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ON THE NUMBER OF WEIGHTED ZERO-SUM SUBSEQUENCES

A. LEMOS, B.K. MORIYA, A.O. MOURA AND A.T. SILVA∗

Abstract. Let G be a finite additive abelian group with exponent dkn, d, n > 1, and k a positive integer.
For S a sequence over G and A = {1, 2, . . . , dkn− 1} \ {dkn/di : i ∈ [1, k]}, we investigate the lower bound
of the number NA,0(S), which denotes the number of A-weighted zero-sum subsequences of S. In particular,

we prove that NA,0(S) ≥ 2|S|−DA(G)+1, where DA(G) is the A-weighted Davenport Constant. We also
characterize the structures of the extremal sequences for which equality holds for some groups.

1. Introduction

Let G be a finite additive abelian group with exponent n and S be a sequence overG. The enumeration
of subsequences with certain prescribed properties is a classical topic in Combinatorial Number Theory going
back to Erdős, Ginzburg and Ziv (see [8, 14, 15]) who proved that 2n− 1 is the smallest integer, such that
every sequence S over a cyclic group Cn has a subsequence of length n with zero-sum. This raises the
problem of determining the smallest positive integer l, such that every sequence S = g1 · · · gl has a nonempty
zero-sum subsequence. Such an integer l is called the Davenport constant of G (see [7, 22]), denoted by D(G),
which is still unknown for wide class of groups. In an analogous manner, for a nonempty subset A ⊂ Z,
Adhikari et. al. defined, see [1], an A-weighted Davenport constant, denoted by DA(G), to be a smallest
t ∈ N such that every sequence S over G of length t has nonempty A-weighted zero-sum subsequence.

For any g of G, let NA,g(S) (when A = {1} we write Ng(S)) denote the number of weighted subsequences
T =

∏

i∈I gi of S = g1 · · · gl such that
∑

i∈I aigi = g, where I ⊆ {1, . . . , l} is a nonempty subset and ai ∈ A.

In 1969, Olson, see [23], proved that N0(S) ≥ 2|S|−D(G)+1 for every sequence S over G of length |S| ≥ D(G).
Subsequently, several authors, including [3, 4, 5, 9, 10, 11, 12, 13, 16, 17, 18, 19] obtained a huge variety of
results on the number of subsequences with prescribed properties. In 2011, Chang et al., see [6], found the
lower bound of Ng(S) for any arbitrary g and classify the extremal sequences for |G| odd. Recently, Lemos
et al., see [20], found the lower bound of NA,0(S) for A = {1, . . . , n− 1} and classify the extremal sequences

for |G| odd. Here we prove that NA,0(S) ≥ 2|S|−DA(G)+1, when A = {1, 2, . . . , dkn−1}\{dkn/di : i ∈ [1, k]},
where k is a positive integer. Besides, we classify the sequences such that NA,0(S) = 2|S|−DA(G)+1, where
G = H ⊕ Cr

dkn
, with n odd, exp(H) | dk, gcd(d, n) ≤ d− 1 and dkn ≥ 6.

2. Notations and terminologies

In this section, we will introduce some notations and terminologies. Notations and terminologies
are in accordance with [20]. Let N0 be the set of non-negative integers. For integers a, b ∈ N0, we define
[a, b] = {x ∈ N0 : a ≤ x ≤ b}.

For a sequence

S =

m
∏

i=1

gi ∈ F (G) ,

where F (G) is the free abelian monoid with basisG, a subsequence T = gi1···gik of S, with IT = {i1, . . . , ik} ⊆
[1,m] is denoted by T |S; we identify two subsequences S1 and S2 if Is1 = Is2 . Given subsequences S1, . . . , Sr

of S, we define gcd(S1, . . . , Sr) to be the sequence indexed by IS1
∩ · · · ∩ ISr

. We say that two subsequences
S1 and S2 are disjoint if (S1, S2) = λ, where λ refers to the empty sequence. If S1 and S2 are disjoint, then
we denote by S1S2 the subsequence with set index Is1 ∪ Is2 ; if S1|S2; we denote by S2S

−1
1 the subsequence

with set index Is2 \ Is1 . Moreover, we define
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(i) |S| = m the length of S.
(ii) an A-weighted sum is a sum of the form σa (S) =

∑m

i=1 aigi, with fixed a = a1 · · · am ∈ F(A), where
F (A) is the free abelian monoid with basis A. When A = [1, n − 1], we call S a fully weighted
sequence.

(iii)
∑

A (S) =
{
∑

i∈I aigi : ∅ 6= I ⊆ [1,m] and ai ∈ A
}

, a set of nonempty A-weighted subsums of S.

