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ON THE NUMBER OF WEIGHTED ZERO-SUM SUBSEQUENCES
A. LEMOS, B.K. MORIYA, A.O. MOURA AND A.T. SILVA*

ABSTRACT. Let G be a finite additive abelian group with exponent d*n,d,n > 1, and k a positive integer.
For S a sequence over G and A = {1,2,...,d*n — 1} \ {d*n/d’ : i € [1,k]}, we investigate the lower bound
of the number N4 o(S), which denotes the number of A-weighted zero-sum subsequences of S. In particular,
we prove that Na o(S) > 2151=DA(G)+1 | where D4(Q) is the A-weighted Davenport Constant. We also
characterize the structures of the extremal sequences for which equality holds for some groups.

1. INTRODUCTION

Let G be a finite additive abelian group with exponent n and .S be a sequence over G. The enumeration
of subsequences with certain prescribed properties is a classical topic in Combinatorial Number Theory going
back to Erdds, Ginzburg and Ziv (see [8 [14] [15]) who proved that 2n — 1 is the smallest integer, such that
every sequence S over a cyclic group C,, has a subsequence of length n with zero-sum. This raises the
problem of determining the smallest positive integer [, such that every sequence S = ¢ - - - g; has a nonempty
zero-sum subsequence. Such an integer [ is called the Davenport constant of G (see [7,22]), denoted by D(G),
which is still unknown for wide class of groups. In an analogous manner, for a nonempty subset A C Z,
Adhikari et. al. defined, see [I], an A-weighted Davenport constant, denoted by D4 (G), to be a smallest
t € N such that every sequence S over G of length ¢ has nonempty A-weighted zero-sum subsequence.

For any g of G, let N 4(S) (when A = {1} we write Ny(S)) denote the number of weighted subsequences
T =lic; 9i of S=g1---gi such that ), ; a;g; = g, where I C {1,...,1} is a nonempty subset and a; € A.
In 1969, Olson, see [23], proved that No(S) > 2I5I=P(&)+1 for every sequence S over G of length |S| > D(G).
Subsequently, several authors, including [3} [4] [5], 9], 10, 111 12| 13| 16} 17, 18] 19] obtained a huge variety of
results on the number of subsequences with prescribed properties. In 2011, Chang et al., see [6], found the
lower bound of Ny(S) for any arbitrary g and classify the extremal sequences for |G| odd. Recently, Lemos
et al., see [20], found the lower bound of N4 ¢(S) for A = {1,...,n — 1} and classify the extremal sequences
for |G| odd. Here we prove that N o(S) > 21517Pa(@+! swhen A = {1,2,...,d*n—1}\{d*n/d" : i € [1,k]},
where k is a positive integer. Besides, we classify the sequences such that N o(S) = 2/51=Pa(@+1 where
G=H®a®Cy,, , withn odd, exp(H) | d*, ged(d,n) < d— 1 and d*n > 6.

2. NOTATIONS AND TERMINOLOGIES

In this section, we will introduce some notations and terminologies. Notations and terminologies
are in accordance with [20]. Let Ny be the set of non-negative integers. For integers a,b € Ny, we define
[a,0] = {x € Nyg: a <z < b}.

For a sequence

S:ﬁgief(G),

i=1
where F (G) is the free abelian monoid with basis G, a subsequence T = g;,...g;, of S, with It = {i1,... i} C
[1,m] is denoted by T'|.S; we identify two subsequences Sy and Sy if I, = I,,. Given subsequences S, ..., S,

of S, we define ged(Sy,...,S;) to be the sequence indexed by Is, N---NIg, . We say that two subsequences
S1 and Sy are disjoint if (S1,S2) = A, where A refers to the empty sequence. If S; and Ss are disjoint, then
we denote by 5152 the subsequence with set index I, U I,; if S1|S2; we denote by 5’25’1_1 the subsequence
with set index I, \ Is,. Moreover, we define
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(i) |S| = m the length of S.

