ON THE NUMBER OF WEIGHTED ZERO-SUM SUBSEQUENCES

A. LEMOS, B.K. MORIYA, A.O. MOURA AND A.T. SILVA*

ABSTRACT. Let G be a finite additive abelian group with exponent $d^k n, d, n > 1$, and k a positive integer. For S a sequence over G and $A = \{1, 2, \ldots, d^k n - 1\} \setminus \{d^k n/d^i : i \in [1, k]\}$, we investigate the lower bound of the number $N_{A,0}(S)$, which denotes the number of A-weighted zero-sum subsequences of S. In particular, we prove that $N_{A,0}(S) \geq 2^{|S|-D_A(G)+1}$, where $D_A(G)$ is the A-weighted Davenport Constant. We also characterize the structures of the extremal sequences for which equality holds for some groups.

1. Introduction

Let G be a finite additive abelian group with exponent n and S be a sequence over G. The enumeration of subsequences with certain prescribed properties is a classical topic in Combinatorial Number Theory going back to Erdős, Ginzburg and Ziv (see [8, 14, 15]) who proved that 2n-1 is the smallest integer, such that every sequence S over a cyclic group C_n has a subsequence of length n with zero-sum. This raises the problem of determining the smallest positive integer l, such that every sequence $S = g_1 \cdots g_l$ has a nonempty zero-sum subsequence. Such an integer l is called the Davenport constant of G (see [7, 22]), denoted by D(G), which is still unknown for wide class of groups. In an analogous manner, for a nonempty subset $A \subset \mathbb{Z}$, Adhikari et. al. defined, see [1], an A-weighted Davenport constant, denoted by $D_A(G)$, to be a smallest $t \in \mathbb{N}$ such that every sequence S over G of length t has nonempty A-weighted zero-sum subsequence.

For any g of G, let $N_{A,g}(S)$ (when $A=\{1\}$ we write $N_g(S)$) denote the number of weighted subsequences $T=\prod_{i\in I}g_i$ of $S=g_1\cdots g_l$ such that $\sum_{i\in I}a_ig_i=g$, where $I\subseteq\{1,\ldots,l\}$ is a nonempty subset and $a_i\in A$. In 1969, Olson, see [23], proved that $N_0(S)\geq 2^{|S|-D(G)+1}$ for every sequence S over G of length $|S|\geq D(G)$. Subsequently, several authors, including [3,4,5,9,10,11,12,13,16,17,18,19] obtained a huge variety of results on the number of subsequences with prescribed properties. In 2011, Chang $et\ al.$, see [6], found the lower bound of $N_g(S)$ for any arbitrary g and classify the extremal sequences for |G| odd. Recently, Lemos $et\ al.$, see [20], found the lower bound of $N_{A,0}(S)$ for $A=\{1,\ldots,n-1\}$ and classify the extremal sequences for |G| odd. Here we prove that $N_{A,0}(S)\geq 2^{|S|-D_A(G)+1}$, when $A=\{1,2,\ldots,d^kn-1\}\setminus\{d^kn/d^i:i\in[1,k]\}$, where k is a positive integer. Besides, we classify the sequences such that $N_{A,0}(S)=2^{|S|-D_A(G)+1}$, where $G=H\oplus C^r_{d^kn}$, with n odd, $\exp(H)\mid d^k$, $\gcd(d,n)\leq d-1$ and $d^kn\geq 6$.

2. Notations and terminologies

In this section, we will introduce some notations and terminologies. Notations and terminologies are in accordance with [20]. Let \mathbb{N}_0 be the set of non-negative integers. For integers $a, b \in \mathbb{N}_0$, we define $[a, b] = \{x \in \mathbb{N}_0 : a \le x \le b\}$.