According to the above definitions, we adopt the convention that σa (λ) = 0, for any a ∈ F(A). For
convenience, we define

∑•
A (S) =

∑

A (S) ∪ {0}.
The sequence S is called

(i) an A-weighted zero-sum free sequence if 0 /∈
∑

A (S) and
(ii) an A-weighted zero-sum sequence if σa (S) = 0 for some a ∈ F(A).

When A = {1}, we call S zero-sum free sequence and zero-sum sequence, respectively. For an element g ∈ G,
let

NA,g (S) =

∣

∣

∣

∣

∣

{

I ⊆ [1,m] :
∑

i∈I

aigi = g, ai ∈ A

}∣

∣

∣

∣

∣

denote the number of subsequences T of S with σa (T ) = g for some a ∈ F(A).

Definition 2.1. Let n be the exponent of G, g ∈ G, A ⊆ Z\ {kn : k ∈ Z} and S ∈ F (G). We say S is
g-complete sequence with weight in A if NA,g (S) ≥ 2|S|−DA(G)+1. We call S an extremal g-complete sequence

with respect to A ifNA,g (S) = 2|S|−DA(G)+1. Let us denote CA,g (F (G)) as the set of all g-complete sequences
with respect to A and ECA,g (F (G)) as the set of all extremal g-complete sequences with respect to A.

Definition 2.2. Let n be the exponent of G and A ⊆ Z\ {kn : k ∈ Z}. We say G is a 0-complete group with
respect to A if F (G) = CA,0 (F (G)).

When A = {1}, Olson [23] proved that all finite abelian groups are 0-complete with respect to A. Chang
et al. [6] proved, that, when A = {1}, if g ∈

∑•
A (S), then S ∈ CA,g (F (G)) and, if S is extremal h-complete

sequence with respect to A for some h ∈ G, then S is g-complete sequence with respect to A for all g ∈ G.
Moreover, they classified the sequences in ECA,0 (F (G)) when G is a group of odd order.

Remark 2.3. Take an A-weighted zero-sum free sequence U over G with |U | = DA(G) − 1. Thus, for
S = U0|S|−DA(G)+1 and for any g ∈

∑•
A (U), we have S ∈ CA,g (F (G)) and S ∈ ECA,0 (F (G)).

We write a finite abelian group G as direct sum G = H ⊕ Cr
n , where Cr

n denotes r copies of the cyclic
group of order n denoted by Cn and H = Cn1

⊕ · · · ⊕ Cnt
with 1 < n1|n2| · · · |nt|n = exp(G) and nt < n.

We have some auxiliary results, which are as follows.

Lemma 2.4. [Theorem 5.2 [21]] Let G = H ⊕ Cr
n, where H = Cn1

⊕ · · · ⊕ Cnt
with 1 < n1|n2| · · · |nt|n =

exp(G) and nt < n. Then, DA(G) = r + 1.

A subsequence T of S is called an extremal A-weighted zero-sum free subsequence if |T | = DA(G)− 1 and
T is A-weighted zero-sum free.

It is worth mentioning the following important result for the fully weighted 0-complete sequences, which
was proved in [20].

Theorem 2.5. All finite abelian group G with exponent n is 0-complete with respect to A = [1, n− 1].

In [20] the authors conjectured that Theorem 2.5 holds for any A. In the Section 3, we proved that
such a theorem is true for G = H ⊕ Cr

dkn
, with n odd, exp(H)|dk, gcd(d, n) < d − 1, dkn < 6 and A =

{1, 2, . . . , dkn− 1} \ {dkn/di : i ∈ [1, k]}, where k is a positive integer.

3. Lower bound

We start this section by presenting an important theorem.

Theorem 3.1 (Adhikari et al.,Theorem 4.1, item (i) [2]). Let G be a finite and nontrivial abelian group and
let S ∈ F(G) be a sequence. If |S| ≥ log2 |G| + 1 and G is not an elementary 2-group, then S contains a
proper, nontrivial {±1}-weighted zero-sum subsequence.
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To find the lower bound for NA,0(S), with S ∈ F(G), we used the value of DA(G).

Theorem 3.2. Let G = H ⊕Cr
dkn

, where exp(H) | dk, gcd(d, n) ≤ d− 1 and dkn ≥ 6, where k is a positive

integer. Then DA(G) = r + 1, for A = {1, 2, . . . , dkn− 1} \ {dkn/di : i ∈ [1, k]}.

