# New characterizations of ruled real hypersurfaces in complex projective space 

Juan de Dios Pérez ${ }^{1}$. David Pérez-López ${ }^{1}$

Accepted: 23 January 2023 / Published online: 10 August 2023
© The Author(s) 2023


#### Abstract

We consider real hypersurfaces $M$ in complex projective space equipped with both the LeviCivita and generalized Tanaka-Webster connections. For any nonnull constant $k$ and any symmetric tensor field of type $(1,1) L$ on $M$, we can define two tensor fields of type (1, 2) on $M, L_{F}^{(k)}$ and $L_{T}^{(k)}$, related to both connections. We study the behaviour of the structure operator $\phi$ with respect to such tensor fields in the particular case of $L=A$, the shape operator of $M$, and obtain some new characterizations of ruled real hypersurfaces in complex projective space.


Keywords g-Tanaka-Webster connection • Complex projective space • Real hypersurface • $k$ th Cho operator • Torsion operator • Ruled real hypersurfaces

Mathematics Subject Classification 53C15 - 53B25

## 1 Introduction

Let $\mathbb{C} P^{m}, m \geq 2$, be the complex projective space endowed with the Kaehlerian structure $(J, g)$, where $g$ is the Fubini-Study metric of constant holomorphic sectional curvature 4. Let $M$ be a connected real hypersurface of $\mathbb{C} P^{m}$ without boundary, $g$ the restriction of the metric on $\mathbb{C} P^{m}$ to $M$ and $\nabla$ the Levi-Civita connection on $M$. Take a locally defined unit normal vector field $N$ on $M$ and let $\xi=-J N$. This is a tangent vector field to $M$ called the structure (or Reeb) vector field on $M$. If $X$ is a vector field on $M$, we write $J X=\phi X+\eta(X) N$, where $\phi X$ denotes the tangent component of $J X$. Then $\eta(X)=g(X, \xi)$, $\phi$ is called the structure tensor on $M$ and $(\phi, \xi, \eta, g)$ is an almost contact metric structure on $M$ induced by the Kaehlerian structure of $\mathbb{C} P^{m}$. The classification of homogeneous real hypersurfaces in $\mathbb{C} P^{m}$ was obtained by Takagi, see [5,19-21]. His classification contains 6 types of real hypersurfaces. Among them we find type $\left(A_{1}\right)$ real hypersurfaces that are

[^0]geodesic hyperspheres of radius $r, 0<r<\frac{\pi}{2}$, and type $\left(A_{2}\right)$ real hypersurfaces that are tubes of radius $r, 0<r<\frac{\pi}{2}$, over totally geodesic complex projective spaces $\mathbb{C} P^{n}, 0<n<m-1$. We will call both types of real hypersurfaces type (A) real hypersurfaces. They are Hopf, that is, the structure vector field is principal, and are the unique real hypersurfaces in $\mathbb{C} P^{m}$ such that $A \phi=\phi A$, see [11].

Ruled real hypersurfaces in $\mathbb{C} P^{m}$ satisfy that the maximal holomorphic distribution on $M, \mathbb{D}$, given at any point by the vectors orthogonal to $\xi$, is integrable and its integral manifolds are totally geodesic $\mathbb{C} P^{m-1}$. Equivalently, $g(A \mathbb{D}, \mathbb{D})=0$. For examples of ruled real hypersurfaces see [6] or [8].

The Tanaka-Webster connection, [22, 24], is the canonical affine connection defined on a non-degenerate, pseudo-Hermitian CR-manifold. As a generalization of this connection, Tanno [23], defined the generalized Tanaka-Webster connection for contact metric manifolds by

$$
\begin{equation*}
\hat{\nabla}_{X} Y=\nabla_{X} Y+\left(\nabla_{X} \eta\right)(Y) \xi-\eta(Y) \nabla_{X} \xi-\eta(X) \phi Y \tag{1.1}
\end{equation*}
$$

for any vector fields $X, Y$ on the manifold.
Using the almost contact metric structure on $M$ and the naturally extended affine connection of Tanno's generalized Tanaka-Webster connection, Cho defined the $k$ th generalized Tanaka-Webster connection $\hat{\nabla}^{(k)}$ for a real hypersurface $M$ in $\mathbb{C} P^{m}$, see [3, 4], by

$$
\begin{equation*}
\hat{\nabla}_{X}^{(k)} Y=\nabla_{X} Y+g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y \tag{1.2}
\end{equation*}
$$

for any X,Y tangent to $M$ where $k$ is a nonzero real number. Then $\hat{\nabla}^{(k)} \eta=0, \hat{\nabla}^{(k)} \xi=0$, $\hat{\nabla}^{(k)} g=0, \hat{\nabla}^{(k)} \phi=0$. In particular, if the shape operator of a real hypersurface satisfies $\phi A+A \phi=2 k \phi$, the $k$ th generalized Tanaka-Webster connection coincides with the TanakaWebster connection.

Here we can consider the tensor field of type $(1,2)$ given by the difference of the connections $F^{(k)}(X, Y)=g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y$, for any $X, Y$ tangent to $M$, see [7] Proposition 7.10, pp. 234-235. We will call this tensor the $k$ th Cho tensor on $M$. Associated to it, for any $X$ tangent to $M$ and any nonnull real number $k$, we can consider the tensor field of type $(1,1) F_{X}^{(k)}$, given by $F_{X}^{(k)} Y=F^{(k)}(X, Y)$ for any $Y \in T M$. This operator will be called the $k$ th Cho operator corresponding to $X$. Notice that if $X \in \mathbb{D}$, the corresponding Cho operator does not depend on $k$ and we simply write $F_{X}$. The torsion of the connection $\hat{\nabla}^{(k)}$ is given by $T^{(k)}(X, Y)=F_{X}^{(k)} Y-F_{Y}^{(k)} X$ for any $X, Y$ tangent to $M$. We define the $k$ th torsion operator associated to $X$ to the operator given by $T_{X}^{(k)} Y=T^{(k)}(X, Y)$, for any $X, Y$ tangent to $M$.

Let $\mathcal{L}$ denote the Lie derivative on $M$. Therefore, $\mathcal{L}_{X} Y=\nabla_{X} Y-\nabla_{Y} X$ for any $X, Y$ tangent to $M$. Now we can define on $M$ a differential operator of first order, associated to the $k$ th generalized Tanaka-Webster connection, given by

$$
\mathcal{L}_{X}^{(k)} Y=\hat{\nabla}_{X}^{(k)} Y-\hat{\nabla}_{Y}^{(k)} X=\mathcal{L}_{X} Y+T_{X}^{(k)} Y
$$

for any $X, Y$ tangent to $M$. We will call it the derivative of Lie type associated to the $k$ th generalized Tanaka-Webster connection.