For a sequence

$$S = \prod_{i=1}^{m} g_i \in \mathcal{F}(G),$$

where $\mathcal{F}(G)$ is the free abelian monoid with basis G, a subsequence $T=g_{i_1}...g_{i_k}$ of S, with $I_T=\{i_1,\ldots,i_k\}\subseteq [1,m]$ is denoted by T|S; we identify two subsequences S_1 and S_2 if $I_{s_1}=I_{s_2}$. Given subsequences S_1,\ldots,S_r of S, we define $\gcd(S_1,\ldots,S_r)$ to be the sequence indexed by $I_{S_1}\cap\cdots\cap I_{S_r}$. We say that two subsequences S_1 and S_2 are disjoint if $(S_1,S_2)=\lambda$, where λ refers to the empty sequence. If S_1 and S_2 are disjoint, then we denote by S_1S_2 the subsequence with set index $I_{s_1}\cup I_{s_2}$; if $S_1|S_2$; we denote by $S_2S_1^{-1}$ the subsequence with set index $I_{s_2}\setminus I_{s_1}$. Moreover, we define

 $^{2010\} Mathematics\ Subject\ Classification.\ 20K01, 11B75.$

Key words and phrases. Finite abelian group, Sequences and sets, Extremal 0-complete sequence.

 $[\]ast$ The authors were partially supported by FAPEMIG APQ-02546-21 and RED-00133-21.

- (i) |S| = m the length of S.
- (ii) an A-weighted sum is a sum of the form $\sigma^{\mathbf{a}}(S) = \sum_{i=1}^{m} a_i g_i$, with fixed $\mathbf{a} = a_1 \cdots a_m \in \mathcal{F}(A)$, where $\mathcal{F}(A)$ is the free abelian monoid with basis A. When A = [1, n-1], we call S a fully weighted sequence.
- (iii) $\sum_{A} (S) = \{ \sum_{i \in I} a_i g_i : \emptyset \neq I \subseteq [1, m] \text{ and } a_i \in A \}$, a set of nonempty A-weighted subsums of S. According to the above definitions, we adopt the convention that $\sigma^{\mathbf{a}}(\lambda) = 0$, for any $\mathbf{a} \in \mathcal{F}(A)$. For convenience, we define $\sum_{A}^{\bullet} (S) = \sum_{A} (S) \cup \{0\}$.

The sequence S is called

- (i) an A-weighted zero-sum free sequence if $0 \notin \sum_{A} (S)$ and
- (ii) an A-weighted zero-sum sequence if $\sigma^{\mathbf{a}}(S) = 0$ for some $\mathbf{a} \in \mathcal{F}(A)$.

When $A = \{1\}$, we call S zero-sum free sequence and zero-sum sequence, respectively. For an element $g \in G$, let

$$N_{A,g}\left(S\right) = \left| \left\{ I \subseteq [1, m] : \sum_{i \in I} a_i g_i = g, \ a_i \in A \right\} \right|$$

denote the number of subsequences T of S with $\sigma^{\mathbf{a}}(T) = g$ for some $\mathbf{a} \in \mathcal{F}(A)$.

Definition 2.1. Let n be the exponent of G, $g \in G$, $A \subseteq \mathbb{Z} \setminus \{kn : k \in \mathbb{Z}\}$ and $S \in \mathcal{F}(G)$. We say S is g-complete sequence with weight in A if $N_{A,g}(S) \ge 2^{|S|-D_A(G)+1}$. We call S an extremal g-complete sequence with respect to A if $N_{A,g}(S) = 2^{|S|-D_A(G)+1}$. Let us denote $C_{A,g}(\mathcal{F}(G))$ as the set of all g-complete sequences with respect to A and $EC_{A,g}(\mathcal{F}(G))$ as the set of all extremal g-complete sequences with respect to A.

Definition 2.2. Let n be the exponent of G and $A \subseteq \mathbb{Z} \setminus \{kn : k \in \mathbb{Z}\}$. We say G is a 0-complete group with respect to A if $\mathcal{F}(G) = C_{A,0}(\mathcal{F}(G))$.

