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ON PERFECT POWERS THAT ARE SUM OF TWO BALANCING

NUMBERS

P. K. BHOI, S. S. ROUT, AND G. K. PANDA

Abstract. Let Bk denote the kth term of balancing sequence. In this paper we find
all positive integer solutions of the Diophantine equation Bn + Bm = xq in variables
(m,n, x, q) under the assumption n ≡ m (mod 2). Furthermore, we study the Dio-
phantine equation

B3

n ±B3

m = xq

with positive integer q ≥ 3 and gcd(Bn, Bm) = 1.

1. Introduction

A balancing number B is a natural number which satisfies the Diophantine equation

1 + 2 + · · ·+ (B − 1) = (B + 1) + · · ·+ (B +R). (1.1)

where R is a natural number. Here R is called balancer corresponding to B (see [2]). If
B is a balancing number, then 8B2 + 1 is a perfect square and its positive square root
is called a Lucas-balancing number (see [16] and [19]). The nth balancing and Lucas-
balancing numbers are denoted by Bn and Cn respectively. The balancing sequence
(Bn)n≥0 is a binary recurrence sequence with initial values B0 = 0, B1 = 1 and satisfies
the recurrence relation

Bn = 6Bn−1 −Bn−2 for all n ≥ 2. (1.2)

The Lucas-balancing sequence (Cn)n≥0 is a binary recurrence sequence with initial values
C0 = 1, C1 = 3 and satisfies the same recurrence relation

Cn = 6Cn−1 − Cn−2 for all n ≥ 2. (1.3)

The Binet formulas for balancing number and Lucas-balancing number are given by

Bn =
αn − βn

4
√
2

, Cn =
αn + βn

2
, for n = 0, 1, 2 . . . (1.4)

where α = 3 + 2
√
2 and β = 3 − 2

√
2. For more information about balancing numbers

and its generalization, one may refer to [19].
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There is a long history of Diophantine equations involving perfect powers and binary
recurrence sequence. Finding perfect powers in binary recurrence sequence is very in-
teresting. Recently, Bugeaud et al. [7] proved that 0, 1, 8, and 144 are the only perfect
powers in the Fibonacci sequence using linear forms in logarithm and modular approach.
Similarly, perfect powers in balancing and Lucas balancing sequence have been studied
(see [10]). Recently, the Diophantine equation

Fn ± Fm = yq, (1.5)

where Fn is nth Fibonacci number, n ≥ m ≥ 0, y ≥ 2 and q ≥ 2 has been studied by
a number of authors. Luca and Patel [14] proved that if n ≡ m (mod 2), then either
n ≤ 36 or y = 0 and n = m. This problem is still open for n 6≡ m (mod 2). Kebli et al.
[11] proved that there are only finitely many integer solutions (n,m, y, q) with y, q ≥ 2
of (1.5) using abc conjecture. Further, in [20] Zhang and Togbé studied the Diophantine
equations

F q
n ± F q

m = yp (1.6)

with positive integers q, p ≥ 2 and gcd(Fn, Fm) = 1. Also, perfect powers that are sums
of two Pell numbers have been studied (see [1]). Recently, in [4] Bhoi et al., study the
Diophantine equation Un + Um = xq in integers n ≥ m ≥ 0, x ≥ 2, and q ≥ 2, where
(Uk)k≥0 is Lucas sequence of first kind. In particular, they proved that there are only
finitely many of them for a fixed x using linear forms in logarithms and that there are
only finitely many solutions in (n,m, x, q) with q, x ≥ 2 under the assumption of the abc
conjecture.

In this paper, we prove the following results:

Theorem 1.1. The only positive integer solution of the Diophantine equation

Bn +Bm = xq, q ≥ 2 (1.7)

in (n,m, x, q) with n ≡ m (mod 2) is (n,m, x, q) = (3, 1, 6, 2), that is,

B3 +B1 = 35 + 1 = 62.

Theorem 1.2. The solutions of the Diophantine equation

B2
n − B2

m = xq with gcd(Bn, Bm) = 1, q ≥ 2 (1.8)

in integers (n,m, x, q) with n > m ≥ 0 and x > 0 are (n,m, x, q) = (1, 0, 1, k), with
k ≥ 2 and (2, 0, 6, 2).