Let now $L$ be a symmetric tensor of type $(1,1)$ defined on $M$. We can consider then the type $(1,2)$ tensor $L_{F}^{(k)}$ associated to $L$ in the following way:

$$
L_{F}^{(k)}(X, Y)=\left[F_{X}^{(k)}, L\right] Y=F_{X}^{(k)} L Y-L F_{X}^{(k)} Y
$$

for any $X, Y$ tangent to $M$. We also can consider another tensor of type (1, 2), $L_{T}^{(k)}$, associated to $L$, by

$$
L_{T}^{(k)}(X, Y)=\left[T_{X}^{(k)}, L\right] Y=T_{X}^{(k)} L Y-L T_{X}^{(k)} Y
$$

for any $X, Y$ tangent to $M$. Notice that if $X \in \mathbb{D}, L_{F}^{(k)}$ does not depend on $k$. We will write it simply $L_{F}$.

In [15], respectively [12], we proved the nonexistence of real hypersurfaces in $\mathbb{C} P^{m}$, $m \geq 3$, such that, for the tensors of type $(1,2)$ associated to the shape operator, $A_{F}^{(k)}=0$, respectively $A_{T}^{(k)}=0$, for any nonnull real number $k$. Further results on such tensors were obtained in [13, 14].

The purpose of the present paper is to study the behaviour of both tensors with respect to the structure operator $\phi$. We will say that $A_{F}^{(k)}$ is pure with respect to $\phi$ if $A_{F}^{(k)}(\phi X, Y)=$ $A_{F}^{(k)}(X, \phi Y)$, for any $X, Y$ tangent to $M$, Tachibana [18], see also [16, 17]. We will say that $A_{F}^{(k)}$ is $\eta$-pure with respect to $\phi$ if $A_{F}^{(k)}(\phi X, Y)=A_{F}^{(k)}(X, \phi Y)$, for any $X, Y \in \mathbb{D}$. Analogously, we will say that $A_{F}^{(k)}$ is hybrid with respect to $\phi$ if $A_{F}^{(k)}(\phi X, Y)+A_{F}^{(k)}(X, \phi Y)=0$ for any $X, Y$ tangent to $M$, Tachibana [18], and it is $\eta$-hybrid if $A_{F}^{(k)}(\phi X, Y)+A_{F}^{(k)}(X, \phi Y)=0$ for any $X, Y \in \mathbb{D}$. We will prove

Theorem 1.1 Let $M$ be a real hypersurface in $\mathbb{C} P^{m}, m \geq 3$. Then $A_{F}$ is $\eta$-pure with respect to $\phi$ if and only if $M$ is locally congruent to a ruled real hypersurface.

Also we will prove
Theorem 1.2 Let $M$ be a real hypersurface in $\mathbb{C} P^{m}, m \geq 3$. Then $A_{F}$ is $\eta$-hybrid with respect to $\phi$ if and only if $M$ is locally congruent to one of the following real hypersurfaces:

1. a tube of radius $\frac{\pi}{4}$ around a complex submanifold of $\mathbb{C} P^{m}$;
2. a real hypersurface of type ( $A$ );
3. a ruled real hypersurface.

On the other hand, we also have
Theorem 1.3 Let $M$ be a real hypersurface in $\mathbb{C} P^{m}, m \geq 3$. Then $A_{F}(\phi X, Y)=\phi A_{F}(X, Y)$ for any $X, Y \in \mathbb{D}$ if and only if $M$ is locally congruent to a ruled real hypersurface.

Concerning the tensor $A_{T}^{(k)}$, we will prove
Theorem 1.4 There does not exist any real hypersurface in $\mathbb{C} P^{m}, m \geq 3$, such that $A_{T}^{(k)}$ is $\eta$-pure with respect to $\phi$, for any nonnull real number $k$.

Also we will obtain
Theorem 1.5 Let $M$ be a real hypersurface in $\mathbb{C} P^{m}, m \geq 3$, and $k$ a nonnull real number. Then $A_{T}^{(k)}$ is $\eta$-hybrid with respect to $\phi$ if and only if $M$ is locally congruent to a real hypersurface of type ( $A$ ).

As in the case of $A_{F}$, we can prove
Theorem 1.6 Let $M$ be a real hypersurface in $\mathbb{C} P^{m}, m \geq 3$, and $k$ a nonnull real number. Then $A_{T}^{(k)}(\phi X, Y)=\phi A_{T}^{(k)}(X, Y)$, for any $X, Y \in \mathbb{D}$, if and only if $M$ is locally congruent to a ruled real hypersurface.

We also prove
Theorem 1.7 There does not exist any real hypersurface in $\mathbb{C} P^{m}, m \geq 3$, such that $A_{T}^{(k)}(X, \phi Y)=\phi A_{T}^{(k)}(X, Y)$ for any $X, Y \in \mathbb{D}$ and any nonnull real number $k$.

## 2 Preliminaries

Throughout this paper, all manifolds, vector fields, etc., will be considered of class $C^{\infty}$ unless otherwise stated. Let $M$ be a connected real hypersurface in $\mathbb{C} P^{m}, m \geq 2$, without boundary. Let $N$ be a locally defined unit normal vector field on $M$. Let $\nabla$ be the Levi-Civita connection on $M$ and $(J, g)$ the Kaehlerian structure of $\mathbb{C} P^{m}$.

For any vector field $X$ tangent to $M$, we write $J X=\phi X+\eta(X) N$, and $-J N=\xi$. Then $(\phi, \xi, \eta, g)$ is an almost contact metric structure on $M$, see [1]. That is, we have

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.1}
\end{equation*}
$$

for any vectors $X, Y$ tangent to $M$. From (2.1) we obtain

$$
\begin{equation*}
\phi \xi=0, \quad \eta(X)=g(X, \xi) . \tag{2.2}
\end{equation*}
$$

From the parallelism of $J$ we get

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{X} \xi=\phi A X \tag{2.4}
\end{equation*}
$$

for any $X, Y$ tangent to $M$, where $A$ denotes the shape operator of the immersion. As the ambient space has holomorphic sectional curvature 4 , the Codazzi equation is given by

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi \tag{2.5}
\end{equation*}
$$

for any vectors $X, Y$ tangent to $M$. We will call the maximal holomorphic distribution $\mathbb{D}$ on $M$ the following one: at any $p \in M, \mathbb{D}(p)=\left\{X \in T_{p} M \mid g(X, \xi)=0\right\}$. We will say that $M$ is Hopf if $\xi$ is principal, that is, $A \xi=\alpha \xi$ for a certain function $\alpha$ on $M$.