When $A = \{1\}$, Olson [23] proved that all finite abelian groups are 0-complete with respect to A. Chang $et \ al.$ [6] proved, that, when $A = \{1\}$, if $g \in \sum_{A}^{\bullet}(S)$, then $S \in C_{A,g}(\mathcal{F}(G))$ and, if S is extremal h-complete sequence with respect to A for some $h \in G$, then S is g-complete sequence with respect to A for all $g \in G$. Moreover, they classified the sequences in $EC_{A,0}(\mathcal{F}(G))$ when G is a group of odd order.

Remark 2.3. Take an A-weighted zero-sum free sequence U over G with $|U| = D_A(G) - 1$. Thus, for $S = U0^{|S|-D_A(G)+1}$ and for any $g \in \sum_{A}^{\bullet} (U)$, we have $S \in C_{A,g}(\mathcal{F}(G))$ and $S \in EC_{A,0}(\mathcal{F}(G))$.

We write a finite abelian group G as direct sum $G = H \oplus C_n^r$, where C_n^r denotes r copies of the cyclic group of order n denoted by C_n and $H = C_{n_1} \oplus \cdots \oplus C_{n_t}$ with $1 < n_1 | n_2 | \cdots | n_t | n = exp(G)$ and $n_t < n$. We have some auxiliary results, which are as follows.

Lemma 2.4. [Theorem 5.2 [21]] Let $G = H \oplus C_n^r$, where $H = C_{n_1} \oplus \cdots \oplus C_{n_t}$ with $1 < n_1|n_2|\cdots|n_t|n = exp(G)$ and $n_t < n$. Then, $D_A(G) = r + 1$.

A subsequence T of S is called an extremal A-weighted zero-sum free subsequence if $|T| = D_A(G) - 1$ and T is A-weighted zero-sum free.

It is worth mentioning the following important result for the fully weighted 0-complete sequences, which was proved in [20].

Theorem 2.5. All finite abelian group G with exponent n is 0-complete with respect to A = [1, n-1].

In [20] the authors conjectured that Theorem 2.5 holds for any A. In the Section 3, we proved that such a theorem is true for $G = H \oplus C^r_{d^k n}$, with n odd, $\exp(H)|d^k, \gcd(d,n) < d-1$, $d^k n < 6$ and $A = \{1, 2, \ldots, d^k n - 1\} \setminus \{d^k n/d^i : i \in [1, k]\}$, where k is a positive integer.

3. Lower bound

We start this section by presenting an important theorem.

Theorem 3.1 (Adhikari et al., Theorem 4.1, item (i) [2]). Let G be a finite and nontrivial abelian group and let $S \in \mathcal{F}(G)$ be a sequence. If $|S| \ge \log_2 |G| + 1$ and G is not an elementary 2-group, then S contains a proper, nontrivial $\{\pm 1\}$ -weighted zero-sum subsequence.

To find the lower bound for $N_{A,0}(S)$, with $S \in \mathcal{F}(G)$, we used the value of $D_A(G)$.

Theorem 3.2. Let $G = H \oplus C^r_{d^k n}$, where $\exp(H) \mid d^k$, $\gcd(d, n) \leq d - 1$ and $d^k n \geq 6$, where k is a positive integer. Then $D_A(G) = r + 1$, for $A = \{1, 2, \dots, d^k n - 1\} \setminus \{d^k n/d^i : i \in [1, k]\}$.

Proof. Since the canonical sequence $\prod_{i=1}^r e_i \in \mathcal{F}(C^r_{d^k n})$ does not have zero-sum subsequence with respect to weights in $A, D_A(G) \geq r+1$. Let $S=(h_i,g_i)_{i=1}^{r+1} \in \mathcal{F}(G)$. Consider a canonical homomorphism $\phi: G \to C^r_n$. Let $A'=\{1,2,\ldots,n-1\}$. Since $D_{A'}(C^r_n)=r+1$, by Lemma 2.4, we get a non-empty subsequence $T=(g_{i_k})_{k=1}^t$ of S such that $\sum_{j=1}^t a_j\phi(g_{i_j})=0 \in C^r_n$, where $a_j \in A', \forall j$. Hence, using the fact that $\exp(H) \mid d^k$ we have, $\sum_{j=1}^t d^k a_j(h_{i_j},g_{i_j})=0 \in G$ (Note that $\phi(g)\equiv g\pmod{n}$, which as a result gives, $d^k\phi(g)\equiv d^k\cdot g\pmod{d^k\cdot n}$). Since $\gcd(d,n)\leq d-1$, it follows that $d^ka_j\in A, \forall j$, which proves the theorem.