(ii) an A-weighted sum is a sum of the form ¢® (S) = Y_" | a;g;, with fixed a = ay - - - a,, € F(A), where
F (A) is the free abelian monoid with basis A. When A = [1,n — 1], we call S a fully weighted
sequence.

(i) D4 (S) ={>icsaigi: 0 #1 C [1,m] and a; € A}, a set of nonempty A-weighted subsums of S.
According to the above definitions, we adopt the convention that ¢® (\) = 0, for any a € F(A). For
convenience, we define Y% (S) = >, (S) U {0}.

The sequence S is called

(i) an A-weighted zero-sum free sequence if 0 ¢ > , (S) and
(ii) an A-weighted zero-sum sequence if 0@ (S) = 0 for some a € F(A).

When A = {1}, we call S zero-sum free sequence and zero-sum sequence, respectively. For an element g € G,

let

{Ig [1,m)] : Zaigi =g, a; € AH

iel

denote the number of subsequences T of S with 0@ (T') = g for some a € F(A).
Definition 2.1. Let n be the exponent of G, g € G, A C Z\{kn:k € Z} and S € F(G). We say S is
g-complete sequence with weight in Aif Ny 4(S) > 2ISI=Pa(G)+1 We call S an extremal g-complete sequence
with respect to Aif Na 4 (S) = 21517Pa(G)+1 Tet us denote C'a 4 (F (G)) as the set of all g-complete sequences
with respect to A and EC4 4 (F (G)) as the set of all extremal g-complete sequences with respect to A.

Nag (S) =

Definition 2.2. Let n be the exponent of G and A C Z\ {kn : k € Z}. We say G is a 0-complete group with
respect to A if F (G) = Cao (F (G)).

When A = {1}, Olson [23] proved that all finite abelian groups are 0-complete with respect to A. Chang
et al. [6] proved, that, when A = {1}, if g € >_% (S), then S € Ca 4 (F (G)) and, if S is extremal h-complete
sequence with respect to A for some h € G, then S is g-complete sequence with respect to A for all g € G.
Moreover, they classified the sequences in ECy o (F (G)) when G is a group of odd order.

Remark 2.3. Take an A-weighted zero-sum free sequence U over G with |U| = D4(G) — 1. Thus, for
S = U0lISI=Pa(@F gng for any g € 3% (U), we have S € Ca 4 (F(G)) and S € EC 4 (F (G)).

We write a finite abelian group G as direct sum G = H @ C), , where C], denotes r copies of the cyclic
group of order n denoted by C,, and H = Cy,, @& -+ ® C,,, with 1 < ny|nz|---|ni|n = exp(G) and ny < n.
We have some auxiliary results, which are as follows.

Lemma 2.4. [Theorem 5.2 [21]] Let G = H & C?, where H = Cpy @ -+ & Cy, with 1 < nq|nz|---|n¢|n =
exp(G) and ny <mn. Then, Ds(G) =r+ 1.

A subsequence T of S is called an extremal A-weighted zero-sum free subsequence if |T| = Da(G) — 1 and
T is A-weighted zero-sum free.

It is worth mentioning the following important result for the fully weighted O-complete sequences, which
was proved in [20].

Theorem 2.5. All finite abelian group G with exponent n is 0-complete with respect to A = [1,n — 1].

In [20] the authors conjectured that Theorem holds for any A. In the Section Bl we proved that
such a theorem is true for G = H & C", . with n odd, exp(H)|d*,ged(d,n) < d—1, d*n < 6 and A =
{1,2,...,d*n — 1} \ {d*n/d’ : i € [1,k]}, where k is a positive integer.

3. LOWER BOUND

We start this section by presenting an important theorem.

Theorem 3.1 (Adhikari et al.,Theorem 4.1, item (i) [2]). Let G be a finite and nontrivial abelian group and
let S € F(G) be a sequence. If |S| > log, |G| + 1 and G is not an elementary 2-group, then S contains a
proper, nontrivial {£1}-weighted zero-sum subsequence.
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To find the lower bound for N4 ¢(S), with S € F(G), we used the value of D4(G).