In the sequel we need the following result:
Theorem 2.1 ([9]) If $\xi$ is a principal curvature vector with corresponding principal curvature $\alpha$ and $X \in \mathbb{D}$ is principal with principal curvature $\lambda$, then $2 \lambda-\alpha \neq 0$ and $\phi X$ is principal with principal curvature $\frac{\alpha \lambda+2}{2 \lambda-\alpha}$.

## 3 Proofs of results concerning $A_{F}$

In order to prove Theorem 1.1, we should have $F_{\phi X} A Y-A F_{\phi X} Y=F_{X} A \phi Y-A F_{X} \phi Y$, for any $X, Y \in \mathbb{D}$. This yields

$$
\begin{align*}
& g(\phi A \phi X, A Y) \xi-\eta(A Y) \phi A \phi X-g(\phi A \phi X, Y) A \xi \\
& \quad=g(\phi A X, A \phi Y) \xi-\eta(A \phi Y) \phi A X-g(A X, Y) A \xi \tag{3.1}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. If $M$ is Hopf with $A \xi=\alpha \xi$, the scalar product of (3.1) and $\xi$ gives $g(\phi A \phi X, A Y)-\alpha g(\phi A \phi X, Y)=g(\phi A X, A \phi Y)-\alpha g(\phi A X, Y)$ for any $X, Y \in \mathbb{D}$. Let
us suppose that $X \in \mathbb{D}$ satisfies $A X=\lambda X$. Then $A \phi X=\mu \phi X, \mu=\frac{\alpha \lambda+2}{2 \lambda-\alpha}$, and we obtain $-\lambda \mu+\alpha \mu=\lambda \mu-\alpha \lambda$. That is, $2 \lambda \mu=\alpha(\mu+\lambda)$. This implies $\frac{2 \alpha \lambda^{2}+4 \lambda}{2 \lambda-\alpha}=\alpha\left(\frac{\alpha \lambda+2}{2 \lambda-\alpha}+\lambda\right)=$ $\alpha\left(\frac{2(1+\lambda)^{2}}{2 \lambda-\alpha}\right)$. Thus, $\alpha \lambda^{2}+2 \lambda=\alpha \lambda^{2}+\alpha$, and so, $\lambda=\frac{\alpha}{2}$. As $2 \lambda \mu=\alpha(\mu+\lambda)$, we get $\alpha \mu=\alpha(\mu+\lambda)$. Then $\alpha \lambda=\frac{\alpha^{2}}{2}=0$, that is, $\alpha=0$ and also $\lambda=0$, a contradiction with the fact $2 \lambda-\alpha \neq 0$.

This means that $M$ must be non-Hopf. Therefore, locally we can write $A \xi=\alpha \xi+\beta U$, $U$ being a unit vector field in $\mathbb{D}, \alpha$ and $\beta$ functions on $M$ and $\beta \neq 0$. We also define $\mathbb{D}_{U}$ as the orthogonal complementary distribution in $\mathbb{D}$ to the one spanned by $U$ and $\phi U$. With this in mind (3.1) becomes

$$
\begin{align*}
& g(\phi A \phi X, A Y) \xi-\beta g(Y, U) \phi A \phi X-g(\phi A \phi X, Y) A \xi \\
& \quad=g(\phi A X, A \phi Y) \xi-\beta g(\phi Y, U) \phi A X-g(A X, Y) A \xi \tag{3.2}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. The scalar product of (3.2) and $\phi U$ gives $-\beta g(Y, U) g(A \phi X, U)=$ $-\beta g(\phi Y, U) g(A X, U)$ for any $X, Y \in \mathbb{D}$. Taking $Y=U$, we obtain $-\beta g(A U, \phi X)=0$ for any $X \in \mathbb{D}$. As we suppose $\beta \neq 0$ and changing $X$ by $\phi X$, we have $g(A U, X)=0$ for any $X \in \mathbb{D}$. This means that

$$
\begin{equation*}
A U=\beta \xi \tag{3.3}
\end{equation*}
$$

The scalar product of (3.2) and $U$ yields $-\beta g(Y, U) g(\phi A \phi X, U)-\beta g(\phi A \phi X, Y)=$ $-\beta g(\phi Y, U) g(\phi A X, U)-\beta g(A X, Y)$, for any $X, Y \in \mathbb{D}$. As $\beta \neq 0$, we have

$$
\begin{equation*}
g(Y, U) g(A \phi U, \phi X)+g(A \phi Y, \phi X)=g(\phi Y, U) g(A \phi U, X)-g(A X, Y) \tag{3.4}
\end{equation*}
$$

for any $X, Y \in \mathbb{D}$. If we take $X=U$ in (3.4), it follows $2 g(A \phi U, \phi X)=-g(A U, X)$ for any $X \in \mathbb{D}$. From (3.3), changing $X$ by $\phi X$, we obtain $g(A \phi U, X)=0$ for any $X \in \mathbb{D}$. Therefore

$$
\begin{equation*}
A \phi U=0 . \tag{3.5}
\end{equation*}
$$

Now the scalar product of (3.2) and $Z \in \mathbb{D}_{U}$ implies $-\beta g(Y, U) g(\phi A \phi X, Z)=$ $-\beta g(\phi Y, U) g(\phi A X, Z)$, for any $X, Y \in \mathbb{D}, Z \in \mathbb{D}_{U}$. If $Y=\phi U$, we obtain $\beta g(\phi A X, Z)$ $=0$ for any $X \in \mathbb{D}, Z \in \mathbb{D}_{U}$. If we change $Z$ by $\phi Z$ and bear in mind that $\beta \neq 0$, it follows $g(A Z, X)=0$ for any $Z \in \mathbb{D}_{U}, X \in \mathbb{D}$. Therefore,

$$
\begin{equation*}
A Z=0 \tag{3.6}
\end{equation*}
$$

for any $Z \in \mathbb{D}_{U}$. From (3.3), (3.5) and (3.6), $M$ is locally congruent to a ruled real hypersurface. The converse is trivial and we have finished the proof of Theorem 1.1.

