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Abstract. This paper outlines a framework for the abstract investigation of the concept of

canonicity of names and of naming systems. Degrees of canonicity of names and of naming

systems are distinguished. The structure of the degrees is investigated, and a notion of relative

canonicity is defined. The notions of canonicity are formally expressed within a Carnapian

system of second-order modal logic.
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1. Introduction

There are many standard or canonical naming systems for the natural

numbers. Here are a few:

� the binary notation system: 0, 1, 10, 11,100,101, . . .

� the standard arabic numerals: 0, 1, 2, 3, . . .

� the numerals of the language of Peano Arithmetic: 0, S0, SS0, SSS0, . . .

� the roman numerals: [0], I, II, III, IV, . . .

These notation systems share a striking property, which explains to a large extent

why theyare souseful tous: for any twonamesof sucha standardnotation system,

we can at least in principle find out whether they denote the same natural number.

Consider the class of names of Turing machines that code countable

recursive ordinal numbers. Recursion theory proves that there is no sys-

tematic way of telling for any two names of Turing machines whether or not

they name the same ordinal number. For all we know, there may even be

Turing machines T1 and T2, in fact denoting the same ordinal, but for which

we will never come to know that they denote the same ordinal. In that sense,

our best naming system for the recursive ordinals is less canonical and more

opaque than our standard naming systems for the natural numbers.

There are naming systems for finite structures which may have an even

lower degree of canonicity:

Example 1: Consider the naming system S ¼{1; a; b}, where a and b are

defined as follows:

– a ¼: 1 if the Twin Prime Conjecture is true; a ¼: 0 otherwise;

– b ¼: 1 if a ¼ 0; b ¼: 0 otherwise.
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We do not presently know, and may never know, whether the Twin Prime

Conjecture is true. Therefore we may never have any way of telling whether

‘a’ and ‘1’, or ‘b’ and ‘1’, name the same natural number. In this sense, S is

not a very good naming system.

About the name a in Example 1, we know at least that it denotes either 0

or 1. It is somewhat harder to think of a putative example of an ‘absolutely

random’ natural number presentation, i.e., a name n such that for every

standard numeral k, we may never be able to find out that n „ k (the reader is

invited to try before looking at the following example). Here is the best I have

been able to come up with:

Example 2: Let a be the smallest ordinal number (>0) such that 2@aÿ1 > @a if

there is such an ordinal number, and let a ¼: 0 otherwise. Then define n as

follows:

– n ¼: 0 if either the Generalized Continuum Hypothesis is true or a ‡ x.

– n ¼: a otherwise.

If, as some maintain, we will forever have to live with the fact that ‘the

Continuum Hypothesis may fail anywhere’, then for every standard numeral

k, we will never be able to tell whether n ¼ k. If, as others say, we will (or

have?) come to know that 2@0 ¼ @2, then n will not serve as an example of an

absolutely arbitrary number.

It will be harder to come up with a putative example of an infinite naming

system S such that each a 2 S uniquely names a natural number and each

natural number has a unique name in S, and such that for every a 2 S and

every standard numeral k, we will never be able to know whether a ¼ k. In

sum, progressively non-canonical concrete notation systems for the natural

numbers appear to be increasingly hard to find.

In this paper, a systematic investigation into the logical properties of de-

grees of canonicity of naming systems is undertaken. Naming systems for sets

of natural numbers serve as prime illustrations, and play a considerable

heuristic role in the development of the theory. But in principle, the inves-

tigation is intended to be more general. Naming systems for all sorts of

structures of objects, concrete or abstract, are intended to be in its scope.

The paper is structured as follows. In Section 2, the need for a theory of

canonicity of naming systems is explained, and crucial and difficult concep-

tual questions that have to be answered in order to develop such a theory are

discussed. In Section 3, an abstract logical framework of Carnapian

second-order modal logic is sketched. Within this framework, the theory of

canonical notation systems is then expressed (Section 4). Degrees of canon-

icity are isolated and proved to be distinct, and a concept of relative can-

onicity is defined. The class of standard Peano-numerals is investigated as an

illustration of a highly canonical notation system. In Section 5, a notion of
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extreme opaqueness of presentations is described, and the relation with de-

grees of canonicity is to a small extent mapped.

The reader will notice that the present paper has a programmatic char-

acter. Many issues are touched upon only to be dropped long before they

have been properly addressed or even before the central problems that are

involved have been adequately formulated. Detailed elaboration of much

that is brought up here is deferred to future work. At best, therefore, this

paper can claim to be a sketch of a future theory of canonical presentations

and degrees of canonicity.

2. The Problem of Quantifying into Provability Contexts

In mathematics, one often speaks of proving something of a natural number.

For instance, one hears mathematicians say that so-and-so has proved of the

number 29 that it is the only prime number with a certain property. But what

does it mean to prove of a given number that it has a certain mathematical

property? What does de re provability mean?

Problems of quantifying into intensional contexts have been discussed

extensively in the philosophy of language.1 In that context it has been argued

that sense can be made of de re necessity (using a metaphysical notion of

necessity). It has also been argued that sense can be made of de re knowledge

and belief (using the notion of acquaintance). But it is harder to see how, in

the context of mathematics, sense can be made of de re provability, unless

one is willing to posit a notion of acquaintance with abstract objects such as

natural numbers, and even then.

Strictly speaking, de re provability seems to be unintelligible. The things

that can be proved are theorems, and theorems are complex interpreted

linguistic expressions. This suggests that one can only prove things of

interpreted expressions. For instance, one can prove of an expression that

when it is appended to a certain other expression, it yields a provable sen-

tence. That, in the end, seems all that proving something of a mathematical

object that it has a property can possibly mean.

Mathematical logicians, in contrast to most philosophers and philosoph-

ical logicians, have recognized this fact ever since the work of Gödel on the

incompleteness theorems. In mathematical logic, particularly in proof theory,

the following sort of notation is ubiquitous. Let uðxÞ be a formula of the

language of Peano Arithmetic, and let BewPA be the standard provability

predicate for PA. Then (existentially) quantifying into the provability pred-

icate is represented in terms of the dot-notation as

9xBewPAð
6uð _xÞ7Þ;

which is shorthand for
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9xBewPAðsu:bðnu:mðxÞ;6x7;6uðxÞ7ÞÞ;

where su:b is a name in the language of Peano Arithmetic of the substitution

function, and nu:m is a name in the language of Peano Arithmetic of the

function that assigns to every number n the (code of the) Peano Arithmetic-

numeral

S . . .S0ðn timesÞ:

So in words, what the above expression means is: there is a number n, such

that when its standard presentation S . . .S0 replaces all free occurrences of the

variable x in uðxÞ, a theorem of Peano Arithmetic results. This, then, is a

loose sense in which we can say that quantification into provability contexts

does make sense. But observe that this only works because we have a

‘standard’ naming system for the natural numbers. In general, extensions to

other domains are not obvious.

From the 1980s onward, so-called epistemic formalizations of mathematical

theories were proposed and investigated.2 These systems aim at giving an

axiomatic description of the notion of provability in principle against the

background of formalized mathematical theories. Such epistemic theories

allow quantification into the scope of the sentential operator that expresses

the notion of provability in principle. Therefore they are confronted with the

problems of quantifying into intensional contexts. In this context too, the

philosophical point made above must be conceded: It is only possible to prove

things of interpreted expressions.