The hypothesis $d^k n \geq 6$ in Theorem 3.2 is necessary, as on the contrary we have the following proposition.

Proposition 3.3. If $G = C_2^s \oplus C_4^r$, then $D_A(G) = 2r + s + 1$ for $A = \{1, 3\} = \{1, -1\}$.

Proof. This upper bound is a immediate consequence of Theorem 3.1. For the lower bound we observe that the sequence $S = \prod_{i=1}^{s+r} e_i \prod_{i=s+1}^{s+r} 2e_i$ does not have $\{1,-1\}$ -weighted zero-sum subsequece, where $\{e_1,\ldots,e_{s+r}\}$ is the canonical base of G.

Remark 3.4. Note that, if $B \subset A$ then $D_A(G) \leq D_B(G)$.

As a consequence of Theorem 3.2, we get the following corollary.

Corollary 3.5. Let $G = H \oplus C^r_{d^k n}$, where $\exp(H) \mid d^k$, $\gcd(d, n) \leq d - 1$ and $d^k n \geq 6$, where k is a positive integer. Then $D_A(G) = r + 1$, for all A containing $B = \{1, 2, ..., d^k n - 1\} \setminus \{d^k n / d^i : i \in [1, k]\}$.

One can easily see that Theorem 3.2 does not hold true if $\exp(H) \nmid d^k$, in fact, the next proposition provides infinitely many examples such that $D_{A\setminus\{n\}}(G) \neq D_A(G)$.

Proposition 3.6. Let $G = L \oplus C_n \oplus C_{2n}^r$, where n > 1 an odd number and $L = C_{n_1} \oplus \cdots \oplus C_{n_t}$ with $n_1|n_2|\cdots|n_t|n$. Then, $D_{A\setminus\{n\}}(G) \geq r+2$.

Proof. Since n is an odd number one can easily prove that $(e_{t+1} + e_{t+2})(e_{t+1} + ne_{t+2})$ is zero-sum free with respect to weights in $A \setminus \{n\}$ and which in turn gives rise to a $A \setminus \{n\}$ -weighted zero-sum free sequence $(e_{t+1} + e_{t+2})(e_{t+1} + ne_{t+2}) \prod_{i=3}^{r+1} e_{t+i}$.

Theorem 3.7 below provides one more case for which Conjecture 4.3 of [20] holds.

Theorem 3.7. Let $G = H \oplus C^r_{d^k n}$, where $\exp(H) \mid d^k$, $\gcd(d, n) \leq d - 1$ and $d^k n \geq 6$, where k is a positive integer. Then G is 0-complete with respect to $A = \{1, 2, \ldots, d^k n - 1\} \setminus \{d^k n / d^j : j \in [1, k]\}$.

Proof. Let $S \in \mathcal{F}(G)$ be a sequence. According to Corollary 3.5, we can write $D_A(G) = r + 1$. If $|S| \leq r$, then $N_{A,0}(S) \geq 1 \geq 2^{|S|-r}$. If |S| = r + 1, then there is an A-weighted zero-sum nonempty subsequence T of S. Thus, $N_{A,0}(S) \geq 2 = 2^{|S|-r}$.

Suppose now r+1 < |S|. Let $S = TW \in \mathcal{F}(G)$ be a sequence such that T is a maximal A-weighted zero-sum free with $|T| \le r$ or $T = \lambda$.

Then, for each element g|W, we have two possibilities:

- a) If $o(g) \in A$, then g is an A-weighted zero-sum subsequence.
- **b)** If $o(g) \notin A$ for j = 1, ..., k, then Tg has an A-weighted zero-sum subsequence with g being one of its elements.