Now if $A_{F}$ is $\eta$-hybrid, we have

$$
\begin{align*}
& g(\phi A \phi X, A Y) \xi-\eta(A Y) \phi A \phi X-g(\phi A \phi X) A \xi+g(\phi A X, A \phi Y) \xi \\
& \quad-\eta(A \phi Y) \phi A X-g(A X, Y) A \xi=0 \tag{3.7}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. Let us suppose that $M$ is Hopf and write $A \xi=\alpha \xi$. If we take the scalar product of (3.7) and $\xi$, it follows $g(\phi A \phi X, A Y)-\alpha g(\phi A \phi X, Y)+g(\phi A X, A \phi Y)-$ $\alpha g(A X, Y)=0$, for any $X, Y \in \mathbb{D}$. This means that $A \phi A \phi X-\alpha \phi A \phi X-\phi A \phi A X-\alpha A X=$ 0 for any $X \in \mathbb{D}$. If we take $X \in \mathbb{D}$ such that $A X=\lambda X$, as $A \phi X=\mu \phi X$, we get $-\lambda \mu+\alpha \mu+\lambda \mu-\alpha \lambda=0$. That is, $\alpha(\mu-\lambda)=0$. Thus, either $\alpha=0$, and by Cecil and Ryan [2] we have (1) in Theorem 1.2, or $\mu=\lambda$. This means that $A \phi=\phi A$ and in this case we have (2) in Theorem 1.2.

If $M$ is non-Hopf, following the same steps as in Theorem 1.1 we obtain (3) in Theorem 1.2 , finishing its proof.

If we suppose that $M$ satisfies the condition in Theorem 1.3, we must have $F_{\phi X} A Y-$ $A F_{\phi X} Y=\phi F_{X} A Y-\phi A F_{X} Y$ for any $X, Y \in \mathbb{D}$. This yields

$$
\begin{align*}
& g(\phi A \phi X, A Y) \xi-\eta(A Y) \phi A \phi X-g(\phi A \phi X, Y) A \xi=-\eta(A Y) \phi^{2} A X \\
& \quad-g(\phi A X, Y) \phi A \xi \tag{3.8}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. If we suppose that $M$ is Hopf, the scalar product of (3.8) and $\xi$ gives $g(\phi A \phi X, A Y)-\alpha g(\phi A \phi X, Y)=0$. Therefore, $A \phi A \phi X-\alpha \phi A \phi X=0$, for any $X \in \mathbb{D}$. If we suppose that $X \in \mathbb{D}$ satisfies $A X=\lambda X$ we obtain $\mu(\alpha-\lambda)=0$. Therefore, either $\mu=0$ and then $\alpha \neq 0$ and $\lambda=-\frac{2}{\alpha}$, or if $\mu \neq 0, \alpha=\lambda$ and then $\mu=\frac{\alpha^{2}+2}{\alpha}$. Moreover, all principal curvatures are constant and, by Kimura [5], $M$ must be locally congruent to a real hypersurface appearing among the six types in Takagi's list. Looking at such types, none has our principal curvatures, Takagi [20], proving that $M$ must be non-Hopf.

We write as above $A \xi=\alpha \xi+\beta U$, with the same conditions. Then (3.8) becomes

$$
\begin{align*}
& g(A \phi A \phi X, Y) \xi-\beta g(Y, U) \phi A \phi X-g(\phi A \phi X, Y) A \xi \\
& \quad=-\beta g(Y, U) \phi^{2} A X-\beta g(\phi A X, Y) \phi U \tag{3.9}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. The scalar product of (3.9) and $\phi U$ gives, bearing in mind that $\beta \neq 0$,

$$
\begin{equation*}
g(Y, U) g(A U, \phi X)=g(Y, U) g(\phi A X, U)-g(\phi A X, Y), \tag{3.10}
\end{equation*}
$$

for any $X, Y \in \mathbb{D}$. If $X=Y=U$, we get $g(A U, \phi U)=-2 g(A U, \phi U)$. Thus,

$$
\begin{equation*}
g(A U, \phi U)=0 \tag{3.11}
\end{equation*}
$$

If we take $Y=U, X \in \mathbb{D}$ and orthogonal to $U$ in (3.10), we have $g(\phi A U, X)=$ $2 g(A \phi U, X)$ for such an $X$. From (3.11) the same is true for $X=U$. Therefore, $2 A \phi U-\phi A U$ has no component in $\mathbb{D}$. As its scalar product with $\xi$ also vanishes, we get

$$
\begin{equation*}
2 A \phi U=\phi A U \tag{3.12}
\end{equation*}
$$

If we take $Y=\phi U, X \in \mathbb{D}$ in (3.10), it follows $g(A X, U)=0$ for any $X \in \mathbb{D}$. Thus,

$$
\begin{equation*}
A U=\beta \xi \tag{3.13}
\end{equation*}
$$

and, from (3.11),

$$
\begin{equation*}
A \phi U=0 . \tag{3.14}
\end{equation*}
$$

The scalar product of (3.9) and $U$, bearing in mind (3.13) and (3.14), gives $g(\phi A \phi X$, $Y)=g(Y, U) g\left(\phi^{2} A X, U\right)=-g(Y, U) g(A X, U)=0$, for any $X \in \mathbb{D}$. Taking $\phi X \in \mathbb{D}_{U}$ instead of $X$, we obtain $\phi A X=0$. Applying $\phi$, we get

$$
\begin{equation*}
A X=0 \tag{3.15}
\end{equation*}
$$

for any $X \in \mathbb{D}_{U}$. From (3.13), (3.14) and (3.15), $M$ must be locally congruent to a ruled real hypersurface and we have finished the proof of Theorem 1.3.

Remark 3.1 With proofs similar to the proof of Theorem 1.3, we can obtain other characterizations of ruled real hypersurfaces in $\mathbb{C} P^{m}, m \geq 3$, if we consider any of the following conditions:

1. $A_{F}(\phi X, Y)+\phi A_{F}(X, Y)=0$, for any $X, Y \in \mathbb{D}$;
2. $A_{F}(X, \phi Y)=\phi A_{F}(X, Y)$, for any $X, Y \in \mathbb{D}$;
3. $A_{F}(X, \phi Y)+\phi A_{F}(X, Y)=0$, for any $X, Y \in \mathbb{D}$.

