now approach the case k = 3. For this case, the conditions for being an IDF prime
are equivalent to

• p is greater than 3
• p divides d, or p divides d−2 and vp(d−2) is odd, or p divides d−3 and 3 ∤ vp(d−3).

We proceed by directly computing exceptions. If either d−3 or d−2 is a multiple of an IDF
prime, then we are done. Otherwise, d−3 is not divisible by an IDF prime, so every prime p
which is greater than 3 must have 3 | vp(d− 3). Hence, every prime greater than 3 occurs to
a power divisible by 3. This implies that d− 3 = CX3 for some integer X , where C is only
divisible by 2 or 3 at most to the second power (as higher powers of 2 or 3 can be absorbed
into X), so that C is in the set {1, 2, 3, 22, 2 · 3, 32, 22 · 3, 2 · 32, 22 · 32}. Similarly, we must
have that d − 2 = BY 2 for some integer Y , where B is in the set {1, 2, 3, 6}. Combining
these two equations, we find that integer pairs (X, Y ) must satisfy

BY 2 = CX3 + 1.

After the substitution

(7) X =
x

BC
and Y =

y

B2C
,

this curve becomes y2 = x3+B3C2. We find points (x, y) using standard methods to compute
integral points on elliptic curves in Sage [20], and then compute the points (X, Y ) via (7).

11



Note that we have that k must be less than or equal to
⌈

d−2
2

⌉

, so as k is 3, d must be at
least 7. We find that the only solutions are

(X, Y,B, C) ∈ {(2, 3, 1, 1), (2, 5, 1, 3), (2, 7, 1, 6), (2, 17, 1, 36), (23, 78, 2, 1), (61, 389, 3, 2)}

These correspond to the tuples

(d, 3) ∈ {(11, 3), (27, 3), (51, 3), (291, 3), (12170, 3), (453965, 3)}

For these tuples (d, 3), d is a multiple of an IDF prime except when d = 27, giving us one
exception (27, 3).

The above method easily generalizes to any k, showing that there are only finitely many
possible exceptions (d, k) for any given k. �

On the other hand, when k is very large, we can show there is always an IDF prime p.
Note that in the following lemma, “effectively computable” means that the method of proof
allows for the explicit computation of γ.

Lemma 16. If k is greater than some effectively computable constant γ, there is always an
IDF prime p for (d, k).

Proof. To approach this more general case, we show that there exists a prime p such that p
is greater than k, p divides d− r for some even r less than k, and vp(d− r) is odd. Consider
the product

∆ = d(d− 2)(d− 4) · · ·

(

d− 2

⌊

k

2

⌋)

.

First we show that there exists a prime p > k which divides ∆. Note that ∆ is the product of
an arithmetic sequence with common ratio 2. Laishram and Shorey [14] prove for arithmetic
sequences with common ratio 2, there exists a prime p > 2

(⌊

k
2

⌋

+ 1
)

≥ k dividing ∆.
Next we show that if k is large enough, there exists a prime p > k such that vp(d − r) is

odd. Assume that for all primes p > 2
(⌊

k
2

⌋

+ 1
)

dividing ∆, vp(d − r) is even. Then, we
would have a solution to

∆ = by2(8)

where b has no prime divisor greater than 2
(⌊

k
2

⌋

+ 1
)

. Filaseta, Laishram, and Saradha [11]
prove that when k is larger than some effectively computable constant, there are no solutions
to Equation (8). �

Combining Lemma 16 and Lemma 15, we have the following proposition.

Proposition 17. Except for finitely many exceptions (d, k) which are effectively computable,
there exists an IDF prime p for (d, k).

Ideally, we would enumerate all k less than γ and compute all possible exceptions (d, k).
The constant γ, however, is quite large, of the order of 5050. It is therefore infeasible to
compute all exceptions.

Additionally, we note that the method used in Lemma 15 to compute the possible ex-
ceptions (d, k) requires computing integral points on 6π(k) elliptic curves, where π(k) is the
number of primes less than or equal to k. Thus, the authors were only able to compute
exceptions up until k = 10. We found that for all pairs (d, k) with k ≤ 10 except for (27, 3),
there exists an IDF prime.