Theorem 1.3. The only solution of the Diophantine equation

B3
n ± B3

m = xq with gcd(Bn, Bm) = 1, q ≥ 3 (1.9)

in integers (n,m, x, q) with n > m ≥ 0 and x > 0 is (n,m, x, q) = (1, 0, 1, k), with k ≥ 3.

We organise this paper as follows. In Section 2, we recall and prove some results that
will be useful for the proofs of main theorems. In Section 3, we will prove Theorem
1.1-1.3. Finally, we finish this paper with a concluding remark.
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2. Auxiliary results

Lemma 2.1. Assume that n ≡ m (mod 2). Then

Bn +Bm = 2B(n+m)/2C(n−m)/2.

Similarly,

Bn − Bm = 2B(n−m)/2C(n+m)/2.

Proof. By [16, Theorem 2.5], we know that if x and y are natural numbers, then

Bx+y = BxCy + CxBy

and for x > y

Bx−y = BxCy − CxBy.

Setting x+ y = n and x− y = m in the above equations and since n ≡ m (mod 2), we
get

Bn +Bm = 2B(n+m)/2C(n−m)/2.

and

Bn − Bm = 2B(n−m)/2C(n+m)/2.

�

Before proceeding further, we define two more binary recurrence sequences which are
related to balancing sequence. The Pell sequence (Pn)n≥0 is defined recursively as

Pn+1 = 2Pn + Pn−1, for n = 1, 2, . . .

with initial values P0 = 0, P1 = 1 and the associated Pell sequence (Qn)n≥0 is defined
as

Qn+1 = 2Qn +Qn−1, for n = 1, 2, . . .

with initial values Q0 = 1, Q1 = 1.

Lemma 2.2 (Theorem 3.1, [17]). For n = 0, 1, . . .

Bm = PmQm (2.1)

where Pm and Qm are the m-th Pell and the m-th associated Pell numbers, respectively.

Note that except B1 = 1, there are no other perfect powers in the sequence of balancing
numbers.

Lemma 2.3 (Prop. 3.1, [10]). For any positive integers y and l ≥ 2, the equation

Bm = yl (2.2)

has no solution for integers m ≥ 2.
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Lemma 2.4 (Prop. 3.2, [10]). For any positive integers y and l with l ≥ 2, the equation

Cn = yl (2.3)

has no solutions for integers n ≥ 1.

Lemma 2.5. If
Bn = 2sxb. (2.4)

for some integers n ≥ 1, x ≥ 1, b ≥ 2 and s ≥ 0, then n = 1.

Proof. By Lemma 2.2, we have Bn = PnQn and note that gcd(Pn, Qn) = 1 (see [12,
Chapter 7]). Let x = x1x2 with gcd(x1, x2)=1. Then from (2.4), we get

PnQn = 2sxb
1x

b
2.

So, we have the following cases: Pn = xb
1, Qn = 2sxb

2 and Pn = 2sxb
1, Qn = xb

2. If
Pn = xb

1 and Qn = 2sxb
2, then by [5, Lemma 2.6] n = 1. In the later case, by [5, Lemma

2.6] we have n ∈ {1, 2, 7} and among these values of n, only n = 1 satisfies Qn = xb
2.

This completes the proof of lemma. �

Lemma 2.6. If
Cn = 2sxb. (2.5)

for some integers n ≥ 1, x ≥ 1, b ≥ 2 and s ≥ 0, then no solution exists.

Proof. Recall that the Lucas-balancing sequence (Cn)n≥0 with initial values C0 = 1, C1

= 3, satisfies the recurrence relation (1.3). First we claim that all the Lucas balancing
numbers are odd. Suppose on contrary t ≥ 2 is the smallest index such that Ct is even.
Then from (1.3), we get Ct−2 = 6Ct−1 − Ct is even, which is a contradiction. Thus,
all the Lucas balancing numbers are odd integers and hence there does not exists any
solution of (2.5). �

The following result can be found in [15].