For the language of the standard theories of first-order epistemic arith-

metic, an unobjectionable interpretation of quantifying in can indeed be gi-

ven, along the gödelian lines sketched above. So in a sense, for these

languages there is no real problem. Nevertheless, the philosophical point was

not sufficiently explicitly recognized.3 This has not been without conse-

quences for the research program of epistemic formalizations of mathemat-

ical theories. The epistemic systems of set theory and of higher-order

arithmetic that have been proposed are much less natural than Shapiro’s

system of epistemic first-order arithmetic.

From one point of view, the present paper can be seen as an attempt at

carrying out a logical investigation of the notion of provability in principle

which explicitly recognizes the philosophical point. In view of what was said

above, a theory of provability in principle must necessarily involve a theory

of (linguistic) presentations of (mathematical) objects. From another point of

view – and this is the point of view that we will focus on in this paper – we

will see that a theory of presentations of objects can be naturally formulated

in a framework in which a notion of provability plays a central role.

In the following section, an abstract, general, but manageable framework

for investigating canonical naming systems for structures of objects is
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described. Its expressive power will be seen to be large enough to allow the

expression of many of the distinctions that are theoretically important. At the

same time, it is not too cumbersome to work with and reason in.

3. Carnapian Modal Logic

‘‘I believe, however, that there is a simpler way to achieve [a solution to

Quine’s problem about quantification into intensional contexts]. It is

similar to that of Church but avoids the use of two kinds of variables for

the same type. This use is [. . .] an unnecessary duplication. It is sufficient

to use variables of one kind which are neutral in the sense that they have

classes as value-extensions and properties as value-intensions. . .’’

[Carnap, 1956, p. 195]

We will work in the framework of Carnap’s systems of modal logic.4

Carnap’s systems of modal logic differ from the now common systems of

modal logic in their interpretation. In Carnapian modal logic, all expressions

(including the variables, as we will see) have different interpretations in

extensional contexts and in intensional contexts (i.e. in the context of the

modal operator). In extensional contexts, expressions have their usual

denotations. In intensional contexts, they denote their usual intension or

meaning.5 This can be called, using an expression of Kripke, Carnapian

double talk.

It is known that even first-order Carnapian modal languages have a high

degree of expressive power.6 We will use a second-order Carnapian language

to formulate the highly intensional distinctions that are needed in the theory

of canonical presentations. At the same time, Carnapian logics are natural to

reason in. We will see that the quantifier laws retain their usual form, and we

have full second-order comprehension. Some care is needed in the formula-

tion of the laws of identity.

3.1. CARNAPIAN LANGUAGES

3.1.1. Syntax

We opt for second-order Carnapian languages of modal logic. Such languages

contain individual variables x; y; . . . ; second-order variables X;Y; . . . ; indi-
vidual constants a; b; . . . ; function symbols f; h; . . . ; predicate constants

P;Q; . . .. Beside the usual second-order logical vocabulary, in which we in-

clude the identity symbol ¼ as a primitive predicate, these languages also

have an intensional sentential operator (. The operator ( will be
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interpreted as ‘‘It can be established in the actual world by person K that’’,

‘‘It is verifiable in the actual world by person K that’’, or ‘‘It can be shown in

the actual world by person K that’’. Here the person K, our nondescript

epistemic agent, will be kept fixed throughout.

3.1.2. Semantics

The distinguishing feature of Carnapianmodal languages is that in extensional

contexts, expressions denote their usual extensions, whereas in intensional

contexts (i.e., in the scope of(), expressions denote their intensions. This holds

even for individual constants and variables. For example, in the expression:

a ¼ b ! (ða ¼ bÞ;

the first occurrence of a denotes an object (the reference of a), whereas

the second occurrence of a denotes an intension (the ‘meaning’ of a).

Semi-formally, we will let an expression u always denote an ordered pair

Æo, poæ, consisting of an object o and a presentation po of o. In extensional

contexts, the presentations do not matter for determining truth-values; in

intensional contexts, the presentations do matter.

This naturally leads to a notion of models for Carnapian languages. A

model M for a Carnapian language LC is determined by a universe of

objects D, a collection of presentations (of objects, sets, relations) taken from

a language L, a collection of sentences S of this language L, and assign-

ments to expressions ofLC. The elements of Smake up the extension of( in

M: the elements of S are the sentences the truth of which our epistemic agent

K is able to establish. Truth in a model, validity, consequence are then

defined on the basis of such a notion of models for Carnapian languages.

This semi-formal way of explicating the semantics of Carnapian languages

of course begs for mathematical precision. We will not provide it here.7 We

will, in the sequel, semi-formally sketch some models for Carnapian lan-

guages. We trust that the reader is able to semi-formally interpret sentences

of Carnapian languages in such models. Here are a few simple examples of

how such readings go:

Example 3: Consider the formula x ¼ a. In a given model, the variables x

and a denote ordered pairs Æo, poæ and Æo¢, aæ respectively. Since in this

formula, both x and a occur in extensional contexts, it is true (in the model) if

and only if o ¼ o¢.

Example 4: Consider the formula((x ¼ y). In a given model, the variables x

and y denote ordered pairs Æo, poæ and Æo¢, po¢æ, respectively. x and y occur

within the scope of (. The formula ((x ¼ y) is therefore true (in the model)

if the second member of the denotation of x (in the model), concatenated

with =, concatenated with the second member of the denotation of y, which
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results in the identity statement po ¼ po¢, is verifiable, i.e., if this sentence is in

the extension of (.

Example 5: The formula 9x(ðx ¼ aÞ is true if there is a presentation po of

some object o such that po ¼ a is a verifiable sentence.

Example 6: The formula 9x(9yðx ¼ yÞ is true if there is a presentation po of

some object o such that 9yðpo ¼ yÞ is verifiable.

3.1.3. Extensionality

‘‘Propositions in which a function / occurs may depend, for their truth-

value, upon the particular function / or may depend only upon the

extension of /. In the former case, we will call the proposition concerned

an intensional function of /; in the latter case, an extensional function of

/ [. . .] the mark of an extensional function f of a function /!bz is
/!x: �x �w!x :�/;w: fð/!bzÞ: � �fðw!bzÞ:’’

[Russell and Whitehead, 1980 [1910], p.187]

It is possible to to give a definition of the notion of extensionality of predi-

cates in the language of Carnapian logic:

Definition 1: EXTðFÞ � 8x½Fx $ 8yðy ¼ x ! FyÞ�.

Note that for this definition to express a nontrivial condition on predicates

F, it is crucial that the principle

x ¼ y ! (ðx ¼ yÞ

is not generally valid. In most standard systems of modal logic, which can be

broadly called Kripkean, this principle does come out valid. In these systems,

one can define a distinction between extensionality and intensionality of

higher-order predicates (in the Russell–Whitehead way), but not of first-order

predicates.8 In Carnapian languages, in contrast, the substitution principle is

not in general valid. So here the extra expressive power of Carnapian

languages becomes visible.