In both possibilities, there is V|Tg, such that V is an A-weighted zero-sum subsequence whose coefficient of g is $a_g \in A$. Then, $a_g g$ is an A-weighted sum of some subsequence of T:

$$a_g g = \sum_{i \in I_g} a_i g_i; I_g \subset I_T \text{ and } a_i \in A.$$

Thus, for every nonempty subsequence U of W, we have

$$d^k \sum\nolimits_{g \mid U} a_g g = \sum\nolimits_{g \mid U} d^k \sum\nolimits_{i \in I_g} a_i g_i = \sum\nolimits_{i \in I_{V'}} d^k b_i g_i; I_{V'} \subset I_T,$$

with $d^kb_i\pmod{d^kn}\in A$ or $d^kb_i\equiv 0\pmod{d^kn}$, i. e., the A-weighted sum $d^k\sum_{g|U}a_gg$ is an A-weighted sum of some subsequence $V'=V_U$ of T. Therefore, UV_U is an A-weighted zero-sum subsequence of S. Notice that if $V_U=\lambda$, then U is an A-weighted zero-sum subsequence. Therefore, if we include the empty subsequence, we obtain a minimum of $2^{|W|}=2^{|S|-|T|}$ distinct A-weighted zero-sum subsequences of S. This proves that $N_{A,0}(S)\geq 2^{|S|-r}$.

4. Characterization of extremal 0-complete sequences

We shall start by mentioning one of the main results obtained in the case which $\exp(G)$ is an odd positive integer (see Theorem 4.2 of [20]).

Theorem 4.1. Let G be a finite abelian group with exp(G) = n an odd number. If $S \in EC_{A,0}(\mathcal{F}(G))$, with A = [1, n-1], $0 \nmid S$ and o(g) = n for all g|S, then $r \leq |S| \leq 2r$ and there is $T = \prod_{i=1}^r g_i$ an extremal A-weighted zero-sum free, such that

$$(4.1) S = T \prod_{j=1}^{k} h_j,$$

where $k \in [1, r]$, $b_j h_j = \sum_{i \in I_j} a_i g_i$ with $a_i, b_j \in A$, $I_j \subset [1, r]$ and I_j 's are pairwise disjoint $(I_j = \emptyset \text{ for all } j \text{ implies that } S = T)$.

In this section, our aim is to prove a variant of the result above in case $G = H \oplus C^r_{d^k n}$ be a finite abelian group, where k is a positive integer, $\exp(H) \mid d^k$, n is an odd number, $\gcd(d,n) \leq d-1$, $d^k n \geq 6$ and $A = \{1, 2, \ldots, d^k n - 1\} \setminus \{d^k n/d^j : j \in [1, k]\}$, which will be established in Theorem 4.4.

First, we consider a modification of the Proposition 4.1 (see [20]), which will be the main tool to prove the Theorem 4.4.

As $N_{A,0}(S) = 2N_{A,0}(S0^{-1})$ and $N_{A,0}(S) = 2N_{A,0}(Sg^{-1})$, if $o(g) \in A$, it suffices to consider sequences S, such that $0 \nmid S$ and $o(g) \notin A$ for all $g \mid S$.

Proposition 4.2. Let $G = H \oplus C^r_{d^k n}$ be a finite abelian group where $\exp(H) \mid d^k$, $\gcd(d,n) \leq d-1$ and $d^k n \geq 6$, where k is a positive integer. If $S \in EC_{A,0}(\mathcal{F}(G \setminus \{0\}))$, with $A = \{1,2,\ldots,d^k n-1\} \setminus \{d^k n/d^j : j \in [1,k]\}$ and $o(g) \notin A$ for all g|S, then $r \leq |S|$ and there is $T = \prod_{i=1}^r g_i$ an extremal A-weighted zero-sum free such that

$$(4.2) S = T \prod_{j=1}^{\nu} h_j,$$

where $\nu \in [1, r]$, $b_j h_j = \sum_{i \in I_j} a_i g_i$ with $a_i, b_j \in A$, $I_j \subset [1, r]$.