Lemma 2.7. Let n = 2an1 and m = 2bm1 be two positive integers with n1 and m1 odd
integers and a and b non-negative integers. Let d = gcd(n,m). Then

(1) gcd(Bn, Bm) = Bd,

(2) gcd(Cn, Cm) = Cd if a = b and is 1 otherwise,
(3) gcd(Bn, Cm) = Cd if a > b and is 1 otherwise.

Lemma 2.8. Let p be a prime. If (a,b,c) is an integer solution of the equation

x3 + y3 = zp, p ≥ 3

with gcd(a, b) = 1, abc 6= 0 and 2|ac. Then 3|c and 2|a but 4 ∤ a.

Proof. For p = 3, it is a classical result. When p ≥ 17 is a prime, see [13]. When
p = 5, 7, 11, 13, it can be obtained from the result of Bruin [6] and Dahmen [8]. �
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The following result is an easy exercise in elementary number theory.

Lemma 2.9. Let p be an odd prime, x, y, z, k integers with gcd(x, y) = 1. If

xp + yp = zk, k ≥ 2,

then x+ y = ck or pk−1ck for some integer c.

Lemma 2.10. If
Bn = 3sxb. (2.6)

for some integers n ≥ 1, x ≥ 1, b ≥ 2 and s ≥ 0, then n = 1.

Proof. Let x = x1x2 with gcd(x1, x2)=1. Then from the relation Bn = PnQn and (2.6),
we get PnQn = 3sxb

1x
b
2. We have two cases: Pn = xb

1 and Qn = 3sxb
2 or Pn = 3sxb

1 and
Qn = xb

2. So from Pn = xb
1, we have n = 1 or 7 and then substituting the values of n

in Qn = 3sxb
2, we get n = 1, s = 0, x2 = 1, b = 0. So, altogether n = 1. In the case,

Pn = 3sxb
1 and Qn = xb

2 we also have n = 1. �

Lemma 2.11 (Prop. 3.3, [10]). For any positive integers y, k and l with l ≥ 2, the
equation

Cn = 3kyl (2.7)

has no solutions for integers n ≥ 2.

We call a natural number t the period of the balancing sequence modulo µ if Bt ≡
0, Bt+1 ≡ 1 (mod µ) and for if for some natural number k, Bk ≡ 0, Bk+1 ≡ 1 (mod µ),
then t divides k (see [3, 18]).

Lemma 2.12. The balancing sequence have the following divisibility properties (see [18,
Theorem 5.1]):

2 | Bn ⇐⇒ n ≡ 0 (mod 2);

4 | Bn ⇐⇒ n ≡ 0 (mod 4).

Further, the residue of Bn modulo 9 depends on the residue of n modulo 12 as follows:

Bn ≡ 0 (mod 9) ⇐⇒ n ≡ 0, 6 (mod 12),

Bn ≡ 1 (mod 9) ⇐⇒ n ≡ 1, 5, 9 (mod 12),

Bn ≡ 3 (mod 9) ⇐⇒ n ≡ 8, 10 (mod 12),

Bn ≡ 6 (mod 9) ⇐⇒ n ≡ 2, 4 (mod 12),

Bn ≡ 8 (mod 9) ⇐⇒ n ≡ 3, 7, 11 (mod 12).

Lemma 2.13 (Theorem 5.1, [18]). For any natural number 2k | n if and only if 2k | Bn.

Proposition 2.14. The only positive integer solution of the Diophantine equation

BNCM = 2pxq (2.8)

with N , M , x positive integers, p ≥ 0, q ≥ 2 is (N,M) = (2, 1).
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Proof. Put N = 2gNa and M = 2hMa, where Na, Ma are odd and g and h are non-
negative integers. By Lemma 2.13, 2g | Bn, that is, Bn = 2gk1 for some integer k1. If
g ≤ h, then by Lemma 2.7, we know that gcd(BN , CM) = 1. Hence, CM = x

q
2 with

2 ∤ x2, which has no solution. So, in this case, solution does not exists.

Hence, we may assume that g > h. Let g − h > 0 and suppose d = gcd(N,M).
Therefore d = 2h gcd(Na,Ma). Write N = 2tdr, where r is an odd integer. Then by
Lemma 2.7 and using B2n = 2BnCn, we get

2pxq = BNCM

= B2tdrCM

= B2·2t−1drCM

= 2B2t−1drC2t−1drCM

= 22B2t−2drC2t−2drC2t−1drCM

= · · ·
= 2tBdr · Cdr · C2dr . . . C2t−1dr · CM .