## 4 Results concerning $A_{T}^{(k)}$

If we suppose that $A_{T}^{(k)}$ is $\eta$-pure with respect to $\phi$, we will have $F_{\phi X} A Y-F_{A Y}^{(k)} \phi X-$ $A F_{\phi X} Y+A F_{Y} \phi X=F_{X} A \phi Y-F_{A \phi Y}^{(k)} X-A F_{X} \phi Y+A F_{\phi Y} X$ for any $X, Y \in \mathbb{D}$. This yields

$$
\begin{align*}
& g(\phi A \phi X, A Y) \xi-\eta(A Y) \phi A \phi X-g\left(A^{2} Y, X\right) \xi-k \eta(A Y) X-g(\phi A \phi X, Y) A \xi \\
& \quad+g(A Y, X) A \xi=g(\phi A X, A \phi Y) \xi-\eta(A \phi Y) \phi A X-g\left(\phi A^{2} \phi Y, X\right) \xi \\
& \quad+k \eta(A \phi Y) \phi X-g(A X, Y) A \xi+g(\phi A \phi X) A \xi \tag{4.1}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. Let us suppose that $M$ is Hopf with $A \xi=\alpha \xi$. Then (4.1) becomes $g(\phi A \phi X, Y) \xi-g\left(A^{2} Y, X\right) \xi-\alpha g(\phi A \phi X, Y) \xi+\alpha g(A Y, X) \xi=g(\phi A X, A \phi Y) \xi-$ $g\left(\phi A^{2} \phi Y, X\right) \xi-\alpha g(A X, Y) \xi+\alpha g(\phi A \phi Y, X) \xi$, for any $X, Y \in \mathbb{D}$. Let us suppose that $X \in \mathbb{D}$ satisfies $A X=\lambda X$. Then $A \phi X=\mu \phi X$ and from the last equation we obtain $-\lambda \mu-\lambda^{2}+2 \alpha \mu+2 \alpha \lambda=\lambda \mu+\mu^{2}$. That is $(\mu+\lambda)^{2}-2 \alpha(\mu+\lambda)=0$. Thus, $(\mu+\lambda)(\mu+\lambda-2 \alpha)=0$. If $\mu+\lambda=0$, as $\mu=\frac{\alpha \lambda+2}{2 \lambda-\alpha}$, we get $2 \lambda^{2}+2=0$, which is impossible. Therefore $\mu+\lambda=2 \alpha$ and the value of $\mu$ yields $\lambda^{2}-2 \alpha \lambda+1+\alpha^{2}=0$. This equation has no real solutions and this implies that our real hypersurface must be non-Hopf.

As in the previous section, we write locally $A \xi=\alpha \xi+\beta U$, with the same conditions, and also make the following computations locally. The scalar product of (4.1) and $\phi U$ gives $-\eta(A Y) g(A \phi X, U)-k \eta(A Y) g(X, \phi U)=-\eta(A \phi Y) g(A X, U)+k \eta(A \phi Y) g(X, U)$ for any $X, Y \in \mathbb{D}$. That is, bearing in mind that $\beta \neq 0$,

$$
\begin{equation*}
g(Y, U) g(A \phi X, U)+k g(Y, U) g(X, \phi U)=g(\phi Y, U) g(A X, U)-k g(\phi Y, U) g(X, U) \tag{4.2}
\end{equation*}
$$

for any $X, Y \in \mathbb{D}$. Take $Y=\phi U$ in (4.2) to obtain $g(A X, U)-k g(X, U)=0$, for any $X \in \mathbb{D}$. Therefore,

$$
\begin{equation*}
A U=\beta \xi+k U \tag{4.3}
\end{equation*}
$$

Now the scalar product of (4.1) and $U$ yields

$$
\begin{align*}
& -g(Y, U) g(\phi A \phi X, U)-k g(Y, U) g(X, U)-g(\phi A \phi X, Y)+g(A Y, X) \\
& \quad=-g(\phi Y, U) g(\phi A X, U)+k g(\phi Y, U) g(\phi X, U)-g(A X, Y)+g(\phi A \phi Y, X) \tag{4.4}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. Taking $Y=U$ in (4.4) we obtain

$$
\begin{equation*}
-k g(X, U)-3 g(\phi A \phi X, U)+2 g(A U, X)=0 \tag{4.5}
\end{equation*}
$$

for any $X \in \mathbb{D}$. Taking $X \in \mathbb{D}_{U}$ and changing $X$ by $\phi X$ in (4.5) we get $g(A \phi U, X)=0$ for any $X \in \mathbb{D}_{U}$. If $X=U$ in (4.5), we have $-k+3 g(A \phi U, \phi U)+2 k=0$. Bearing in mind (4.3) we have obtained

$$
\begin{equation*}
A \phi U=-\frac{k}{3} \phi U . \tag{4.6}
\end{equation*}
$$

Moreover, the scalar product of (4.1) and $\phi Z \in \mathbb{D}_{U}$ implies

$$
\begin{equation*}
-g(Y, U) g(A \phi X, Z)-k g(Y, U) g(X, \phi Z)=-g(\phi Y, U) g(A X, Z)+k g(\phi Y, U) g(X, Z) \tag{4.7}
\end{equation*}
$$

for any $X, Y \in \mathbb{D}, Z \in \mathbb{D}_{U}$. Taking $Y=\phi U$ in (4.7) we obtain $g(A Z, X)-k g(Z, X)=0$ for any $Z \in \mathbb{D}_{U}, X \in \mathbb{D}$, and this yields

$$
\begin{equation*}
A Z=k Z \tag{4.8}
\end{equation*}
$$

for any $Z \in \mathbb{D}_{U}$. Take $Z \in \mathbb{D}_{U}$. Then $A Z=k Z$ and $A \phi Z=k \phi Z$. From the Codazzi equation, $\nabla_{\phi Z}(k Z)-A \nabla_{\phi Z} Z-\nabla_{Z}(k \phi Z)+A \nabla_{Z} \phi Z=2 \xi$. Its scalar product with $\xi$ gives $-k g(Z, \phi A \phi Z)-g\left(\nabla_{\phi Z} Z, \alpha \xi+\beta U\right)+k g(\phi Z, \phi A Z)+g\left(\nabla_{Z} \phi Z, \alpha \xi+\beta U\right)=2$. Then, $\beta g([Z, \phi X], U)+2 k^{2}+\alpha g(Z, \phi A \phi Z)-\alpha g(\phi Z, \phi A Z)=2$. Therefore

$$
\begin{equation*}
g([Z, \phi Z], U)=\frac{2-2 k^{2}+2 \alpha k}{\beta} \tag{4.9}
\end{equation*}
$$

Moreover, its scalar product with $U$ implies $-k g([Z, \phi Z], U)-g\left(\nabla_{\phi Z} Z, \beta \xi+k U\right)+$ $g\left(\nabla_{Z} \phi Z, \beta \xi+k U\right)=0$. This gives $\beta g(Z, \phi A \phi Z)-\beta g(\phi Z, \phi A Z)=0$ or $2 \beta k=0$, which is impossible and proves Theorem 1.4.