12



A more efficient method would be as follows. If d is not a multiple of an IDF prime, it is
the product of primes less than or equal to k. If d − 2 is not a multiple of an IDF prime,
then it is of the form BX2, where B is in the set described in Lemma 15. We thus get an
equation of the form

BX2 + 2 = pz11 · · · pznn .

Equations of this form are solved in [17]. For any given k, there will be O(π(k)2) possibilities
for B, giving a much more efficient method for computing exceptions.

As computing all exceptions is not currently feasible, we instead state Conjecture 3. In
the spirit of Conjecture 4, we rephrase Conjecture 3 to have a more number theoretic flavor.

Conjecture 18. Let k be a non-negative integer and let n be greater than 2k + 2. There
exists a prime p greater than k which divides ∆ = n(n− 1) · · · (n− k). Moreover, the index
at which p occurs in the product n(n − 1) · · · (n − k) does not divide the power to which it
occurs in ∆, except when (n, k) equals (27, 3).

3. Thurston Rigidity

Having proved that the PCF solutions are p-adically integral, the next step towards proving
the main theorem is to prove that the curves Fn(a, c) and Gm(a, c) intersect transversely. In
order to show that Fn and Gm(a, c) intersect transversely, we consider the Jacobian

J(a, c) = det

(

(Fn)a (Gm)a
(Fn)c (Gm)c

)

∈ Z[a, c]

where the subscript indicates a partial derivative. Then the curves Fn = 0 and Gm = 0
intersect transversely at all their points of intersection if and only if the ideal

(Fn, Gm, J) ∈ C[a, c]

is the unit ideal. We prove that (Fn, Gm, J) = (1) by proving J(a, c) does not vanish modulo
p when p is an IDF prime.

Proposition 19. Let p be an IDF prime for (d, k), and let (α, β) be a solution to Fn(a, c) =
Gm(a, c) = 0. Then, the Jacobian

J(a, c) = det

(

(Fn)a (Gm)a
(Fn)c (Gm)c

)

is non-zero modulo p when (a, c) equals (α, β).

Proof. Since the proof for an algebraic extension is not substantially different from the ra-
tional case, we will assume α and β are rational for simplicity.

Begin by choosing an IDF prime ideal p in Q(α, β), and let vp be the valuation normalized
with respect to this prime ideal. Letting b0, . . . , bk be the coefficients of Bd,k(z), we know
that vp(bi) equals vp(d−r), except when i = d−r, as vp(bd−r) equals 0. As vp(d−r) is greater
than 0, we have that Bd,k reduces to a monomial modulo p by reducing the coefficients.

Now we can reduce fa,c using the reduction of Bd,k:

fa,c(z) ≡ asztp + c (mod p),
13



where

s ≡ (−1)k−r
k
∏

j=0,j 6=r

(d− j) ·
1

(k − r)!r!
(mod p)

and tp = d − r for some t ∈ N. Since the critical points of f in this bicritical normal form
are 0 and 1, given periods m,n ≥ 1, the intersection of

Fn(a, c) = fn
a,c(0) = 0 and Gm(a, c) = fm

a,c(1)− 1 = 0

gives the locus of PCF bicritical polynomials with 0 periodic of period n and 1 periodic of
period m. We compute the Jacobian of these two curves and show that it cannot be 0 mod
p at the points of intersection. We can explicitly compute the partial derivatives of f

n

a,c(0)

and f
m

a,c(1) as follows:

∂

∂a
(f

n

a,c(0)) ≡
∂

∂a

(

as(f
n−1

a,c (0))tp + c
)

≡ s(f
n−1

a,c (0))tp + astp(f
n−1

a,c (0))tp−1 ∂

∂a

(

f
m−1

a,c (0)
)

≡ s(f
n−1

a,c (0))tp (mod p)

∂

∂c

(

f
n

a,c(0)
)

≡
∂

∂c

(

as(f
n−1

a,c (0))tp + c
)

≡ astp(f
n−1

a,c (0))tp−1 ∂

∂c

(

f
n−1

a,c (0)
)

+ 1

≡ 1 (mod p).