Note that υ2(dr) = υ2(M) and υ2(dr) ≤ υ2(2
idr) for i ≥ 0. Thus by lemma 2.7(3), we

get

gcd(Bdr, Cdr · C2dr . . . C2t−1dr · CM) = 1.

So,

Bdr = x
q
1 or 2uxq

1, Cdr · C2dr . . . C2t−1dr · CM = x
q
2 and x1x2 = x.

If Bdr = 2uxq
1 with u ≥ 0, then by Lemma 2.5, we get dr = 1. Thus from

2pxq = 2tBdr · Cdr · C2dr . . . C2t−1dr · CM .

We get

2pxq = 2t · C1 · C2 . . . C2t−1 · CM .

Here, in the right hand side all terms are odd except 2t. Hence, p = t. Now let t ≥ 2.
Then υ2(M) < υ2(2

t−1dr). Using Lemma 2.7, we get

gcd(C2t−1dr, Cdr · C2dr . . . C2t−2dr · CM) = 1.

Thus,

C2t−1dr = x
q
3, Cdr · C2dr . . . C2t−2dr · CM = x

q
4, and x3x4 = x2.

Then 2t−1dr = 0, which is impossible. Thus, t = 1. Hence, N = 2, and so BN = 6.
Now BNCM = 2pxq. Here putting the value of BN , we get 6CM = 2pxq. which gives
3CM = 2p−1xq. So CM = 2p−13q−1x

q
3, as 3|x. Thus if p > 1, then solution does not exist.

If p = 1, then CM = 3q−1x
q
3. So, by Lemma 2.11, we get M = 1. Hence, (M,N) = (1, 2).

If p = 0, then t = 0, and hence N = dr = 1, and so BN = 1. This implies CM = xq,
which has no solution. This completes the proof. �

Now, we will give the proof of our main result.
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3. Proof of main theorems

3.1. Proof of Theorem 1.1. If either n = 0 or m = 0, then the theorem follows from
Lemma 2.3. If n = m, then the (1.7) becomes 2Bn = xq, which can also be written as
Bn = 2q−1x

q
1. From Lemma 2.5, we get n = 1. Thus, we may assume that n > m > 0.

Since n ≡ m (mod 2), then by Lemma 2.1, we get

xq = Bn +Bm = 2BNCM , (3.1)

where N = n+m
2

and M = n−m
2

(here N and M both are positive). So from (3.1), 2 | x,
that is x = 2x1 for some integer x1. Thus, (3.1) becomes

2q−1x
q
1 = BNCM , (3.2)

Using Proposition 2.14, we get N = 2 and M = 1 and this implies n = 3 and m = 1.
This completes the proof. �

3.2. Proof of Theorem 1.2. For any non-negative integers n and m, we have

xq = B2
n − B2

m = Bn+mBn−m.

Since gcd(Bn, Bm) = 1, we get gcd(n,m) = 1. This implies gcd(n+m,n−m) = 1 or 2.
Suppose gcd(n+m,n−m) = 1. By Lemma 2.7 ,

gcd(Bn+m, Bn−m) = Bgcd(n+m,n−m) = B1 = 1.

Thus we have,

Bn+m = uq, Bn−m = vq, and x = uv.

By Lemma 2.3, we get n + m = 1 and n − m = 1 and hence (n,m, x, q) = (1, 0, 1, q).
Next consider the case, gcd(n +m,n−m) = 2. In this case,

gcd(Bn+m, Bn−m) = B2 = 6.

So,

Bn+m = 6xq
1, Bn−m = 6q−1x

q
2; or Bn+m = 6q−1x

q
1, Bn−m = 6xq

2.