We can also define the notion of the extensional completion QðxÞ of a (one-
place) predicate PðxÞ in the following way:

Definition 2: EXTCðPÞ � 9yðy ¼ x ^ PyÞ.
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In a similar fashion, the extensional completion of an n-place predicate

can be defined. For instance, the extensional completion of a two-place

predicate Pðx; yÞ is defined as

9z9uðz ¼ x ^ u ¼ y ^ Pðz; uÞÞ:

It is important to realize, in this context, that extensionality is not the same as

transparency. Take, for instance, the predicate Px, defined as: x ¼ 1 if

Goldbach’s conjecture is true; x ¼ 0 otherwise. Then EXTCðPÞ is by defini-

tion extensional, but it is by no means transparent.

In the sequel, x 2 S will often be used instead of SðxÞ, and S � T as an

abbreviation of 8x½SðxÞ ! TðxÞ�. Note that in general, these are intensional

relations. It may well be, for instance, that x and y refer to the same object,

while x 2 S but y 62 S. We can also define notions of extensional subset,

extensional coincidence and extensional elementhood:

Definition 3: S �e U � ½8x 2 S9yðy 2 U ^ y ¼ xÞ�:

We can define what it means for two predicates to be co-extensional:

Definition 4: S ¼e U � ½S �e U ^U �e S�:

Definition 5: x 2e S � 9yðy 2 S ^ y ¼ xÞ:

More use will be made of this terminology later on (Section 5).

3.2. CARNAPIAN MODAL LOGIC

Let us now look at the valid logical principles of such languages. We for-

mulate a basic system C of basic Carnapian logic. Most of the usual laws of

classical second-order logic hold in Carnapian logic. The propositional laws

and the laws of quantification are formulated in the usual way, and the usual

second-order comprehension axiom is valid. Only the principle of substitu-

tion of identicals has to be weakened.

Concretely, the system C of Carnapian Logic is just like classical S4

second-order logic, except for the following modifications and additions:

3.2.1. Comprehension

A moment’s reflection reveals that we may validly strengthen the usual

second-order comprehension axiom

9Y 8xðYx $ UðxÞÞ;
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with Y not occurring free in U, to

9Y(8xðYx $ UðxÞÞðwith Y not occurring free in UÞ:

Indeed, the formula U furnishes the required presentation for Y to make

(8xðYx $ UðxÞÞ

true.

Note that unrestricted comprehension allows the definition of intensional

classes:

Example 7: Consider the following instance of comprehension:

9Y 8xðYx $ (x ¼ aÞ:

The class Y defined by this sentence can be denoted as fxj(x ¼ ag. This is
clearly an intensional class.

For this reason, second-order variables cannot be uniformly regarded as

constituting extensional contexts.

3.2.2. Substitutivity of Identicals

We postulate of course that identity is an equivalence relation. But the usual

principle of substitutivity of identicals

ðx ¼ yÞ ! ðU $ U½y=x�Þ

will have to be restricted somewhat. It is valid in Carnapian logic only for

first-order formulas U that contains no occurrences of (. For all other

formulas U we only postulate the weaker principle of substitutivity of

provable identicals:

(ðx ¼ yÞ ! ðU $ U½y=x�Þ:

Similarly, Carnapian logic contains the second-order analogue

(8xðXx ¼ YxÞ ! ðU $ U½Y=X�Þ

of the principle of substitution of provably identical terms.

3.2.3. Propositional Modal Logic

The natural choice appears to be to let the propositional logic of ( be given

by the S4 laws of modal logic.9
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3.2.4. Barcan and Choice

At first sight, there appears no reason to think that the Barcan formulas

8x(uðxÞ ! (8xuðxÞ;

8X(uðXÞ ! (8XuðXÞ

are valid. Already the first of these Barcan formulas looks like a formalized

x-rule. So we will not include them in the logic at this point.

The full second-order axiom of choice will also not be included in the

system C of Carnapian logic. In Horsten, (1998), an argument is developed

which is intended to cast doubt on its validity in a Carnapian intensional

setting. Here I merely remark that in the literature, scepticism about the

validity of intensional versions of the axiom of choice has been voiced.10

This completes the description of the basic logical principles of the

Carnapian logic C. The particular system, which is formulated in the lan-

guage of second-order arithmetic plus the provability operator (, and which

consists of the axioms of Peano Arithmetic (PA) plus the principles of the

Carnapian modal logic C, will be called CPA.11

3.2.5. Digression: Descriptions in Carnapian Modal Logic

In ordinary classical logic, the following rule describes the logical behavior of

the description operator i:

Ri From 9!xuðxÞ; infer 8yðy ¼ ixhðxÞ $ hðyÞÞ:

The justification for this rule is roughly the following. If one has proved that

exactly one object satisfies some condition h, then one may call this object

‘‘the h’’.

In our Carnapian modal logic, the rule Ri is not admissible. Reinhardt,

though working in a different setting12 and discussing rules for introducing

new individual constants by definition, has given an argument which shows

why. Here follows an adaptation to the present setting of Reinhardt’s

argument:13

Consider the theory CPAþ9xðhðxÞ ^ :(hðxÞÞ, for some arithmetical

formula hðxÞ. Call this theory CPAþ. Let h�ðxÞ abbreviate:

hðxÞ ^ :(hðxÞ ^ 8y < x : :½hðyÞ ^ :(hðyÞ�:

Then

CPAþ ‘ 9xh�ðxÞ ^ 8yðh�ðyÞ ! y ¼ xÞ;

i.e., CPAþ ‘ 9!xh�ðxÞ. Now suppose we are allowed to infer

CPAþ ‘ 8yðy ¼ ixh�ðxÞ $ h�ðyÞÞ:
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Then, since of course ixh�ðxÞ ¼ ixh�ðxÞ, we have CPAþ ‘ h�½ixh�ðxÞ�. On the

one hand, by the necessitation rule, this implies CPAþ ‘ (h�½ixh�ðxÞ�,
whereby CPAþ ‘ (h½ixh�ðxÞ�. On the other hand, CPAþ ‘ h�½ixh�ðxÞ� di-
rectly implies CPAþ ‘ :(h½ixh�ðxÞ�. Contradiction.

The formula

9xH�ðxÞ ^ 8yðH�ðyÞ ! y ¼ xÞ

says that there exist one or more pairs ho; p1oi; ho; p
2
oi; . . . satisfying h�ðxÞ, but

they must all have the same first member o. Why can we not stipulatively

introduce a name, ixh�ðxÞ, referring to this unique object o? The answer to

this question is that we can stipulatively introduce a name referring to the

object o. But this name will not satisfy, on pain of contradiction, the inten-

sional description h�ðxÞ. In other words, the description rule Ri cannot be

valid for this name.

For this reason,14 descriptions do not function in the classical way in

Carnapian logic. In the sequel, we will take Carnapian languages not to

contain a description operator.

3.2.6. Consistency

Proposition 1: C is consistent.