Similarly,

∂

∂a

(

f
m

a,c(1)
)

≡ s(f
m−1

a,c (1))tp (mod p)

∂

∂c

(

f
m

a,c(1)
)

≡ 1 (mod p).

Thus, the Jacobian is given by

J(a, c) ≡ det

(

1 1

s(f
n−1

a,c (0))tp s(f
n−1

a,c (1))tp

)

≡ s(f
m−1

a,c (1)tp − f
m−1

a,c (0)tp) (mod p).

Now we evaluate at a point of intersection (α, β), which is a solution to the equations
Fn(a, c) = Gm(a, c) = 0. Denote the reductions of α and β modulo p by α and β. By
Proposition 11 both α and β are defined, and by Lemma 14 α is non-zero. Since fm

α,β(1)− 1

equals 0, we have that αs(fm−1
α,β (1))tp + β must be equivalent to 1, so that

(fm−1
α,β (1))tp =

1− β

αs

and, similarly,

(fn−1
α,β (0))tp = −

β

αs
.
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It follows that

J(α, β) ≡ s(fm−1
α,β (1)tp − fn−1

α,β (0)tp)

≡ s

(

1− β

αs
+

β

αs

)

≡
1

α
(mod p).

As α is non-zero by Lemma 14, J(α, β) is defined, and

J(α, β) 6≡ 0 (mod p).

�

We are now ready to prove the main theorem. Our proof is identical to the one given in
[19], however we reproduce it here for the sake of completeness.

Proof. (Main Theorem) Begin by considering the Jacobian J(a, c) evaluated at a point of
intersection (α, β) of Fn(a, c) = Gm(a, c) = 0. By Proposition 19, there exists some number
K(α, β) such that

J(α, β) =
1

α
+ pK(α, β).

By taking norms down to Q, we find that

NQ(α,β)/QJ(α, β) = NQ(α,β)/Q

(

1

α
+ pK(α, β)

)

≡
1

α
(mod p).

In particular, J(α, β) is non-zero. It follows that

(Fn, Gm, J) ⊂ C[a, c]

is the unit ideal, since if it were not, the curves Fn, Gm, and J would have a common
root. �

4. Failure to Extend to n critical points

One possible way to extend the above results would be to construct a normal form similar
to the Belyi normal form but for more critical points, and try to push through similar proofs.
The following shows, however, that the natural generalization to n critical points does not
allow for proofs following the standard mode of attack, as the Jacobian is not non-zero
modulo p.

In order to attempt to generalize to more critical points, we first need a normal form.
We give a generalization to n-critical points of the normal form for bicritical maps given in
Tobin [22]. First, we define some notation.

Definition 20. We notate the n + 1 nested sums as

k0...kn
∑

j0...jn=0

:=

k0
∑

j0=0

k1
∑

j1=0

. . .

kn
∑

jn=0
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For the following proposition, any sum with lower and upper bounds omitted is a sum
from 0 to n− 2. That is,

∑

l

:=

n−2
∑

l=0

Theorem 21. Let g ∈ K[z] be a degree d polynomial with n critical points. There exist

k0, . . . kn−2 ∈ N, with n− 1 ≤
∑

l

kl ≤ d− 2 and a, c, γ0 . . . γn−2 ∈ K such that g is conjugate

to

a





d!

(d−
∑

l kl − 1)!

k0...kn−2
∑

j0...jn−2=0

(

n−2
∏

i=0

(−γi)
ki−ji

(

ki

ji

)

)

zd+
∑

l
jl−kl

d+
∑

l jl − kl



+ c.