Suppose now that $A_{T}^{(k)}$ is $\eta$-hybrid with respect to $\phi$. Then we have

$$
\begin{align*}
& g(\phi A \phi X, A Y) \xi-\eta(A Y) \phi A \phi X-g\left(A^{2} Y, X\right) \xi-k \eta(A Y) X+g(\phi A X, A \phi Y) \xi \\
& \quad-\eta(A \phi Y) \phi A X-g\left(\phi A^{2} \phi Y, X\right) \xi+k \eta(A \phi Y) \phi X=0 \tag{4.10}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. Let us suppose that $M$ is Hopf. Then (4.10) gives $g(A \phi A \phi X, Y)-$ $g\left(A^{2} X, Y\right)-g(\phi A \phi A X, Y)-g\left(\phi A^{2} \phi X, Y\right)=0$, for any $X, Y \in \mathbb{D}$. Then $A \phi A \phi X-$ $A^{2} X-\phi A \phi A X-\phi A^{2} \phi X=0$ for any $X \in \mathbb{D}$. If $X \in \mathbb{D}$ satisfies $A X=\lambda X$, we obtain $-\lambda \mu-\lambda^{2}+\lambda \mu+\mu^{2}=0$. Therefore, $\lambda^{2}=\mu^{2}$. As in the previous theorem, $\lambda+\mu=0$ gives a contradiction. This means that $\lambda=\mu$ and $\phi A=A \phi$. This yields that $M$ must be locally congruent to a real hypersurface of type $(A)$. The converse is immediate.

Suppose then that $M$ is non-Hopf and $A \xi=\alpha \xi+\beta U$. Taking the scalar product of (4.10) and $\phi U$ we have

$$
\begin{align*}
& -g(Y, U) g(A \phi X, U)-k g(Y, U) g(X, \phi U)-g(\phi Y, U) g(A X, U) \\
& \quad+k g(\phi Y, U) g(X, U)=0 \tag{4.11}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. If $Y=\phi U$ in (4.11), we obtain $g(A U, X)-k g(U, X)=0$ for any $X \in \mathbb{D}$ and this yields

$$
\begin{equation*}
A U=\beta \xi+k U \tag{4.12}
\end{equation*}
$$

Following the above proof step by step, we can also see that $A \phi U=k \phi U$ and $A Z=k Z$, for any $Z \in \mathbb{D}_{U}$. If we apply again the Codazzi equation to $Z$ and $\phi Z, Z \in \mathbb{D}_{U}$, we obtain $k \beta=0$, which is impossible and finishes the proof of Theorem 1.5.

The condition in Theorem 1.6 implies

$$
\begin{align*}
& g(\phi A \phi X, A Y) \xi-\eta(A Y) \phi A \phi X-g\left(A^{2} Y, X\right) \xi-g\left(A^{2} Y, X\right) \xi \\
& \quad-g(\phi A \phi X, Y) A \xi+g(A X, Y) A \xi=-\eta(A Y) \phi^{2} A X-g(\phi A X, Y) \phi A \xi \\
& \quad+g(\phi A Y, X) \phi A \xi \tag{4.13}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. If $M$ is Hopf, (4.13) yields $g(A \phi A \phi X, Y) \xi-g\left(A^{2} X, Y\right) \xi-$ $\alpha g(\phi A \phi X, Y) \xi-\alpha g(A X, Y) \xi=0$ for any $X, Y \in \mathbb{D}$. Its scalar product with $\xi$ shows that $A \phi A \phi X-A^{2} X-\alpha \phi A \phi X+\alpha A X=0$, for any $X \in \mathbb{D}$ : If $X \in \mathbb{D}$ satisfies $A X=\lambda X$, $A \phi X=\mu \phi X$ and we obtain $(\alpha-\lambda)(\mu+\lambda)=0$. As we saw before, $\lambda+\mu \neq 0$. Therefore, $\lambda=\alpha$ and as $\mu=\frac{\alpha \lambda+2}{2 \lambda-\alpha}$, we get $\mu=\frac{\alpha^{2}+2}{\alpha}$. Thus, $M$ has two distinct constant principal curvatures. From $[2,10] M$ must be locally congruent to a geodesic hypersphere. In this case
$M$ has only a principal curvature on $\mathbb{D}$. That means that $\alpha=\frac{\alpha^{2}+2}{\alpha}$, which is impossible. Therefore $M$ must be non-Hopf and as above, we write $A \xi=\alpha \xi+\beta U$. In this case (4.13) looks as follows:

$$
\begin{align*}
& g(\phi A \phi X, A Y) \xi-\beta g(Y, U) \phi A \phi X)-g\left(A^{2} Y, X\right) \xi-g(\phi A \phi X) A \xi \\
& \quad+g(A X, Y) A \xi=-\beta g(Y, U) \phi^{2} A X-\beta g(\phi A X, Y) \phi U+\beta g(\phi A Y, X) \phi U \tag{4.14}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. Bearing in mind that $\beta \neq 0$, the scalar product of (4.14) and $\phi U$ gives $-g(Y, U) g(A \phi X, U)=-g(Y, U) g(\phi A X, U)-g(\phi A X, Y)+g(\phi A Y, X)$ for any $X, Y \in \mathbb{D}$. Taking $Y=U$, we get $g(\phi A U, X)=-g(\phi A X, U)-g(\phi A X, U)+g(\phi A U, X)$. Therefore, $g(A \phi U, X)=0$ for any $X \in \mathbb{D}$, and

$$
\begin{equation*}
A \phi U=0 . \tag{4.15}
\end{equation*}
$$

Taking $Y=\phi U$ in the last equation, we get $0=-g(A X, U)+g(\phi A \phi U, X)$, for any $X \in \mathbb{D}$. Bearing in mind (4.15), this implies $g(A U, X)=0$ for any $X \in \mathbb{D}$ and so

$$
\begin{equation*}
A U=\beta \xi \tag{4.16}
\end{equation*}
$$

From (4.15) and (4.16), $\mathbb{D}_{U}$ is $A$-invariant. If in the equality used to find (4.15) and (4.16) we take $Y \in \mathbb{D}_{U}$, we obtain $0=g(\phi A Y, X)+g(A \phi Y, X)$ for any $Y \in \mathbb{D}_{U}, X \in \mathbb{D}$. Then, $\phi A Y+A \phi Y=0$ for any $Y \in \mathbb{D}_{U}$. If we suppose that $A Y=\lambda Y$, we get $A \phi Y=-\lambda \phi Y$.