Proof: The translation function s which from any second-order modal for-

mula removes all occurrences of ( (the so-called eraser-translation), trans-

lates all proofs in C into proofs in classical second-order logic. j

4. Notation Systems and Canonicity

‘‘At first sight, we could assume that a set is defined by prescribing how its elements are

formed. This we do when we say that the set of natural numbers N is defined by giving the

rules:

0 2 N;
a 2 N

a0 2 N

by which its elements are constructed. However, the weakness of this definition is clear: 1010,

for instance, though not obtainable with the given rules, is clearly an element of N, since we

know that we can bring it to the form a0 for some a 2 N. We thus have to distinguish the

elements which have a form by which we directly see that they are the result of one of the rules,

and call them canonical, from all the other elements, which we will call non-canonical’’.

[Martin-Löf, 1984, p. 7]

Quite in general, a collection of interpreted names, or, equivalently, of

ordered pairs the first element of which is an object and the second of which

is a presentation of this object, can be considered as a notation system or
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naming system for a set of objects. In this section, we take a closer look at the

phenomenon that some notation systems are more ‘canonical’ than others.

We distinguish degrees of canonicity, which can be defined in the language of

Carnapian logic. We show that these degrees are distinct by constructing

examples that separate them. We also define and illustrate a notion of relative

canonicity. At the end of this section, we look at one example of a highly

canonical notation system in more detail: the system of standard numerals of

Peano Arithmetic.

4.1. NOTATION SYSTEMS

Suppose we have a class of objects O, and a collection S of primitive and/or

complex expressions which name these objects. Then this constitutes a

naming system for this class of objects. Let the members of S be called names

for elements of O. Suppose that in addition it is determined for which names

the namer can ascertain that they denote identical c.q. different objects. Then

these verifiable identity- and difference-relations determine a degree of can-

onicity that this notation system has for the namer.

From now on it is assumed that all notation systems are denumerable. This

restriction is motivated by the fact that all languages which humans could

ever speak and out of which they can form notation systems for classes of

objects, are denumerable.

Let us call a notation system recursively defined if consists of all the names

that can be constructed from the basic building blocks out of which its names

are constructed. The class of recursive naming systems then forms an

important subclass of the class of all notation systems. The system of the

standard numerals of Peano Arithmetic (0;S0;SS0; . . .) is a recursive naming

system: it is recursively generated from the name 0 and the function symbol S.

Below, it will be shown how it is possible to define, at least ‘up to provable

identity’, recursively defined notation systems such as the system of the

standard Peano-numerals in Carnapian languages.

Related to this, there is a notion of the (recursively defined) system of

names associated with a language L. The associated notation system of a

language L consists of all the names that can be formed in L. Derivatively,

one can even speak of the (recursively defined) notation system associated

with a theory T: it consists of all the names that can be formed in the

language in which T is expressed.

Even though it goes without saying that the notion of being recursively

defined is important, we will not be concerned with it much in the remainder

of the paper. In this paper, canonicity properties of systems of names will be

investigated while abstracting from the recursive nature of these systems.
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4.2. GRADES OF CANONICITY

First, we define four notions of canonicity for names. Two of these notions

concern verifiable identity of denotation (strong and weak positive canon-

icity), and two concern verifiable difference of denotation (strong and weak

negative canonicity). Let S be any formula of our Carnapian language. We

define

Definition 7: SCÿ
S ðxÞ � 8y 2 S : x 6¼ y ! (x 6¼ y.

Definition 8: WCÿ
S ðxÞ � 8y 2 S : x 6¼ y ! 9u 2 Sðu ¼ y ^(x 6¼ uÞ.

Definition 9: SCþ
S ðxÞ � 8y 2 S : x ¼ y ! (x ¼ y.

Definition 10: WCþ
S ðxÞ � 8y 2 S : x ¼ y ! 9u 2 Sðu ¼ y ^(x ¼ uÞ.

In such canonicity conditions, a formula of the form:

8x; y 2 S : . . .

is of course a concise way of denoting:

8x8yððSx ^ SyÞ ! ð. . .ÞÞ;

etc.

Being WCþ
S is a trivial property. For if the antecedent of WCþ

S ðxÞ holds,
then x itself serves as a witness for the existential quantification in the con-

sequent. In other words, we have:

Proposition 2: For every x 2 S;WCþ
S ðxÞ holds.

So the notion WCþ
S is useless. It will be abandoned.

The following property is immediate:

Proposition 3: 8x 2 S : SCÿ
S ðxÞ ! WCÿ

S ðxÞ:

In terms of these notions of canonicity for names, degrees of canonicity of

notation systems can be expressed. The guiding intuition is that a notation

system S is canonical if for each of the objects which S names, S contains a

canonical name. The following degrees can then be distinguished:
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1. SCþ
8 ðSÞ � 8x 2 S : SCþ

S ðxÞ
2. WCÿ

8 ðSÞ � 8x 2 S : WCÿ
S ðxÞ

3. SCÿ
8 ðSÞ � 8x 2 S : SCÿ

S ðxÞ
4. SCþ

9 ðSÞ � 8x 2 S9y 2 S : y ¼ x ^ SCþ
S ðyÞ

5. WCÿ
9 ðSÞ � 8x 2 S9y 2 S : y ¼ x ^WCÿ

S ðyÞ
6. SCÿ

9 ðSÞ � 8x 2 S9y 2 S : y ¼ x ^ SCÿ
S ðyÞ

Note that these canonicity conditions are intensional. It is perfectly possible

for one notation system S to satisfy one of these canonicity conditions

whereas another notation system S0 fails to satisfy this condition, even

though S and S0 are co-extensional.15

These degrees of canonicity conditions can be glossed informally:

1. SCþ
8 : Every name is strongly positively canonical. For any two names of

an SCþ
8 notation system, if they denote the same object, then this can be

ascertained.

2. WCÿ
8 : Every name is weakly negatively canonical: any object which

differs from the object named by a given name, has at least one name

which verifiably separates it from the object named by this weakly neg-

atively canonical name.

3. SCÿ
8 : Every name is strongly negatively canonical. For any two names of

an SCÿ
8 notation system, if they denote different objects, then this can be

ascertained.

4. SCþ
9 : Every object named by the naming system is named by at least one

strongly positively canonical name: every presentation naming the same

object as this strongly positively canonical name can be ascertained to do

so.

5. WCÿ
9 : Every object named is named by at least one weakly negatively

canonical name.

6. SCÿ
9 : Every object named by the naming system is named by a strongly

negatively canonical name: every presentation naming an object different

from the object named by this strongly negatively canonical name can be

ascertained to do so.

The following property is easily established for all S:

Proposition 5: SCþ
8 ðSÞ $ SCþ

9 ðSÞ:

So SCþ
9 is redundant: we can (and will) drop this notion.

Note that each of the five remaining degrees of canonicity of S indeed

requires that each object named by S is named by a presentation which is in

some sense ðWCÿ;SCÿ;SCþÞ canonical. Therefore they are rightly called

degrees of canonicity. Note also that more complex initial quantifier strings

than the ones used (8x 2 S and 8x 2 S9y 2 S : y ¼ x ^ . . .), such as
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8x 2 S9y 2 S : y ¼ x ^ 8z 2 Sðz ¼ y ! . . .Þ

yield no new degrees of canonicity.