The proposition above is a mere consequence of $D_A(G) = r + 1$.

Let us see below an example where we show an extreme sequence with respect to $N_{A,0}(S)$ for a group of order 72.

Example 4.3. Let $S = e_2e_3(2e_2)(2e_3)$ be a sequence over $G = C_2 \oplus C_6^2$, where $\{e_1, e_2, e_3\}$ is the canonical basis of G. Note that, $D_A(G) = 3$ where $A = \{1, 2, 4, 5\}$, $|S| = 4 = 2(D_A(G) - 1)$, and $N_{A,0}(S) = 2^{|S|-D_A(G)+1} = 2^2 = 4$. In this case, $T = e_2e_3$ is an extremal A-weighted zero-sum free.

The example above motivates us to establish the theorem below.

Theorem 4.4. Let $G = H \oplus C^r_{d^k n}$ be a finite abelian group where n is an odd number, $\exp(H) \mid d^k$, $\gcd(d,n) \leq d-1$ and $d^k n \geq 6$, where $k \in \mathbb{N}$. If $S \in EC_{A,0}(\mathcal{F}(G \setminus \{0\}))$, with $A = \{1, 2, \ldots, d^k n - 1\} \setminus \{d^k n / d^j : j \in [1, k]\}$ and $o(g) \notin A$ for all g|S, then $r \leq |S| \leq 2r$ and there is $T = \prod_{i=1}^r g_i$ an extremal A-weighted zero-sum free such that

(4.3)
$$S = T \prod_{j=1}^{\nu} h_j,$$

where $\nu \in [1, r]$, $b_j h_j = \sum_{i \in I_j} a_i g_i$ with $a_i, b_j \in A$, $I_j \subset [1, r]$ and I_j 's are pairwise disjoint $(I_j = \emptyset \text{ for all } j \text{ implies that } S = T)$.

Proof. Let S be a sequence over $G \setminus \{0\}$, $o(g) \notin A$ for all g|S and $N_{A,0}(S) = 2^{|S|-D_A(G)+1} = 2^{|S|-r}$. We know, by Proposition 4.2, that $S = T \prod_{j=1}^{\nu} h_j$ where $\nu \in \mathbb{N}_0$, $b_j h_j = \sum_{i \in I_j} a_i g_i$ with $a_i, b_j \in A$, $I_j \subset [1, r]$ and $T = \prod_{i=1}^{r} g_i$ is an extremal A-weighted zero-sum free.

Now, we will prove that the I_j 's are pairwise disjoint. If $|S| = D_A(G) - 1 = r$, then $N_{A,0}(S) = 1$, $I_j = \emptyset$ for all $j \in [1, \nu]$ and S = T. Suppose that $|S| = D_A(G) = r + 1$ then, $I_j \neq \emptyset$ for only one j, $N_{A,0}(S) = 2$ and $S = Th_j$. Finally, suppose $S = T\prod_{j=1}^{\nu} h_j$ with $\nu \geq 2$ and $I_{j_1} \cap I_{j_2} \neq \emptyset$ for some $j_1, j_2 \in [1, \nu]$, with $j_1 \neq j_2$ and where

$$a_{j_1}h_{j_1} = \sum_{i \in I_{j_1}} a_i g_i$$
 and $a_{j_2}h_{j_2} = \sum_{i \in I_{j_2}} b_i g_i$

with $a_{i_1}, a_{i_2}, a_i, b_i \in A$, since $D_A(G) = r + 1$.