If Bn+m = 6xq
1 and Bn−m = 6q−1x

q
2, then from Lemma 2.10 and Lemma 2.11, we get

n+m = 2 and n−m = 2. In this case, we get (n,m, x, q) = (2, 0, 6, 2). This completes
the proof. �

3.3. Proof of Theorem 1.3. First assume the case n ≡ m (mod 2) with n > m. Since
gcd(Bn, Bm) = 1, then from Lemma 2.9, we get the following two cases:

(1) Bn ±Bm = xq;
(2) Bn ±Bm = 3q−1xq.
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For the first case, we know the solution is (n,m, x, q) = (3, 1, 6, 2). However, B3
3 ±B3

1 6=
xq. Hence, there is no solution for this case.

Now consider Bn ± Bm = 3q−1xq. Since n ≡ m (mod 2), by Lemma 2.1, Bn ± Bm =
2BNCM , where

N =
n±m

2
and M =

n∓m

2
.

So, 2 | x, that is, x = 2y for some integer y. Hence,

BNCM = 2q−1 · 3q−1yq.

As gcd(Bn, Bm) = 1, thus gcd(n,m) = 1, so we have gcd(N,M) = 1. Thus, by Lemma
2.7, gcd(BN , CM) = 3 or 1.

First, we consider gcd(BN , CM) = 3. Since Ck is odd for any k ≥ 0, we have

BN = 2q−1 · 3 · xq
1 and CM = 3q−2 · xq

2 with 3 ∤ x1x2, x1x2 = y.

or
BN = 2q−1 · 3q−2 · xq

1 and CM = 3 · xq
2 with 3 ∤ x1x2, x1x2 = y.

Thus from Lemma 2.10 and Lemma 2.11, we get N = 2, q = 2 and M = 1, q = 3. So,
there is no solution of Bn ± Bm = 3q−1xq.

Next consider, gcd(BN , CM) = 1, then we have

• BN = 2q−1y
q
1 and CM = 3q−1y

q
2 with 2 ∤ y2, 3 ∤ y1 and y1y2 = y, gcd(y1, y2) = 1.

• BN = 3q−1y
q
1 and CM = 2q−1y

q
2 with 2 ∤ y1, 3 ∤ y2 and y1y2 = y, gcd(y1, y2) = 1.

In the first case N = 1, q = 1 and M = 1, q = 2 and second case is not possible as Lucas
balancing numbers are always odd.Thus, there does not exist any solution of 1.9.

Now assume that n 6≡ m (mod 2) with n > m. If m = 0, then n = 1 since
gcd(Bn, Bm) = 1. So the solution is (n,m, x, q) = (1, 0, 1, k), where k ≥ 3. Thus,
we assume m ≥ 1, which gives xBnBm 6= 0 and gcd(Bn, Bm) = 1. By Lemma 2.8, we
have 3 | x and by Lemma 2.9, Bn ± Bm = 3q−1zq. As q ≥ 3, we deduce that

9 | (Bn ± Bm), with 2 | Bn, 4 ∤ Bn. (3.3)

Further, by Lemma 2.12, 9 | (Bn +Bm) if and only if

(1) n ≡ 0, 6 (mod 12) and m ≡ 0, 6 (mod 12).
(2) n ≡ 1, 5, 9 (mod 12) and m ≡ 3, 7, 11 (mod 12).
(3) n ≡ 8, 10 (mod 12) and m ≡ 2, 4 (mod 12).

Since n 6≡ m (mod 2), the above cases (1) , (2) and (3) will not hold. Again, 9 |
(Bn − Bm) if and only if n ≡ 0, 6 (mod 12) and m ≡ 0, 6 (mod 12) and this not true.
Thus, Bn ± Bm 6≡ 0 (mod 9), which contradicts (3.3). This completes the proof of
Theorem 1.3. �
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4. Concluding Remark

For n ≡ m (mod 2) we find all solutions to (1.7). Finding all solutions to (1.7) when
n 6≡ m (mod 2) is still an open problem. Note that under the assumption, n 6≡ m

(mod 2), no factorization is known for the left hand side of (1.7). Further, to solve a
more general Diophantine equation of the form

Bp
n +Bp

m = xq

in integers (n,m, x, p, q), one need to know integral solutions of equations of the shape

Bn = pazq, and Cn = pazq (4.1)

with p prime, q ≥ 2, a > 0. It is interesting to find all explicit solutions (if any) to (4.1).
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