Proof. Since the canonical sequence
∏r

i=1 ei ∈ F(Cr
dkn

) does not have zero-sum subsequence with respect

to weights in A, DA(G) ≥ r + 1. Let S = (hi, gi)
r+1
i=1 ∈ F(G). Consider a canonical homomorphism

φ : G → Cr
n. Let A′ = {1, 2, . . . , n − 1}. Since DA′(Cr

n) = r + 1, by Lemma 2.4, we get a non-empty

subsequence T = (gik)
t
k=1 of S such that

∑t

j=1 ajφ(gij ) = 0 ∈ Cr
n, where aj ∈ A′, ∀j. Hence, using the

fact that exp(H) | dk we have,
∑t

j=1 d
kaj(hij , gij ) = 0 ∈ G (Note that φ(g) ≡ g (mod n), which as a result

gives, dkφ(g) ≡ dk · g (mod dk · n)). Since gcd(d, n) ≤ d− 1, it follows that dkaj ∈ A, ∀j, which proves the
theorem. �

The hypothesis dkn ≥ 6 in Theorem 3.2 is necessary, as on the contrary we have the following proposition.

Proposition 3.3. If G = Cs
2 ⊕ Cr

4 , then DA(G) = 2r + s+ 1 for A = {1, 3} = {1,−1}.

Proof. This upper bound is a immediate consequence of Theorem 3.1. For the lower bound we observe
that the sequence S =

∏s+r
i=1 ei

∏s+r
i=s+1 2ei does not have {1,−1}-weighted zero-sum subsequece, where

{e1, . . . , es+r} is the canonical base of G. �

Remark 3.4. Note that, if B ⊂ A then DA(G) ≤ DB(G).

As a consequence of Theorem 3.2, we get the following corollary.

Corollary 3.5. Let G = H ⊕Cr
dkn

, where exp(H) | dk, gcd(d, n) ≤ d− 1 and dkn ≥ 6, where k is a positive

integer. Then DA(G) = r + 1, for all A containing B = {1, 2, . . . , dkn− 1} \ {dkn/di : i ∈ [1, k]}.

One can easily see that Theorem 3.2 does not hold true if exp(H) ∤ dk, in fact, the next proposition
provides infinitely many examples such that DA\{n}(G) 6= DA(G).

Proposition 3.6. Let G = L ⊕ Cn ⊕ Cr
2n, where n > 1 an odd number and L = Cn1

⊕ · · · ⊕ Cnt
with

n1|n2| · · · |nt|n. Then, DA\{n}(G) ≥ r + 2.

Proof. Since n is an odd number one can easily prove that (et+1 + et+2)(et+1 + net+2) is zero-sum free with
respect to weights in A \ {n} and which in turn gives rise to a A \ {n}-weighted zero-sum free sequence

(et+1 + et+2)(et+1 + net+2)
∏r+1

i=3 et+i. �

Theorem 3.7 below provides one more case for which Conjecture 4.3 of [20] holds.

Theorem 3.7. Let G = H ⊕Cr
dkn

, where exp(H) | dk, gcd(d, n) ≤ d− 1 and dkn ≥ 6, where k is a positive

integer. Then G is 0-complete with respect to A = {1, 2, . . . , dkn− 1} \ {dkn/dj : j ∈ [1, k]}.

Proof. Let S ∈ F(G) be a sequence. According to Corollary 3.5, we can write DA(G) = r + 1. If |S| ≤ r,
then NA,0(S) ≥ 1 ≥ 2|S|−r. If |S| = r + 1, then there is an A-weighted zero-sum nonempty subsequence T

of S. Thus, NA,0(S) ≥ 2 = 2|S|−r.
Suppose now r + 1 < |S|. Let S = TW ∈ F(G) be a sequence such that T is a maximal A-weighted

zero-sum free with |T | ≤ r or T = λ.
Then, for each element g|W , we have two possibilities:
a) If o(g) ∈ A, then g is an A-weighted zero-sum subsequence.
b) If o(g) 6∈ A for j = 1, . . . k, then Tg has an A-weighted zero-sum subsequence with g being one of its

elements.
In both possibilities, there is V |Tg, such that V is an A-weighted zero-sum subsequence whose coefficient

of g is ag ∈ A. Then, agg is an A-weighted sum of some subsequence of T :

agg =
∑

i∈Ig
aigi; Ig ⊂ IT and ai ∈ A.