By hypothesis we have $\binom{\nu}{0} + \binom{\nu}{1} + \cdots + \binom{\nu}{\nu} = 2^{\nu} = 2^{|S|-r}$ A-weighted zero-sum subsequences of S, which can be obtained as in the proof of Theorem 3.7. Since $I_{j_1} \cap I_{j_2} \neq \emptyset$, we have $I_x, I_y \subset I_{j_1} \cup I_{j_2}$ such that

(4.4)
$$d^{k}(a_{j_{1}}h_{j_{1}} + a_{j_{2}}h_{j_{2}}) = d^{k}\left(\sum_{i \in I} c_{i}g_{i}\right) \pmod{d^{k}n}$$

and

(4.5)
$$d^k(a_{j_1}h_{j_1} - a_{j_2}h_{j_2}) = d^k\left(\sum_{i \in I_y} d_i g_i\right) \pmod{d^k n}.$$

Since $d^k a_{j_1}, d^k a_{j_2} \pmod{d^k n} \in A$ one can easily verify that $d^k c_i \equiv 0 \pmod{d^k n}$ or $d^k c_i \pmod{d^k n} \in A$ and $d^k d_i \equiv 0 \pmod{d^k n}$ or $d^k d_i \pmod{d^k n} \in A$. If $d^k c_i \equiv 0 \pmod{d^k n}$, for all $i \in I_x$ and $d^k d_i \equiv 0 \pmod{d^k n}$ for all $i \in I_y$, then $d^k (a_{j_1} h_{j_1} + a_{j_2} h_{j_2}) = 0$ and $d^k (a_{j_1} h_{j_1} - a_{j_2} h_{j_2}) = 0$. But, this implies that $2d^k a_{j_2} h_{j_2} = 0$, and hence $n|a_{j_2} (o(h_{j_2}) = d^k n$ and n is odd), which is a contradiction since $d^k a_{j_2} \not\equiv 0 \pmod{d^k n}$. Therefore, $I_x \neq \emptyset$ or $I_y \neq \emptyset$.

If $I_x \neq I_y$, then there is a new A-weighted zero-sum subsequence of S and therefore $N_{A,0}(S) > 2^{|S|-r}$, which is a contradiction. Now, suppose that $I_x = I_y$. Consider $g_l | \prod_{i \in I_{j_1} \cap I_{j_2}} g_i$ (observe that $d^k c_l \not\equiv 0$ (mod $d^k n$) and $d^k d_l \not\equiv 0$ (mod $d^k n$) in (4.4) and (4.5)) and take $T' = \left(\prod_{i=1}^{r+1} g_i\right) g_l^{-1}$, where $g_{r+1} = h_{j_2}$. If T' is not an extremal A-weighted zero-sum free, then there is $\bar{I}_{j_2} \subset [1, r+1] \setminus \{l\}$ such that $z_{j_2} h_{j_2} = \sum_{i \in \bar{I}_{j_2}} s_i g_i$, i.e., we can obtain a new A-weighted zero-sum subsequence of S and thus $N_{A,0}(S) > 2^{|S|-r}$, which is a contradiction. If T' is an extremal A-weighted zero-sum free, then by Corollary 3.5 we have $\bar{I}_{j_1} \subset [1, r+1] \setminus \{l\}$ such that $v_{j_1} h_{j_1} = \sum_{i \in \bar{I}_{j_1}} u_i g_i$, i.e., we can obtain a new A-weighted zero-sum subsequence of S. Therefore, we have $N_{A,0}(S) > 2^{|S|-r}$ again, which is a contradiction.

We observe that if $\nu > r$, then there are I_{j_1} and I_{j_2} with $j_1 \neq j_2$, such that $I_{j_1} \cap I_{j_2} \neq \emptyset$. Therefore, $N_{A,0}(S) > 2^{|S|-r}$. Thus, $r \leq |S| \leq 2r$.

The example below shows a case that is not covered by hypotheses of Theorem 4.4. We believe that it is possible to obtain a similar theorem that covers this case.

Example 4.5. Let $S = e_1 e_2 e_3(2e_2)(2e_3)(3e_2)(3e_3)$ be a sequence over $G = C_2 \oplus C_4^2$, where $\{e_1, e_2, e_3\}$ is the canonical basis of G. Note that $|S| = 7 = D_A(G) + 1$ and $N_{A,0}(S) = 2^{|S| - D_A(G) + 1} = 2^2 = 4$, where $D_A(G) = 6$, with $A = \{1, 3\}$, by Proposition 3.3. In this case, $T = e_1 e_2 e_3(2e_2)(2e_3)$ is an extremal A-weighted zero-sum free.