Theorem 3.2. Let G = H & C7,, , where exp(H) | d*, ged(d,n) < d—1 and d*n > 6, where k is a positive
integer. Then Da(G) =7+ 1, for A= {1,2,...,d*n —1}\ {d*n/d’ : i € [1,k]}.

Proof. Since the canonical sequence [[/_, e; € F (Cl,,) does not have zero-sum subsequence with respect
to weights in A, Da(G) > 7+ 1. Let S = (hi,g:)/21 € F(G). Consider a canonical homomorphism
¢ : G — Cl. Let A’ = {1,2,...,n — 1}. Since Dy (Cl) = r + 1, by Lemma [Z7] we get a non-empty
subsequence T = (g;, );_; of S such that E;Zl ajp(gi;) = 0 € C}, where a; € A’,Vj. Hence, using the
fact that exp(H) | d* we have, Z;Zl d*a;(hi,,g;,) =0 € G (Note that ¢(g) = g (mod n), which as a result
gives, d*¢(g) = d* - g (mod d* - n)). Since ged(d,n) < d — 1, it follows that d*a; € A, Vj, which proves the
theorem. 0

The hypothesis d*n > 6 in Theorem [3.2]is necessary, as on the contrary we have the following proposition.
Proposition 3.3. If G = C5 @ C}, then Da(G) =2r +s+1 for A={1,3} = {1,-1}.

Proof. This upper bound is a immediate consequence of Theorem [BIl For the lower bound we observe
that the sequence S = [[;F] e;[[;77. | 2¢; does not have {1, —1}-weighted zero-sum subsequece, where
{e1,...,estr} is the canonical base of G. O

Remark 3.4. Note that, if B C A then Da(G) < Dp(G).
As a consequence of Theorem [3.2] we get the following corollary.

Corollary 3.5. Let G = H® CY,., , where exp(H) | d*, ged(d,n) < d—1 and d*n > 6, where k is a positive
integer. Then Da(G) =1 + 1, for all A containing B = {1,2,...,d*n —1}\ {d*n/d" : i € [1,k]}.

One can easily see that Theorem does not hold true if exp(H) t d*, in fact, the next proposition
provides infinitely many examples such that D s\ (1 (G) # Da(G).

Proposition 3.6. Let G = L ® C,, ® C3,,, where n > 1 an odd number and L = C,, ® --- ® Cy, with
n1|n2| e |nt|n Then, DA\{n} (G) Z r-+ 2.

Proof. Since n is an odd number one can easily prove that (e;41 + et42)(et41 + nest2) is zero-sum free with
respect to weights in A\ {n} and which in turn gives rise to a A\ {n}-weighted zero-sum free sequence

(er41 + err2)(err1 + nevi2) [Ty evts. O
Theorem B.7] below provides one more case for which Conjecture 4.3 of [20] holds.

Theorem 3.7. Let G = H © C,, , where exp(H) | d*, ged(d,n) < d—1 and d*n > 6, where k is a positive
integer. Then G is 0-complete with respect to A = {1,2,...,d*n —1}\ {d*n/d’ : j € [1,k]}.

Proof. Let S € F(G) be a sequence. According to Corollary B.5, we can write Da(G) = r + 1. If |S| < r,
then N4 (S) > 1> 25177 If |S| = r + 1, then there is an A-weighted zero-sum nonempty subsequence T
of S. Thus, Nao(S) >2 = 2/5I-7.

Suppose now r + 1 < |S]. Let S = TW € F(G) be a sequence such that 7' is a maximal A-weighted
zero-sum free with |T'| <ror T = A.

Then, for each element g|W, we have two possibilities:

a) If o(g) € A, then g is an A-weighted zero-sum subsequence.

b) If o(g) € A for j = 1,...k, then Tg has an A-weighted zero-sum subsequence with g being one of its
elements.

In both possibilities, there is V|Tg, such that V is an A-weighted zero-sum subsequence whose coefficient
of g is ay € A. Then, a4g is an A-weighted sum of some subsequence of T":

agg = Zielgaigi;lg C It and a; € A.