Nevertheless, more notions of canonicity of notation systems can be dis-

tinguished. First, a notation system can of course be a combination of some

of the five degrees of canonicity that were defined. In the sequel, of special

importance in this respect will be the combination of being both SCþ
8 and

SCÿ
8 . We will abbreviate this combination as SC�

8 . We will see how it can be

shown that the class of standard Peano-numerals constitutes such a SC�
8

notation system. Secondly, there are notions of canonicity of notation sys-

tems which cannot be naturally expressed in terms of weak and strong

canonicity of names. Here is a very weak such notion, which will play a role in

what follows:

Definition 11 (very weakly canonical):

VWCðSÞ � 8x; y 2 S : x 6¼ y ! 9z; u 2 Sðx ¼ z ^ y ¼ u ^(u 6¼ zÞ:

In words: Every two objects named are verifiably separated by names in the

notation system. Thirdly, one can express notions of being almost canonical.

For instance, one can also define a notation system S to be almost WCÿ
8 if all

x 2 S are such that for almost all y 2 S, i.e. for all y except a finite number of

elements of S,

x 6¼ y ! (x 6¼ y
.

There are undoubtedly even more notions of canonicity of notation systems

that can be thought of. But we focus exclusively on the notions defined here,

which appear to be natural ones.

The notion of weak canonicity of names can be generalized:

Definition 12: For all x, S:

WC0
SðxÞ � x 2 S;

WCnþ1
S ðxÞ � 8y½y 6¼ x ! 9zðz ¼ y ^WCn

SðzÞ ^(z 6¼ xÞ�;

WC1
S ðxÞ � 8n 2 N : WCn

SðxÞ:

A name for an object o is therefore WC2
S, for instance, if it is not only WCÿ

S ,

but also related by the provable difference relation to WCÿ
S names for all

objects o¢ such that o¢ ¼ o.

The same can be done for strong canonicity:
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Definition 13: For all x, S:

SC0
SðxÞ � x 2 S;

SCnþ1
S ðxÞ � 8y½y 6¼ x ! ðSCn

SðyÞ ^(y 6¼ xÞ�;

SC1
S ðxÞ � 8n 2 N : SCn

SðxÞ:

The following shows that for strong canonicity, this generalization is not very

useful:

Proposition 6: For all S:

9x 2 S : SC2
SðxÞ ) 8xSC1

S ðxÞ:

In other words, if S contains a SC2
S presentation, then S is an SCÿ

8 system.

The generalized notion of weak canonicity displays somewhat more

interesting structure. We first introduce some more terminology:

Definition 14: For all S;x 2 S:

R0
SðxÞ � fxg;

Rnþ1
S ðxÞ � Rn

SðxÞ [ fy 2 Sj9x : x 2 Rn
SðxÞ ^(y 6¼ xg;

R1
S ðxÞ �

[

n2x

Rn
SðxÞ:

So R1
S (x) is, as it were, the collection of names of S generated from x by the

provable difference relation. Observe that if x 2 S and SC2
S (x), then

R1
S ðxÞ ¼ S; this is not always so if WC2

SðxÞ.
Then the following proposition is easy to establish:

Proposition 7: For all S:

Suppose x 2 S and WC1
S ðxÞ.

Then R1
S ðxÞ is a WCÿ

9 subsystem of S naming the same collection of

objects as S does.

Actually, already WC2
SðxÞ;R

2
SðxÞ (and also R1

S ðxÞ) will be a WCÿ
9 subset

of S naming the same collection of objects as S does.

4.3. ORDERING OF THE DEGREES

The notions SCþ
8 ; . . . ;VWC are intended to capture extents of transparency

or canonicity of a notation system. It is not claimed that the degrees of
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canonicity that we distinguish are the only or even the most important factors

in determining the naturalness or ‘niceness’ of a notation system.16 But we do

think that the degree of canonicity of a naming system is highly significant for

determining its practical usefulness.

We will show that the partial ordering relation between the degrees of

canonicity is given by the following table:

SCÿ
9 ðSÞ

SC�
8 ðSÞ ) SCÿ

8 ðSÞ ) 6m ) WCÿ
9 ðSÞ ) VWCðSÞ

+ WCÿ
8 ðSÞ

SCþ
8 ðSÞ

It is left to the reader to verify that the )-directions in this table indeed hold

(it is not hard to see). We will show that none of the converse arrows hold.

Also, the degree SCþ
8 ðSÞ does not imply any of the other degrees. We will not

be satisfied with constructing arbitrary models in the sense of Section 3.1. In

order to develop intuitions, we want to construct somehow ‘realistic imagi-

nary situations’ which separate the notions SC�
8 ; . . . ;VWC.

These imaginary situations or models will take the following form. They

will contain one namer, who lives in a universe, and who assigns (at most

denumerably many) names to the objects in the universe. Moreover, the

namer develops a correct but generally incomplete theory about the identity

and difference of the objects denoted by the names that he has assigned to

them. The collections of names for objects in the universe which the namer

constructs in this way will be a notation system associated with the model or

situation. One can then inquire into the degree of canonicity of this notation

system.

4.3.1. Example of a VWC Notation System Which is not WCÿ
9

Suppose a universe U consisting of a countably infinite number of objects,

and a namer who cannot move about in this universe and cannot see an

infinite number of objects. All he can do is to extrapolate on the basis of his

experiences with a finite number of objects in his neighborhood.

For any finite collection F of objects of U, let there be a property P such

that:

� all objects not in F lack property P;

� all objects in F have property P to some measurable degree;

� no two objects in F have property P to exactly the same degree.

Suppose that the namer, on the basis of his local experiments, comes to

correctly conjecture that this is the case. Then he can use the infinite supply

of properties P1; . . . ;Pi; . . . to construct a naming system S for U which

contains infinitely many names for every object in U: one name for each
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finite collection to which the object belongs. This naming system contains

all names of the form: ‘the second-least but nonzero degree P25’, ‘the 34th

smallest but nonzero degree P100’,… Here of course a default stipulation

has to be made to ensure reference of the term if no second-least-degree

P25, 34th smallest P100, … exists. For instance, the namer could stipulate

that terms not meeting this assumption refer to some fixed local object ol in

his neighborhood.

S is a VWC notation system. Any two objects o1, o2 of U are verifiably

separated by at least one pair of names. Take, for instance, the names

determined by the property Pk which singles out {o1, o2}. Then ‘the least-

degree but nonzero (and some default object if zero) Pk’ and ‘the highest-

degree Pk’ separate o1 and o2.

But S is not a SCÿ
9 notation system. Take any name, e.g. ‘the second-

smallest P25’. Suppose that the object named by this term does not have the

property P2. Then ‘the second-smallest P25’ is not verifiably separated from

‘the smallest P2’.

Also, S is not a WCÿ
8 notation system. For take any two names of S: ‘the

lth-degree Pi’ and ‘the mth-degree Pj’ referring to oa, ob respectively. Now

suppose ob lacks property Pi. Then there is no name in S under which ob can

be verifiably separated from ‘the lth-degree Pi’. S is not even a WCÿ
9 system.

For take any object oa. Every name na of oa is of the form ‘the kth degree P’

for some property P which is true of only a finite set SP of objects. We must

show that na is not weakly canonical. For this purpose, take any ob j2SP. No

name nb for ob can be verifiably separated from na by the namer. So na is not

weakly canonical.