Proof. Let g ∈ K[z] be a polynomial with n critical points ξ0, . . . , ξn−1. Let φ(z) =
z−ξn−1

ξ0−ξn−1

∈

PGL2(K), which sends the critical points ξ0 and ξn−1 to 1 and 0, respectively. Then, f(z) =

gφ
−1

has critical points 0, γ0 = 1, γ1, . . . , γn−2. Let d −
∑

i ki be the ramification index of 0
and let k0 + 1, . . . , kn−2 + 1 be the ramification indices of γ0, . . . , γn−2, respectively. Then
there exists α ∈ K such that

f ′(z) = αzd−
∑

l
kl−1

n−2
∏

i=0

(z − γi)
ki

f(z) = α

∫

zd−
∑

l
kl−1

k0...kn−2
∑

j0...jn−2=0

(

n−2
∏

i=0

(−γi)
ki−ji

(

ki

ji

)

zji

)

dz

= α

∫

zd−
∑

l
kl−1

k0...kn−2
∑

j0...jn−2=0

z
∑

l
jl

[

n−2
∏

i=0

(−γi)
ki−ji

(

ki

ji

)

]

dz

= α

k0...kn−2
∑

j0...jn−2=0

[

n−2
∏

i=0

(−γi)
ki−ji

(

ki

ji

)

]

∫

zd+
∑

l
jl−kl−1 dz

= α





k0...kn−2
∑

j0...jn−2=0

[

n−2
∏

i=0

(−γi)
ki−ji

(

ki

ji

)

]

zd+
∑

l
jl−kl

d+
∑

l jl − kl



+ c.

We can then make the substitution

α = a

(

d!

(d−
∑

l kl − 1)!

)

so that

f(z) = a





d!

(d−
∑

l kl − 1)!

k0...kn−2
∑

j0...jn−2=0

[

n−2
∏

i=0

(−γi)
ki−ji

(

ki

ji

)

]

zd+
∑

l
jl−kl

d+
∑

l jl − kl



+ c.
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Additionally, since k0 + 1, . . . kn−2 + 1 are the ramification indices of the critical points, for
all l we have kl + 1 ≥ 2, and hence kl ≥ 1. Since d−

∑

l kl is the ramification index of 0,
∑

l

kl ≤ d− 2.

Combining these two inequalities, we have

n− 1 ≤
∑

l

kl ≤ d− 2. �

Applying Theorem 21 to a particular case leads to a specific normal form as demonstrated
in the next example.

Example 22. Consider a degree 4 polynomial with 3 critical points, γ0, γ1, γ2, each of
ramification index 2. Note that the proof of Theorem 21 shows that we can conjugate so
that γ0 = 1 and γ2 = 0. For clarity, we relabel γ1 = γ. Label the normal form given for
this polynomial from Theorem 21 as fa,c,γ(z). The proof of Theorem 21 also shows that
ki = eγi(fa,c,γ)− 1, where eγi(fa,c,γ) is the ramification index of fa,c,γ at γi. Hence, we have
that k0 = eγ0(fa,c,γ) − 1 = 1 and k1 = eγ1(fa,c,γ) − 1 = 1. Now, we substitute with d = 4,
n = 3, k0 = 1, k1 = 1, γ0 = 1, and γ1 = γ.

fa,c,γ(z) = a

(

4!

4−
∑

l kl − 1!

1,1
∑

j0,j1=0

[

1
∏

i=0

(−γi)
ki−ji

(

ki

ji

)

]

z4+
∑

1

l=0
jl−

∑
1

l=0
kl

4 +
∑1

l=0 jl −
∑1

l=0 kl

)

+ c.

Since ki = 1 for all i, and
∑

l kl = 2, it follows that

fa,c,γ(z) = a

(

4!

1,1
∑

j0,j1=0

[

1
∏

i=0

(−γi)
1−ji

(

1

ji

)

]

z2+j0+j1

2 + j0 + j1

)

+ c.

We can bring the 4! into the sum and use the fact that ji ≤ ki = 1 to simplify 4!
2+j0+j1

as
∏2

l=0, l 6=j0+j1
2 + l:

fa,c,γ = a

(

1,1
∑

j0,j1=0

(−1)1−j0(−γ)1−j1

[

2
∏

l=0, l 6=j0+j1

2 + l

]

z2+j0+j1

)

+ c

= a

1
∑

j0=0

(

(−1)1−j0(−γ)

[

2
∏

l=0, l 6=j0

2 + l

]

z2+j0 + (−1)1−j0

[

2
∏

l=0, l 6=j0+1

2 + l

]

z3+j0

)

+ c

= a
(

γ(3 · 4)z2 − (2 · 4)z3 − γ(2 · 4)x3 + (2 · 3)z4
)

= a(6z4 − 8(1 + γ)z3 + 12γz2) + c.