Thus, for every nonempty subsequence U of W, we have

" = k s = kb T,
d Zg‘Uagg = ZglUd Zielgalgz Zielv/d bigi; Iy C I,
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with d*b; (mod d¥n) € A or d*b; = 0 (mod d*n), i. e., the A-weighted sum dkzgwagg is an A-weighted
sum of some subsequence V' = Vi of T. Therefore, UV} is an A-weighted zero-sum subsequence of S.
Notice that if Viy = A, then U is an A-weighted zero-sum subsequence. Therefore, if we include the empty

subsequence, we obtain a minimum of 2/W! = 2I5I=IT1 distinct A-weighted zero-sum subsequences of S. This
proves that N4 (S) > 2/51=7, O

4. CHARACTERIZATION OF EXTREMAL 0-COMPLETE SEQUENCES

We shall start by mentioning one of the main results obtained in the case which exp(G) is an odd positive
integer (see Theorem 4.2 of [20]).

Theorem 4.1. Let G be a finite abelian group with exp(G) = n an odd number. If S € EC4 o (F (GQ)), with
A=1n-1],0¢S and o(g) = n for all g|S, then r < |S| < 2r and there is T = [[._; g; an extremal
A-weighted zero-sum free, such that

k
(4.1) S=T]] h
j=1

where k € [1,7], bjhj =3_,c; aigi with a;,b; € A, I; C [L,r] and I;’s are pairwise disjoint (I; =0 for all j
implies that S =1T).

In this section, our aim is to prove a variant of the result above in case G = H ® CJ,,, be a finite abelian
group, where k is a positive integer, exp(H) | d¥, n is an odd number, ged(d,n) < d — 1,d*n > 6 and
A=1{1,2,...,d*n —1}\ {d*n/d? : j € [1,k]}, which will be established in Theorem .7l

First, we consider a modification of the Proposition 4.1 (see [20]), which will be the main tool to prove
the Theorem [4.4]

As Nao(S) =2Nay (S’O_l) and N4 (S)=2N4p (S’g_l), if o(g) € A, it suffices to consider sequences

S, such that 01 S and o(g) & A for all g|S.
Proposition 4.2. Let G = H & C%,, be a finite abelian group where exp(H) | d¥,
ged(d,n) < d — 1 and d*n > 6, where k is a positive integer. If S € ECao(F(G\{0})), with
A={1,2,....d*n—1}\{d"n/d’ : j € [1,k]} and o(g) & A for all g|S, then r < |S| and there is T = [],_, g;
an extremal A-weighted zero-sum free such that

(4.2) S=T]]h
j=1

where v € [1,7], bjhj = .oy aigi with a;, by € A, I; C [1,7].

The proposition above is a mere consequence of D4(G) = r + 1.

Let us see below an example where we show an extreme sequence with respect to N4 () for a group of
order 72.

Example 4.3. Let S = eze3(2e2)(2e3) be a sequence over G = Co & CZ, where {e1,ea,e3} is the canon-
ical basis of G. Note that, Da(G) = 3 where A = {1,2,4,5}, |S] = 4 = 2(Da(G) — 1), and N4 o(S) =
2181=DPa(G)+1 = 92 — 4. In this case, T = eses is an extremal A-weighted zero-sum free.

The example above motivates us to establish the theorem below.

Theorem 4.4. Let G = H & CJ,  be a finite abelian group where n is an odd number,
exp(H) | d*, ged(d,n) < d — 1 and d*n > 6, where k € N. If S € ECao(F(G\{0})), with
A= {1,2,...,d*n — 1} \ {d*n/d’ : j € [1,k]} and o(g) € A for all g|S, then r < |S| < 2r and there
is T =1T1._; gi an extremal A-weighted zero-sum free such that

(4.3) S=T]] h.
j=1
where v € [1,7], bjhj =3 ,c; aigi with ai,bj € A, I; C [1,r] and I;’s are pairwise disjoint (Ij =0 for all j

implies that S =T).
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Proof. Let S be a sequence over G \ {0}, o(g) € A for all g|S and N4 (S) = 2/5I7Pa(@)+1 = 21817 e
know, by Proposition 2] that S = TH;’Zl h; where v € Ny, bjh; = Zielj a;g; with a;,b; € A, I, C [1,7r]
and T = [];_, ¢; is an extremal A-weighted zero-sum free.