4.3.2. Two Examples of Notation Systems Which are WCÿ
8 but not SCÿ

9

A finite example: Let a naming system S ¼ fn11; n
1
2; n

2
1; n

2
2g be defined such

that:

� the extension of S is a set of objects {o1, o2} with o1 6¼ o2,

� n11; n
1
2 are names of o1,

� n21; n
2
2 are names of o2;

� the (correct) theory of the namer entails that:

– n1
1 and n2

1 name distinct objects,

– n1
2 and n2

2 name distinct objects;

� the theory of the namer does not entail that:

–n1
1; n

1
2 name the same object,

–n2
1; n

2
2 name the same object,

–n1
1 and n2

2 name distinct objects,

–n1
2 and n2

1 name distinct objects.
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It is not hard to verify that S is WCÿ
8 . But S is not SCÿ

9 : S contains no

sufficiently canonical names for o1,o2.

The discrimination and identification abilities of the namer can be rep-

resented in a table:

n12 ÿÿ ÿÿ ÿÿ n22
� � � �
� � �
� � � �
n11 ÿÿ ÿÿ ÿÿ n21

Here dotted lines indicate nondiscernibleness and nonidentifiability. Striped

lines indicate discernibleness.

More generally, notation systems can be represented as simple, undi-

rected graphs with labelled nodes. The nodes stand for objects; any two

nodes with the same label stand for the same object. Edges stand for

verifiable difference or identity relations (depending on whether the nodes

they connect have the same label). Let us call such graphs naming system

graphs. Notation system graphs G are in general reflexive, and what one

may call weakly transitive, i.e. if (v1, v2), (v2, v3) ˛ G, and v1 and v2 have

the same label, then (v2, v3) ˛ G.

An infinite example: Consider a universe U, in which a namer names objects.

The namer can interact only with a forever determined finite number of

objects. On the basis of this interaction, he develops the following correct

theory. There is a denumerably infinite number of objects and a denumerably

infinite collection of properties. Each object possesses each property to some

degree. For any given property, the set of degrees in which objects have the

property form a well-ordering of order type x. No two objects have any given

property to the same degree.

On the basis of this theory, the namer gives many names to each object.

For example: ‘the object which has property 28 to the 5th least degree’, which

can be represented as h28; 5i. Call the resulting naming system S.

Now let the following infinite matrix represent the denotation relation

for S:

� � � � � � � � � � � � � � � � � �
h5; 1i h5; 2i h5; 3i h5; 4i h5; 5i � � �
h4; 1i h4; 2i h4; 3i h4; 4i h4; 5i � � �
h3; 1i h3; 2i h3; 3i h3; 4i h3; 5i � � �
h2; 1i h2; 2i h2; 3i h2; 4i h2; 5i � � �
h1; 1i h1; 2i h1; 3i h1; 4i h1; 5i � � �

Each column of this matrix represents (again) the set of names of a single

object. So the object which has property 1 to the lowest degree is in fact also
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the object which has property 2 to the lowest degree, and so on. Now let the

verifiable difference relations be as follows:

� � � � � � � � � � � � � � � � � �
h5; 1i h5; 2i h5; 3i h5; 4i h5; 5i � � �
h4; 1i h4; 2i h4; 3i h4; 4i jh4; 5i � � �
h3; 1ij h3; 2i h3; 3i jh3; 4i h3; 5ij � � �
jh2; 1i h2; 2ij jh2; 3i h2; 4ij h2; 5i � � �
h1; 1i jh1; 2i h1; 3ij h1; 4i h1; 5i � � �

Each column of this matrix represent the set of names of a single object. And

the verifiable differences follow the diagonals drawn from objects on the

lower row – no other differences in denotation are assumed verifiable by the

namer.

A few of these verifiable difference relations are indicated by underlining

and side-lining, e.g., the theory of the namer entails that h1; 3i and h3; 5i
denote different objects; also, it entails that h1; 2i and h2; 1i denote different

objects. But the namer’s theory does not prove that h3; 5i and h1; 4i denote
different objects.

This notation system S then is WCÿ
8 . But S is not SCÿ

8 . For instance, as

noted above, the namer’s theory does not prove that h3; 5i and h1; 4i denote
different objects.

4.3.3. Example of a WCÿ
9 Notation System Which is not SCÿ

9

Consider the following finite notation system:

n12|{z} j j �n22 j n32

z}|{

n11 n21

z}|{

|{z} n31j

In this table, each column again contains names denoting the same object.

The underlinings and overlinings again express verifiable difference relations.

For example n21 and n32 are verfiably different, but n21 and n11 are not verifiably

different. It is easy to verify that this system is WCÿ
9 . But it is not SC

ÿ
9 .

This system is not WCÿ
8 , for n32 is not a weakly canonical name. If we

would add hn11; n
3
2i; hn

3
2; n

3
1i as extra verifiable differences, then the resulting

system would be WCÿ
8 . But still it would not be SCÿ

9 . Therefore

WCÿ
8;SCÿ

9 :

Since the finite example in Section 4.3.2 already showed us that

SCÿ
9;WCÿ

8 ;

we indeed have
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SCÿ
9<WCÿ

8 :

4.3.4. Example of a SCÿ
9 Notation System Which is not SCÿ

8

Left to the reader (easy).

4.3.5. Example of a Notation System Which is Scÿ8 ; but not SC
�
8

Consider Kleene’s notation system O for the constructive ordinals.17 There

exists a Turing machine T which, when started on any two a, b ˛ O, even-

tually prints 0 if a and b name different ordinal numbers. But there exists no

Turing machine which, in addition to this behavior, also always eventually

prints 1 if a and b are ordinal notations for the same ordinal number. For in

order to do that, the Turing machine would effectively have to be able to tell

whether two Turing machines enumerate the same set of numbers; it is well

known that no such Turing machine exists.

Now suppose that the capacities of a human namer for identifying and

discriminating ordinal notations do not exceed those of Turing machines.

Then for a human namer, the system O can never be SC�
8 . At best, O will for

him be a SCÿ
8 notation system.

4.4. THE STANDARD NUMERALS

As an illustration, we will now investigate the system of the standard

numerals 0, S0, SS0, SSS0, . . . of the language of Peano Arithmetic as a

concrete example of a SC�
8 notation system. First, it is shown how the

class of standard numerals can be defined, up to provable identity, by a

formula SN(x) (‘Standard Numeral’) of our second-order Carnapian lan-

guage. Second, it is outlined how in basic Carnapian logic, augmented

with Peano Arithmetic (PA), it can be proved that SN is a SC�
8 notation

system.

4.4.1. Defining the Standard Numerals

Let SN (x) be the following condition:

8X8z ½ð(ðz ¼ 0Þ ! XzÞ ^ ð(Xz ! (XðSzÞÞ� ! Xxf g:

SN is then of course an intensional set. We claim that SN defines, up to

provable identity, the class of the standard numerals.

Proposition 8: For all x:

SN (x) , x is provably identical with a standard Peano numeral.
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Proof): It suffices to show that there exists a class containing the standard

numerals. But that is straightforward. Take the class {x | x ¼ x}.