The scalar product of (4.14) and $Z \in \mathbb{D}_{U}$ gives

$$
\begin{equation*}
-g(Y, U) g(\phi A \phi X, Z)=g(Y, U) g(A X, Z) \tag{4.17}
\end{equation*}
$$

for any $X, Y \in \mathbb{D}, Z \in \mathbb{D}_{U}$. Taking $Y=U, X=Z$, we obtain $g(A \phi Z, \phi Z)=g(A Z, Z)$. This yields $\lambda=-\lambda$. Therefore $\lambda=0$ and $M$ is locally congruent to a ruled real hypersurface. This finishes the proof of Theorem 1.6.

The condition in Theorem 1.7 yields

$$
\begin{align*}
& g(\phi A X, A \phi Y) \xi-\eta(A \phi Y) \phi A X-g\left(\phi A^{2} \phi Y, X\right) \xi+k \eta(A \phi Y) \phi X \\
& \quad-g(A X, Y) A \xi+g(\phi A \phi Y, X) A \xi=-\eta(A Y) \phi^{2} A X-k \eta(A Y) X \\
& \quad-g(\phi A X, Y) \phi A \xi+g(\phi A Y, X) \phi A \xi \tag{4.18}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. If we suppose that $M$ is Hopf with $A \xi=\alpha \xi$, (4.18) becomes

$$
\begin{equation*}
g(\phi A X, A \phi Y) \xi-g\left(\phi A^{2} \phi Y, X\right) \xi-\alpha g(A X, Y) \xi+\alpha g(\phi A \phi Y, X) \xi=0 \tag{4.19}
\end{equation*}
$$

for any $X, Y \in \mathbb{D}$. This gives $-\phi A \phi A X-\phi A^{2} \phi X-\alpha A X+\alpha \phi A \phi X=0$ for any $X \in \mathbb{D}$. If $X \in \mathbb{D}$ satisfies $A X=\lambda X$, we obtain $(\mu-\alpha)(\lambda+\mu)=0$. As in previous theorems, this case leads to a contradiction.

Thus, $M$ must be non-Hopf and, as usual, we write $A \xi=\alpha \xi+\beta U$. In this case (4.18) implies

$$
\begin{align*}
& g(\phi A X, A \phi Y) \xi-\beta g(\phi Y, U) \phi A X-g\left(\phi A^{2} \phi Y, X\right) \xi+k \beta g(\phi Y, U) \phi X \\
& \quad-g(A X, Y) A \xi+g(\phi A \phi Y, X) A \xi=\beta g(Y, U) A X-\beta^{2} g(Y, U) g(X, U) \xi \\
& \quad-k \beta g(Y, U) X-\beta g(\phi A X, Y) \phi U+\beta g(\phi A Y, X) \phi U \tag{4.20}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. The scalar product of (4.20) and $\phi U$, bearing in mind that $\beta \neq 0$, gives

$$
\begin{align*}
& -g(\phi Y, U) g(A X, U)+k g(\phi Y, U) g(X, U)=g(Y, U) g(A \phi U, X) \\
& -k g(Y, U) g(\phi U, X)-g(\phi A X, Y)+g(\phi A Y, X) \tag{4.21}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. If we take $Y \in \mathbb{D}_{U}$ in (4.21), we obtain

$$
\begin{equation*}
g(A X, \phi Y)-g(A \phi X, Y)=0 \tag{4.22}
\end{equation*}
$$

for any $X \in \mathbb{D}, Y \in \mathbb{D}_{U}$.
Taking $X \in \mathbb{D}_{U}$ in (4.21), we infer

$$
\begin{equation*}
-g(\phi Y, U) g(A U, X)=g(Y, U) g(A \phi U, X)+g(A \phi Y, X)+g(\phi A Y, X) \tag{4.23}
\end{equation*}
$$

for any $X \in \mathbb{D}_{U}, Y \in \mathbb{D}$.
Take $X=U$ and $\phi Y$ instead of $Y$ in (4.22) to have

$$
\begin{equation*}
g(A U, Y)+g(A \phi U, \phi Y)=0 \tag{4.24}
\end{equation*}
$$

for any $Y \in \mathbb{D}_{U}$. Take $Y=\phi U$ in (4.23). Then

$$
\begin{equation*}
g(A U, X)+g(A \phi U, \phi X)=-g(A U, X) \tag{4.25}
\end{equation*}
$$

for any $X \in \mathbb{D}_{U}$. From (4.24) and (4.25), we derive

$$
\begin{equation*}
g(A U, X)=g(A \phi U, X)=0 \tag{4.26}
\end{equation*}
$$

for any $X \in \mathbb{D}_{U}$.
The scalar product of (4.20) and $U$ yields

$$
\begin{align*}
& g(\phi Y, U) g(A \phi U, X)+k g(\phi Y, U) g(\phi X, U)-g(A X, Y)+g(\phi A \phi Y, X) \\
& \quad=g(Y, U) g(A X, U)-k g(Y, U) g(X, U) \tag{4.27}
\end{align*}
$$

for any $X, Y \in \mathbb{D}$. In (4.27) we take $Y=U$ and obtain $2 g(A U, X)+g(A \phi U, \phi X)=$ $k g(U, X)$ for any $X \in \mathbb{D}$. If $X=\phi U$ we get

$$
\begin{equation*}
g(A U, \phi U)=0 \tag{4.28}
\end{equation*}
$$

and if $X=U$, we have

$$
\begin{equation*}
2 g(A U, U)+g(A \phi U, \phi U)=k . \tag{4.29}
\end{equation*}
$$

Taking $Y=\phi U$ in (4.27), we obtain $2 g(A \phi U, X)+g(\phi A U, X)=k g(\phi U, X)$. If $X=\phi U$, we conclude

$$
\begin{equation*}
2 g(A \phi U, \phi U)+g(A U, U)=k \tag{4.30}
\end{equation*}
$$