References

- [1] S.D. Adhikari and P. Rath, Davenport constant with weights and some related questions, Integers 6 (2006), p. A30.
- [2] S.D. Adhikari, D.J. Grynkiewicz and Z.W. Sun, On weighted zero-sum sequences. Adv. Appl. Math., 48 (2012), p. 506–527.
- [3] E. Balandraud, An addition theorem and maximal zero-sum free set in $\mathbb{Z}/p\mathbb{Z}$, Israel J. Math. 188 (2012), 405–429.
- [4] A. Bialostocki and M. Lotspeich, Some developments of the Erdős-Ginzburg-Ziv Theorem I, Sets, Graphs and Numbers, Coll. Math. Soc. J. Bolyai 60 (1992), 97–117.
- [5] H.Q. Cao and Z.W. Sun, On the number of zero-sum subsequences, Discrete Math. 307 (2007), 1687-1691.
- [6] G.J. Chang, S. Chen, Y. Qu, G. Wang and H. Zhang, On the number of subsequence with a give sum in finite abelian group, Electron. J. Combin. 18 (2011), no. 1, paper 133.

- [7] H. Davenport, On the addition of residue classes, J. Lond. Math. Soc. 10 (1935), 30–32.
- [8] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bulletim Research Council Israel 10F (1961), 41–43
- [9] Z. Füredi and D.J. Kleitman, The minimal number of zero-sums, Combinatorics, Paul Erdős is Eighty, J. Bolyai Math. Soc. (1993), 159–172.
- [10] W.D. Gao, On the number of zero-sum subsequences, Discrete Math. 163 (1997), 267–273.
- [11] W.D. Gao, On the number of subsequences with given sum, Discrete Math. 195 (1999), 127–138.
- [12] W.D. Gao and A. Geroldinger, On the number of subsequences with given sum of sequences over finite abelian p-groups, Rocky Mountain J. Math. 37 (2007), 1541–1550.
- [13] W.D. Gao and J.T. Peng, On the number of zero-sum subsequences of restricted size, Integers 9 (2009), 537–554.
- [14] A. Geroldinger and F. Halter-Koch, Non-unique factorizations, Combinatorial and Analytic Theory, Pure and Applied Mathematics 278, Chapman & Hall/CRC, 2006.
- [15] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics, CRM Barcelona, Birkhauser, (2009), 1–86.
- [16] D.J. Grynkiewicz, On the number of m-term zero-sum subsequences, Acta Arith. 121 (2006), 275–298.
- [17] D.J. Grynkiewicz, E. Marchan and O. Ordaz, Representation of finite abelian group elements by subsequence sums, *Journal de Théorie des Nombres de Bordeaux* 21 (2009), 559–587.
- [18] D.R. Guichard, Two theorems on the addition residue classes, Discrete Math. 81 (1990), 11–18.
- [19] M. Kisin, The number of zero sums modulo m in a sequence of length n, Mathematica 41 (1994), 149–163.
- [20] A. Lemos, A. de Oliveira Moura, A.T. Silva and B.K. Moriya, On the number of fully weighted zero-sum subsequences, International Journal of Number Theory, 15(05) (2019), 1051–1057.
- [21] L.E. Marchan, O. Ordaz and W.A. Schmid, Remarks on the plus-minus weighted Davenport constant, *International Journal of Number Theory* 10 (05) (2014), 1219–1239.
- [22] J.E. Olson. A combinatorial problem on finite abelian groups I, Jornal of Number Theory 1 (1969), 8–10.
- [23] J.E. Olson. A combinatorial problem on finite abelian groups II, Jornal of Number Theory 1 (1969), 195–199.

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA-MG, BRAZIL

 $Email\ address: \verb|abiliolemosQufv.br|, \ bhavinkumarQufv.br|, \ allan.mouraQufv.br|$

Email address: anderson.tiago@ufv.br