Using the normal form in Theorem 21, we might hope to provide algebraic proofs of
transversality for polynomials with 3 or more critical points. Unfortunately, the next two
examples show that choosing p as in the bicritical case ultimately fails.

Example 23 shows the importance of the results on conjugacy from [22] in the bicritical
case. For polynomials with 3 or more critical points, we can no longer assume that 1 ≤ ki ≤
⌈d−2

2
⌉, which means we cannot always find a prime for which the polynomial reduces nicely.
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Example 23. Consider the family of degree 10 polynomials with three critical points, γ′
0,

γ′
1, and γ′

2 of ramification indices 8, 2, and 2 respectively. Theorem 21 states that we can
parametrize this family by polynomials ga,c,γ of the form given in Theorem 21. Note that
the proof of Theorem 21 conjugates so that γ′

0 is sent to 1, γ′
1 is sent to γ, and γ′

2 is sent to
0. The critical points of ga,c,γ are thus 0, 1, and γ. Also note that ki = eγi(ga,c,γ)− 1, hence
k0 = 7 and k1 = 1. Substituting d = 10, n = 3, k0 = 7, k1 = 1, γ0 = 1, and γ1 = γ, we have

ga,c,γ(z) = a

(

10!

1!

7,1
∑

j0,j1=0

[

1
∏

i=0

(−γi)
ki−ji

(

ki

ji

)

]

z2+j0+j1

2 + j0 + j1

)

+ c

= a

(

7,1
∑

j0,j1=0

[

1
∏

i=0

(−γi)
ki−ji

(

ki

ji

)

](

8
∏

l=0,l 6=j0+j1

2 + l

)

z2+j0+j1

)

+ c.

Note that the product
8
∏

l=0,l 6=j0+j1

2 + l

will always be nonzero modulo any prime p > 10 and will always be 0 modulo any prime
p ≤ 5. We must then try to reduce ga,c,γ modulo p = 7. Values of j0 and j1 that will make
the previous product nonzero modulo 7 are those such that j0 + j1 = 5, which results in two
solutions, j0 = 5 and j1 = 0 or j0 = 4 and j1 = 1. In both of these cases, however, we have

7 |

(

k0

j0

)

as
(

k0
j0

)

=
(

7
5

)

or
(

7
4

)

, giving

ga,c,γ ≡ c (mod 7).

Hence there is no prime for which the reduction ga,c,γ is useful for proving transversality.

If we assume that 1 ≤ ki ≤
⌈

d−2
2

⌉

, then we can apply Sylvester’s theorem [21] and the
Bertrand-Chebyshev [4] theorem to guarantee a prime for which the reduction is sufficiently
nice. However, as Example 24 shows, this is not enough to be able to prove transversality.

Example 24. Consider the family fa,c,γ from Example 22.

fa,c,γ(z) = a(6z4 − 8(1 + γ)z3 + 12γz2) + c.

Clearly, we must reduce by p = 3 to get

fa,c,γ ≡ a(1 + γ)x3 + c (mod 3).

We compute the Jacobian J(a, c, γ) as

J(a, c, γ) = det





1 1 1
(1 + γ)(fm−1(0))3 (1 + γ)(fn−1(1))3 (1 + γ)(fk−1(γ))3

a(fm−1(0))3 a(fn−1(1))3 a(fk−1(γ))3





= a(1 + γ) det





1 1 1
(fm−1(0))3 (fn−1(1))3 (fk−1(γ))3

(fm−1(0))3 (fn−1(1))3 (fk−1(γ))3



 ,

which is zero as the second and third rows are equal.
18



As the above example shows, we can not prove transversality algebraically with this normal
form. We do, however, wonder if the PCF solutions for the n-critical normal form are p-
adically integral.
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[5] Adrien Douady and John H. Hubbard. A proof of Thurston’s topological characterization of rational

functions. Acta Math., 171(2):263–297, 1993.

[6] Adrien Douady and John H. Hubbard. Étude dynamique des polynômes complexes. Partie I. volume
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