From (4.29) and (4.30),

$$
\begin{equation*}
g(A U, U)=g(A \phi U, \phi U)=\frac{k}{3} . \tag{4.31}
\end{equation*}
$$

From (4.26), (4.28) and (4.31), we obtain

$$
\begin{gather*}
A U=\beta \xi+\frac{k}{3} U \\
A \phi U=\frac{k}{3} \phi U . \tag{4.32}
\end{gather*}
$$

The scalar product of (4.20) and $\xi$ yields

$$
\begin{equation*}
g(\phi A X, A \phi Y)-g\left(\phi A^{2} \phi Y, X\right)-\alpha g(A X, Y)+\alpha g(\phi A \phi Y, X)=0 \tag{4.33}
\end{equation*}
$$

for any $X, Y \in \mathbb{D}$. Taking $X=U$ in (4.33), we obtain $g(\phi A U, A \phi Y)+g(A \phi Y, A \phi U)-$ $\alpha g(A U, Y)-\alpha g(A \phi U, \phi Y)=0$ for any $Y \in \mathbb{D}$. From(4.32) we get $\left(\frac{2 k^{2}}{9}-\frac{2 k \alpha}{3}\right) g(U, Y)=$ 0 for any $Y \in \mathbb{D}$. Taking $U=Y$,

$$
\begin{equation*}
k=3 \alpha \tag{4.34}
\end{equation*}
$$

If we take $X=\phi U$ in (4.33), we have $g(\phi A \phi U, A \phi Y)-g(A U, A \phi Y)-\frac{k \alpha}{3} g(\phi U, Y)+$ $\alpha g(A \phi Y, U)=0$ for any $Y \in \mathbb{D}$. From (4.32) and (4.34) it follows $\beta^{2} g(U, \phi Y)=0$ for any $Y \in \mathbb{D}$. If $Y=\phi U$, then $\beta=0$, which is impossible and this finishes the proof of Theorem 1.7.

Remark 4.1 With proofs similar to the ones appearing in this section, we could also obtain non-existence results for real hypersurfaces in $\mathbb{C} P^{m}, m \geq 3$, satisfying any of the following conditions:

1. $A_{T}^{(k)}(\phi X, Y)+\phi A_{T}^{(k)}(X, Y)=0$ for any $X, Y \in \mathbb{D}$ and any nonnull real number $k$;
2. $A_{T}^{(k)}(X, \phi Y)+\phi A_{T}^{(k)}(X, Y)=0$ for any $X, Y \in \mathbb{D}$ and any nonnull real number $k$.

Acknowledgements This work was supported by MICINN Project PID 2020-116126GB-100 and Project PY20-01391 from Junta de Andalucía.The authors thank the referee for valuable suggestions that have improved the paper.

Funding Funding for open access publishing: Universidad de Granada/CBUA
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

## References

1. D.E. Blair, Riemannian Geometry of contact and symplectic manifolds, in Progress in Mathematics vol. 203, Birkhauser Boston Inc. Boston (2002)
2. T.E. Cecil, P.J. Ryan, Focal sets and real hypersurfaces in complex projective space. Trans. Am. Math. Soc. 269, 481-499 (1982)
3. J.T. Cho, CR-structures on real hypersurfaces of a complex space form. Publ. Math. Debrecen 54, 473-487 (1999)
4. J.T. Cho, Pseudo-Einstein CR-structures on real hypersurfaces in a complex space form. Hokkaido Math. J. 37, 1-17 (2008)
5. M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space. Trans. A.M.S. 296, 137-149 (1986)
6. M. Kimura, Sectional curvatures of holomorphic planes of a real hypersurface in $P^{n}(\mathbb{C})$. Math. Ann. 276, 487-497 (1987)
7. S. Kobayashi, K. Nomizu, Foundations on Differential Geometry, vol. 1 (Interscience, New York, 1963)
8. M. Lohnherr, H. Reckziegel, On ruled real hypersurfaces in complex space forms. Geom. Dedicata 74, 267-286 (1999)
9. Y. Maeda, On real hypersurfaces of a complex projective space. J. Math. Soc. Jpn. 28, 529-540 (1976)
10. R. Niebergall, P.J. Ryan, Real hypersurfaces in complex space forms, in Tight and Taut Submanifolds, vol. 32 (MSRI Publications, Berkeley, 1997), pp. 233-305
11. M. Okumura, On some real hypersurfaces of a complex projective space. Trans. A.M.S. 212, 355-364 (1975)
12. J.D. Pérez, Comparing Lie derivatives on real hypersurfaces in complex projective spaces. Mediterr. J. Math. 13, 2161-2169 (2016)
13. J.D. Pérez, D. Pérez-López, New results on derivatives of the shape operator of a real hypersurface in a complex projective space. Turk. J. Math. 45, 1801-1808 (2021)
14. J.D. Pérez, D. Pérez-López, Lie derivatives of the shape operator of a real hypersurface in a complex projective space. Mediterr. J. Math. 18, 207 (2021)
15. J.D. Pérez, Y.J. Suh, Generalized Tanaka-Webster and covariant derivatives on a real hypersurface in a complex projective space. Monatsh. Math. 177, 637-647 (2015)
16. A. Salimov, Tensor Operators and Their Applications, Mathematics Research Development Series (Nova Science Publishers Inc., New York, 2013)
17. A. Salimov, S. Azizova, Some remarks concerning anti-Hermitian metrics. Mediterr. J. Math. 16, 84 (2019)
18. S. Tachibana, Analytic tensor and its generalization. Tôhoku Math. J. 12, 208-221 (1960)
19. R. Takagi, On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math. 10, 495-506 (1973)
20. R. Takagi, Real hypersurfaces in complex projective space with constant principal curvatures. J. Math. Soc. Jpn. 27, 43-53 (1975)
21. R. Takagi, Real hypersurfaces in complex projective space with constant principal curvatures II. J. Math. Soc. Jpn. 27, 507-516 (1975)
22. N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Jpn. J. Math. 2, 131-190 (1976)
23. S. Tanno, Variational problems on contact Riemennian manifolds. Trans. A.M.S. 314, 349-379 (1989)
24. S.M. Webster, Pseudohermitian structures on a real hypersurface. J. Differ. Geom. 13, 25-41 (1978)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


[^0]:    Juan de Dios Pérez
    jdperez@ugr.es
    David Pérez-López
    davidp1109@correo.ugr.es
    1 Departamento de Geometria y Topologia, Universidad de Granada, 18071 Granada, Spain