(: By the minimal closure condition. j

4.4.2. Proving in CPA that SN is SC�
8

Lemma 1: 8x 2 SN : (ðx ¼ 0Þ _ 9z½(ðx ¼ SzÞ ^ z 2 SN�

Proof (Sketch): Essentially by the minimal closure condition in the definition

of SN. For suppose not. Then consider SN \ {x}. This would still satisfy the

defining condition, thus contradicting the fact that SN is the smallest such.j

Theorem 1: 8x; y 2 SN : x ¼ y ! (ðx ¼ yÞ.

Proof: We proceed by induction on x (= y).

(a) Basis. x ¼ 0. Then by the previous lemma and the reflexivity principle

(/ ! /, we must have ( (x ¼ 0). Likewise, we must have ( (y = 0).

So, by the substitutivity of provable identicals, we have ( (x ¼ y).

(b) Induction step. By the previous lemma, we must have ( (x ¼ Sz) for

some z ˛ SN, and ( (y ¼ Sz0) for some z0 2 SN, where z ¼ z0. By the

inductive hypothesis, we then have ( (z ¼ z0). Therefore, by the sub-

stitution of provable identicals, we get ( (Sz ¼ Sz0). Again by the

substitutivity of provable identicals, we then obtain ( (x ¼ y). j

Theorem 2: 8x; y 2 SN : x 6¼ y ! (ðx 6¼ yÞ:

Proof: We proceed by induction on x (= y).

(a) Basis. x ¼ 0. Then by the lemma, we must have ( (x ¼ 0), and

( (y ¼ Sz) for some z. Then from the supposition that x ¼ y, we can by

substitution of provable identicals derive a contradiction. So by the

necessitation rule we obtain (ðx 6¼ yÞ:
(b) Induction step.

There are two possibilities for y:

(b1) (ðy ¼ 0Þ.
But then, by the same reasoning as in a, we obtain (ðx 6¼ yÞ.

(b2) (ðy ¼ Sz0Þ for some z0 2 SN.

From the supposition that x 6¼ y, i. e. that Sz 6¼ Sz0, we derive in PA that

z 6¼ z0. Then by the induction hypothesis we get (ðz 6¼ z0Þ, whereby in a few
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steps we obtain (ðSz 6¼ Sz0Þ, using the Necessitation rule and distributivity

of ( over !. Then substitution of provable identicals yields the desired

result. j

So it can be proved in CPA that the standard numerals form a particularly

nice notation system. It seems likely that along similar lines. one can prove in

second-order Carnapian Peano Arithmetic that the recursive ordinals form a

SCÿ
8 notation system – although I have not checked the details.

In classical PA, the class of Peano-numerals can already be defined –

Gödel has shown how. Also, it is of course true that it can be shown in PA

that the equality-relation on the Peano-numerals is decidable (in PA). But all

this proceeds via coding. The Carnapian results in this section do not rely on

a coding machinery.

4.5. RELATIVE CANONICITY

Let us now try to express what it means to effectively, finitely reduce ques-

tions of identity and difference concerning a notation system S to identity

and difference questions about another system T, i.e., let us try to express a

notion of relative canonicity.

First, we need to express that notation system X contains identity and/

or difference information about a finite subset of notation system Y. To

do this, we need to be able to express, a.o., what it means for a set S of

presentations (relation X on presentations) to be finite. Up to provable

identity, this can be done in Carnapian modal logic. Let the formula

FIN(S) (FIN(X)) express this.18 Moreover, let FUN(X) express that X is a

function on presentations, and (for X a function), let DOM(X) be a for-

mula true of all elements in the domain of X, and RAN(X) be true of all

elements in the range of X. Using these notions we can indeed express, in

Carnapian logic, the characteristic function of a finite part of the identity

relation on Y:19

Definition 15: FIDY (X)�

FINðXÞ ^ FUNðXÞ^

DOMðXÞ � Y� Y ^ RANðXÞ ¼ f0; 1g^

(8x; y 2 Y� Y9z : (Xðx; y; zÞ:

Now we are finally able to express what it means for the identity/difference

relation on S to be effectively, finitely reducible to that on T:
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Definition 16: S � T �

T � S^

8x; y 2 S : 9F;G : FIDSðFÞ ^ FIDSðGÞ^

( 8u; v 2 T
ðFðu; vÞ ¼ 1 $ u ¼ vÞ^

ðFðu; vÞ ¼ 0 $ u 6¼ vÞ

� �
! x ¼ y

� �
^

( 8u; v 2 T
ðGðu; vÞ ¼ 1 $ u ¼ vÞ^

ðGðu; vÞ ¼ 0 $ u 6¼ vÞ

� �
! x 6¼ y

� �
:

Evidently variations on this definition are possible.

As an illustration, we give a simple example of concrete, finite notation

systems S, T such that S � T.

Definition 17:

m � 1 if Goldbach’s conjecture is true;

m � 0 otherwise.

Definition 18 (the systems T and S):

T � fm; 0g;

S � fm; 0; 1g:

We may suppose here (although this is not essential for what follows) that

Goldbach’s conjecture is absolutely undecidable, i.e., that:

:(GOLD ^ :(:GOLD:

We claim that S � T.

Proof (Informal sketch). There are 3 cases for x, y that need to be considered:

(1) x = m and y = 0.

(1a) Set F � fhm; 0; 1ig. Suppose Fðm; 0Þ ¼ 1 ! m ¼ 0. We know that by

definition: F (m, 0) = 1. So we deduce m = 0. So indeed:

(f8u; v 2 T½ðFðu; vÞ ¼ 1 $ u ¼ vÞ ^ ðFðu; vÞ ¼ 0 $ u 6¼ vÞ� ! m ¼ 0g:

(1b) Set G � fhm; 0; 0ig. Suppose Gðm; 0Þ ¼ 0 ! u 6¼ v. We know that by

definition G (m, 0) = 0. So indeed

(f8u; v 2 T½ðGðu; vÞ ¼ 1 $ u ¼ vÞ ^ ðGðu; vÞ ¼ 0 $ u 6¼ vÞ� ! m 6¼ 0g:

(2) x = m and y = 1.

(2a) Set F � fhm; 0; 0ig. Suppose Fðm; 0Þ ¼ 0 ! m 6¼ 0. Then indeed

m 6¼ 0. Therefore by definition of m: m = 1. So indeed
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(f8u; v 2 T½ðFðu; vÞ ¼ 1 $ u ¼ vÞ ^ ðFðu; vÞ ¼ 0 $ u 6¼ vÞ� ! m ¼ 1g:

(2b) Set G � fhm; 0; 1ig.
(3) x = 0 and y = 1.

(3a) Set F � fh0; 1; 1ig. Suppose Fð0; 1Þ ¼ 1 ! 0 ¼ 1. We know that

Fð0; 1Þ � 1. So we deduce 0 = 1.