Now, we will prove that the I;’s are pairwise disjoint. If |S| = D4 (G) —1=r, then Nao(S)=1,1, =0
for all j € [1,v] and S = T. Suppose that |S| = Da (G) = r + 1 then, I; # () for only one j, Nao(S) = 2
and S = Th;. Finally, suppose S = TH;;l hj with v > 2 and I;, N I;, # 0 for some ji,j2 € [1,v], with

j1 # jo and where
aj, hj, Z aigi and aj,hj, = Z bigi

€15, €1,
with aj,,aj,,a:;,b; € A, since Ds(G) =r+ 1.
By hypothesis we have (’6) + (’1’) 4+ (Z) =2 = 2151=" A-weighted zero-sum subsequences of S, which
can be obtained as in the proof of Theorem B.7 Since I, N I;, # 0, we have I, I, C I;, UI;, such that

(44) dk (ajl h]l + a]z J2 - d <Z clgz> (mOd dkn)
i€ly
and

(4.5) d*(aj by, — aj,hy,) =d* | > digi | (mod d¥n).
icl,

Since d*aj,,d*a;, (mod d*n) € A one can easily verify that d*c; = 0 (mod d*n) or d*¢; (mod d*n) € A
and d*d; = 0 (mod d*n) or d*d; (mod d*n) € A. If d*¢; = 0 (mod d*n), for all i € I, and d*d; = 0
(mod d*n) for all i € I, then d*(aj, hj, + aj,hj,) = 0 and d*(a;, h;, — aj,h;,) = 0. But, this implies that
2d*a;,hj, = 0, and hence n|a;, (o(hj,) = d*n and n is odd), which is a contradiction since d*a;, # 0
(mod d*n). Therefore, I, # () or I, # ().

If I, # I, then there is a new A-weighted zero-sum subsequence of S and therefore N4 (S) > 2/5=7,
which is a contradiction. Now, suppose that I, = I,. Consider g| Hiel 1, Yi (observe that d*c; # 0

(mod d*n) and d*d; # 0 (mod d*n) in (I4) and [@H)) and take T’ = (H:+11 gl) g, ', where g1 = hy,.

If T is not an extremal A-weighted zero-sum free, then there is I;, C [1,7+ 1]\ {I} such that z;,h;, =
Zieij2 sigi, i.e., we can obtain a new A-weighted zero-sum subsequence of S and thus N4 (S) > olS1=r

which is a contradiction. If 7" is an extremal A-weighted zero-sum free, then by Corollary 3.5 we have I;, C
[L, 7+ 1]\ {l} such that v, hj, =3 ,c; uigi, i.e., we can obtain a new A-weighted zero-sum subsequence of
1

S. Therefore, we have Na o (S) > 2/%1=" again, which is a contradiction.
We observe that if v > r, then there are I, and I, with ji; # jo, such that I;, N I;, # (. Therefore,
Nao(S) > 2181=". Thus, r < |S] < 2r. O

The example below shows a case that is not covered by hypotheses of Theorem .4l We believe that it is
possible to obtain a similar theorem that covers this case.

Example 4.5. Let S = ejezes(2e2)(2e3)(3e2)(3e3) be a sequence over G = Cy & C%, where {e1,e2,e3} is
the canonical basis of G. Note that |S| = 7 = Da(G) 4+ 1 and Nao(S) = 21517Pa(@+1 = 92 — 4 yhere
DA(G) =6, with A = {1,3}, by Proposition[3:3. In this case, T = ejezes(2e2)(2e3) is an extremal A-weighted
zero-sum free.
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