Thus, for every nonempty subsequence U of W, we have

dk
∑

g|U
agg =

∑

g|U
dk
∑

i∈Ig
aigi =

∑

i∈IV ′

dkbigi; IV ′ ⊂ IT ,

3



with dkbi (mod dkn) ∈ A or dkbi ≡ 0 (mod dkn), i. e., the A-weighted sum dk
∑

g|Uagg is an A-weighted

sum of some subsequence V ′ = VU of T . Therefore, UVU is an A-weighted zero-sum subsequence of S.
Notice that if VU = λ, then U is an A-weighted zero-sum subsequence. Therefore, if we include the empty
subsequence, we obtain a minimum of 2|W | = 2|S|−|T | distinct A-weighted zero-sum subsequences of S. This
proves that NA,0(S) ≥ 2|S|−r. �

4. Characterization of extremal 0-complete sequences

We shall start by mentioning one of the main results obtained in the case which exp(G) is an odd positive
integer (see Theorem 4.2 of [20]).

Theorem 4.1. Let G be a finite abelian group with exp(G) = n an odd number. If S ∈ ECA,0 (F (G)), with
A = [1, n − 1], 0 ∤ S and o(g) = n for all g|S, then r ≤ |S| ≤ 2r and there is T =

∏r
i=1 gi an extremal

A-weighted zero-sum free, such that

(4.1) S = T

k
∏

j=1

hj,

where k ∈ [1, r], bjhj =
∑

i∈Ij
aigi with ai, bj ∈ A, Ij ⊂ [1, r] and Ij ’s are pairwise disjoint (Ij = ∅ for all j

implies that S = T ).

In this section, our aim is to prove a variant of the result above in case G = H ⊕Cr
dkn

be a finite abelian

group, where k is a positive integer, exp(H) | dk, n is an odd number, gcd(d, n) ≤ d − 1, dkn ≥ 6 and
A = {1, 2, . . . , dkn− 1} \ {dkn/dj : j ∈ [1, k]}, which will be established in Theorem 4.4.

First, we consider a modification of the Proposition 4.1 (see [20]), which will be the main tool to prove
the Theorem 4.4.

As NA,0 (S) = 2NA,0

(

S0−1
)

and NA,0 (S) = 2NA,0

(

Sg−1
)

, if o(g) ∈ A, it suffices to consider sequences
S, such that 0 ∤ S and o(g) 6∈ A for all g|S.

Proposition 4.2. Let G = H ⊕ Cr
dkn

be a finite abelian group where exp(H) | dk,

gcd(d, n) ≤ d − 1 and dkn ≥ 6, where k is a positive integer. If S ∈ ECA,0 (F (G \ {0})), with
A = {1, 2, . . . , dkn− 1} \ {dkn/dj : j ∈ [1, k]} and o(g) 6∈ A for all g|S, then r ≤ |S| and there is T =

∏r

i=1 gi
an extremal A-weighted zero-sum free such that

(4.2) S = T

ν
∏

j=1

hj,

where ν ∈ [1, r], bjhj =
∑

i∈Ij
aigi with ai, bj ∈ A, Ij ⊂ [1, r].

The proposition above is a mere consequence of DA(G) = r + 1.
Let us see below an example where we show an extreme sequence with respect to NA,0(S) for a group of

order 72.

Example 4.3. Let S = e2e3(2e2)(2e3) be a sequence over G = C2 ⊕ C2
6 , where {e1, e2, e3} is the canon-

ical basis of G. Note that, DA(G) = 3 where A = {1, 2, 4, 5}, |S| = 4 = 2(DA(G) − 1), and NA,0(S) =

2|S|−DA(G)+1 = 22 = 4. In this case, T = e2e3 is an extremal A-weighted zero-sum free.

The example above motivates us to establish the theorem below.

Theorem 4.4. Let G = H ⊕ Cr
dkn

be a finite abelian group where n is an odd number,

exp(H) | dk, gcd(d, n) ≤ d − 1 and dkn ≥ 6, where k ∈ N. If S ∈ ECA,0 (F (G \ {0})), with
A = {1, 2, . . . , dkn − 1} \ {dkn/dj : j ∈ [1, k]} and o(g) 6∈ A for all g|S, then r ≤ |S| ≤ 2r and there
is T =

∏r
i=1 gi an extremal A-weighted zero-sum free such that

(4.3) S = T

ν
∏

j=1

hj,

where ν ∈ [1, r], bjhj =
∑

i∈Ij
aigi with ai, bj ∈ A, Ij ⊂ [1, r] and Ij ’s are pairwise disjoint (Ij = ∅ for all j

implies that S = T ).
4



Proof. Let S be a sequence over G \ {0}, o(g) 6∈ A for all g|S and NA,0 (S) = 2|S|−DA(G)+1 = 2|S|−r. We
know, by Proposition 4.2, that S = T