(3b) Set

G � fh0; 1; 0ig: j

5. Indiscernible Names

It is impossible to prove in second-order Carnapian Peano Arithmetic for any

notation system that it is not SC�
8 ; . . . ;VWC. The reason is that basic

Carnapian is purely positive, in the sense that it cannot prove that for some

objects or properties absolutely undecidable properties exist:

Proposition 9: For all A 2 LC: C does not prove

9X1 . . . 9Xk9x1 . . .9xlð:(A ^ :(:AÞ:

Proof. The translation s (see the proof of proposition 1) translates

9X1 . . . 9Xk9x1 . . .9xlð:(A ^ :(:AÞ

into a contradiction. j

This entails as a special consequence that C cannot prove that some identity

statements are absolutely undecidable. If we want to establish that some

nonempty notation system are not SC�
8 ; . . . ;VWC, then we must explicitly

assume or postulate that some identity statements are absolutely undecidable.

For a given notation system S, we define a notion of S-randomness, or

better perhaps, S -indiscernibleness as follows:

Definition 19: IndSðxÞ � 8y 2 S : :(y 6¼ x.

The name n that was defined in Example 2 is a putative concrete example of

an SN-indiscernible name.

We can also distinguish a notion of weak S-indiscernibleness:

Definition 20: WIndSðxÞ � 8y 2 S9z : z ¼ y ^ :(ðx 6¼ zÞ.

Let us now make some simple observations about indiscernibleness. For

convenience, we first introduce some terminology:
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Definition 21: For any notation system S, and for any a 2 S, let d (a) be the

object named by a.

Definition 22: For any notation system S, let Obj (S) be the set of objects that

have names in S.

From now on, we assume that the naming systems that we will consider

are nontrivial, i.e. that for every naming system S, Obj (S) contains at least

two objects.

Proposition 10: Let S be any (nontrivial) WCÿ
9 system, and let x 2e S and

IndS (x). Then S [ fxg is exactly WCÿ
9 , i.e., it is Cÿ

9 but not SCÿ
9 and not

WCÿ
8 .

Proof.

(1) S [ fxg is not SCÿ
9 . For consider any o 2 ObjðSÞ such that o 6¼ dðxÞ.

Then o cannot have any strongly canonical name in S, for (by IndS (x))

no name is distinguishable from x. So S [ fxg is not SCÿ
9 .

(2) S [ fxg is not WCÿ
8 . Reason: x cannot be distinguished from any name

a 2 S such that d(a) 6¼ d(x).

(3) S [ fxg is WCÿ
9 . For this, it suffices to show that d(x) has a weakly

canonical name. But since x 2e S, there must be at least one name a 2 S

such that d(a) ¼ d(x). Any such a will serve as a weakly canonical name

for d(x). j

Adding a weakly indiscernible to a canonical notation system does not lower

the degree of canonicity as much as adding an indiscernible. Using an

argument analogous to that of the proposition above, it is easy to see that

SCÿ
8 þWInd is not a SCÿ

8 naming system. But it can happen that the

resulting notation system is SCÿ
9 or WCÿ

8 .

Recall from the previous section that in Carnapian second-order Peano

Arithmetic we can prove the existence of a SC�
8 notation system (the system

SN of standard numerals). Since the proofs of the propositions above can be

carried out inside the Carnapian logic C, Carnapian second-order Peano

Arithmetic can prove that if there are SN-indiscernibles, then there are

notation systems for the natural numbers that are no more canonical than

WCÿ
8 .

There are more technical notions to be distinguished here, and more

theorems to be proved, of course. But we will not do this here: the foregoing

should give some indication of the importance of the general notion of

indiscernibleness for the investigation of canonical notation systems.
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6. Concluding Remarks

In this paper, a formal framework for the systematic investigation of

canonical notation systems was proposed, and first steps were taken in the

investigation of its logical properties. Let us now, by way of conclusion,

summarize our findings. The usefulness of the framework of Carnapian logic

appears from its ability of:

1. Defining degrees of canonicity. This was shown in Section 4.2.

2. Proving general theorems about the structure of degrees of canonicity

and about indiscernible objects. This was to some extent done in Section

4.3, and in Section 5.

3. Defining notation systems for systems of objects. For this purpose, LC

must contain the basic expressions out of which these notation systems

are built. For this reason, for instance, we defined in Section 4.4.1 the

class SN in second-order Carnapian arithmetic.

4. Proving, in a Carnapian system, that particular naming systems have a

precise degree of transparency n. To this effect, one has to prove first that

the system in question has a degree of canonicity which is at least n, and

second, that its canonicity degree is no greater than n. The first part can

often be achieved in the relevant Carnapian system. As an illustration,

this was shown for SN in Section 4.4.2. The second part, however, re-

quires explicitly assuming the existence of indiscernible names, as was

shown in Section 5.

5. Defining in Carnapian modal logic, notions of relative canonicity (Section

4.5).

In addition to this, it may be interesting to apply the framework of Carnapian

logic to the investigation, within a classical framework, of epistemic notions

and problems, some of which have been studied before in the context of

intuitionistic arithmetic. One might try to investigate the intuitionistic notion

of apartness in the present framework. One might try to formulate epistemic

choice principles, principles concerning lawless sequences, and analogues of

Church’s Thesis in Carnapian Peano Arithmetic, and to investigate their

logical properties.
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Notes

1 For a ‘rational history’ of the discussion of quantifying into intensional contexts, see Neale,

(2000).
2 The classical reference is the papers in Shapiro (1985). But see also the papers by Reinhardt

on this topic (e.g., Reinhardt, 1986).
3 An exception is Reinhardt (1986).
4 The locus classicus is Carnap (1956, chapter V). The distinctive flavor of the Carnapian

approach is already foreshadowed in Carnap (1946, Section 12).
5 This idea of course goes back to Frege (1960).
6 See Kripke (1992).
7 The formal notion of a model for Carnapian languages is spelled out in more detail in

Horsten (1998).
8 The intensional systems in the literature concerning Epistemic Arithmetic are mostly of the

Kripkean kind.
9 One could contemplate strengthening this modal logic, roughly in the direction of S4:1: See
Horsten (1997), for a discussion of this line of reasoning.
10 See Anderson (1989, p. 100) and (Gödel (1990, p. 139).
11 It should be noted that the full second-order principle of mathematical induction is not

intuitively valid in the Carnapian setting. The antecedent of the induction axiom is satisfied by

a property U if U holds of the numerals 0;S0;SS0; . . . But for the consequent to be valid, U

must hold not only for these standard numerals, but for all presentations of natural numbers.

In response to this difficulty, one may want to restrict universal quantifier in the consequent of

the induction axiom to the standard Peano numerals (see Section 4.4.1).
12 Reinhardt is working in a Churchian setting in which two types of individual variables are

distinguished: intensional and extensional ones.
13 This argument is adapted from Reinhardt (1986, pp. 452–453).
14 I do not claim that Reinhardt himself would have agreed with my diagnosis of the version of

Reinhardt’s argument described here.
15 The notion of coextensiveness was defined in Section 3.1.3.
16 For a brief catalogue of properties for natural notation systems for ordinal numbers (See

Weiermann, 2004, p. 3).
17 For a definition of the notation system O see e.g. Rogers (1987[1967], pp. 208–209).
l8 The reader might want to write out this formula in the language of Carnapian modal logic.

It is not completely obvious how this is done: note that it is not the same as saying, in

Carnapian logic, that the extension of S (X) is finite.
19 In the sequel, the underlining in 0, e.g., means that, up to provable identity, the numeral and

not the number 0 is intended.
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