∏ν

j=1 hj where ν ∈ N0, bjhj =
∑

i∈Ij
aigi with ai, bj ∈ A, Ij ⊂ [1, r]

and T =
∏r

i=1 gi is an extremal A-weighted zero-sum free.
Now, we will prove that the Ij ’s are pairwise disjoint. If |S| = DA (G)− 1 = r, then NA,0(S) = 1, Ij = ∅

for all j ∈ [1, ν] and S = T . Suppose that |S| = DA (G) = r + 1 then, Ij 6= ∅ for only one j, NA,0(S) = 2
and S = Thj. Finally, suppose S = T

∏ν

j=1 hj with ν ≥ 2 and Ij1 ∩ Ij2 6= ∅ for some j1, j2 ∈ [1, ν], with
j1 6= j2 and where

aj1hj1 =
∑

i∈Ij1

aigi and aj2hj2 =
∑

i∈Ij2

bigi

with aj1 , aj2 , ai, bi ∈ A, since DA(G) = r + 1.

By hypothesis we have
(

ν
0

)

+
(

ν
1

)

+ · · ·+
(

ν
ν

)

= 2ν = 2|S|−r A-weighted zero-sum subsequences of S, which
can be obtained as in the proof of Theorem 3.7. Since Ij1 ∩ Ij2 6= ∅, we have Ix, Iy ⊂ Ij1 ∪ Ij2 such that

(4.4) dk(aj1hj1 + aj2hj2) = dk

(

∑

i∈Ix

cigi

)

(mod dkn)

and

(4.5) dk(aj1hj1 − aj2hj2) = dk





∑

i∈Iy

digi



 (mod dkn).

Since dkaj1 , d
kaj2 (mod dkn) ∈ A one can easily verify that dkci ≡ 0 (mod dkn) or dkci (mod dkn) ∈ A

and dkdi ≡ 0 (mod dkn) or dkdi (mod dkn) ∈ A. If dkci ≡ 0 (mod dkn), for all i ∈ Ix and dkdi ≡ 0
(mod dkn) for all i ∈ Iy , then dk(aj1hj1 + aj2hj2) = 0 and dk(aj1hj1 − aj2hj2) = 0. But, this implies that
2dkaj2hj2 = 0, and hence n|aj2 (o(hj2 ) = dkn and n is odd), which is a contradiction since dkaj2 6≡ 0
(mod dkn). Therefore, Ix 6= ∅ or Iy 6= ∅.

If Ix 6= Iy, then there is a new A-weighted zero-sum subsequence of S and therefore NA,0 (S) > 2|S|−r,
which is a contradiction. Now, suppose that Ix = Iy. Consider gl|

∏

i∈Ij1∩Ij2
gi (observe that dkcl 6≡ 0

(mod dkn) and dkdl 6≡ 0 (mod dkn) in (4.4) and (4.5)) and take T ′ =
(

∏r+1
i=1 gi

)

g−1
l , where gr+1 = hj2 .

If T ′ is not an extremal A-weighted zero-sum free, then there is Īj2 ⊂ [1, r + 1] \ {l} such that zj2hj2 =
∑

i∈Īj2
sigi, i.e., we can obtain a new A-weighted zero-sum subsequence of S and thus NA,0 (S) > 2|S|−r,

which is a contradiction. If T ′ is an extremal A-weighted zero-sum free, then by Corollary 3.5 we have Īj1 ⊂
[1, r + 1] \ {l} such that vj1hj1 =

∑

i∈Īj1
uigi, i.e., we can obtain a new A-weighted zero-sum subsequence of

S. Therefore, we have NA,0 (S) > 2|S|−r again, which is a contradiction.
We observe that if ν > r, then there are Ij1 and Ij2 with j1 6= j2, such that Ij1 ∩ Ij2 6= ∅. Therefore,

NA,0 (S) > 2|S|−r. Thus, r ≤ |S| ≤ 2r. �

The example below shows a case that is not covered by hypotheses of Theorem 4.4. We believe that it is
possible to obtain a similar theorem that covers this case.

Example 4.5. Let S = e1e2e3(2e2)(2e3)(3e2)(3e3) be a sequence over G = C2 ⊕ C2
4 , where {e1, e2, e3} is

the canonical basis of G. Note that |S| = 7 = DA(G) + 1 and NA,0(S) = 2|S|−DA(G)+1 = 22 = 4, where
DA(G) = 6, with A = {1, 3}, by Proposition 3.3. In this case, T = e1e2e3(2e2)(2e3) is an extremal A-weighted
zero-sum free.
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