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Abstract This article deals with the links between the eioactparadigm and artificial
intelligence. Enaction is considered a metaphor diificial intelligence, as a number of the
notions which it deals with are deemed incompatibith the phenomenal field of the virtual.
After explaining this stance, we shall review poad works regarding this issue in terms of
artifical life and robotics. We shall focus on thek of recognition of co-evolution at the heart of
these approaches. We propose to explicitly integtia¢ evolution of the environment into our
approach in order to refine the ontogenesis ofatiiicial system, and to compare it with the
enaction paradigm. The growing complexity of theogenetic mechanisms to be activated can
therefore be compensated by an interactive guidagsgeem emanating from the environment.
This proposition does not however resolve thathef televance of the meaning created by the
machine (sense-making). Such reflections lead usntegrate human interaction into this
environment in order to construct relevant meamingerms of participative artificial intelligence.
This raises a number of questions with regardseting up an enactive interaction. The article
concludes by exploring a number of issues, themigbling us to associate current approaches
with the principles of morphogenesis, guidance,pghenomenology of interactions and the use of
minimal enactive interfaces in setting up experitaevhich will deal with the problem of artificial
intelligence in a variety of enaction-based ways.

Keywords enaction, embodied-embedded Al, sense-making,atotiew,
guidance, phylogenesis/ontogenesis ratio, HumaheariLoop, Virtual Reality

Introduction

Over the past few years, the cognitive sciencese haeen undergoing
considerable evolution having taken into accourd tatural and committed
nature of organisms when describing their cognitoapacities (Sharkey &
Ziemke, 1998; Lakoff & Johnson, 1999). Enactionoise of the theoretical
propositions involved in this evolution (Varela,drhpson, & Rosch, 1993; Nog,
2004; Stewart, Gapenne, & E. Di Paolo, 2008). Etreugh debate about the
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relevance of the different areas of the cogniticeersces seems to be quieting
(Gershenson, 2004), enaction offers an alternsive®gnitivism (Pylyshyn,1984)
and connectionist approaches (Rosenblatt, 1958pllmwing and furthering the
sensorimotor theories initiated by (Gibson, 1966)s based on research in the
fields of biology (Maturana, Uribe, & Frenk, 19@@aturana & Varela, 1980) and
neuroscience (Freeman & Sharkda, 1990; Freeman,1)20@ supports
constructivism (Piaget, 1970; Foerster, 1984; Shai®93; Glasersfeld,1995;
Rosch, 1999) and anthropological argumentation¢klos, 2005, 2006). Finally,
its philosophical extension is also reiterated reqomenology (Husserl, 1960;
Merleau-Ponty, 1945; Varela et al., 1993; Lenayg6t Bickhard, 2003) and is at
the centre of the research program into neurophenology (Thompson &
Varela, 2001; Lutz, Lachaux, Martinerie, & Vare2f)01). Enaction supports the
construction of cognition on the basis of interacs between organisms and their
physical and social environments (De Jaegher &a&al®, 2007). It is thus rooted
in radical constructivism. The issue which we W# analyzing here is that of the
links woven between enaction and artificial intgince, first dealt with a few
years ago.

Even if an auto-constructing artificial system ist nn itself new to artificial
intelligence (Turing, 1950; Von Neumann, 1966; Bres, 1991; Hall, 2007), the
Computational Theory of Mind faces a number of idifities linked to the
representational nature which it proposes (Dreyfi®79; Fodor, 2000)2: the
frame problem (McCarthy, 1969; Korb, 2004), the bgingrounding problem
(Harnad, 1990, 1993), modeling of common sense @@, 1969), the
importance of context (Minsky, 1982; McCarthy & Byv1998), creativity or
indeed social cognition, or cognition in an operviemment. In order to
overcome these difficulties, new Al rejects theaidé representations and is at the
source of embodied-embedded Al (Brooks, 1991; &fetf Gomez, 2005).This
approach integrates the role of the body and theasenotor loop in recognizing
a robot’'s cognitive capacities. Nevertheless, itoemters difficulties regarding
guestions of agentivity, teleology and constructtbmeaning. (Ziemke, 2001; Di
Paolo, 2005; Di Paolo, Rohde, & De Jaegher, 200ifrdntiate between
automatic systems, which rely on fixed exterioruesl, and systems which create
their own identity. The biological origins of thesetions, predicted by I. Kant
(Kant, 1790), J. von Uexkill (Uexkull, 1957) or Bbnas (Jonas, 1968) seem to be
one possible key element in resolving these isstiesuch, one would need to
meticulously copy natural mechanisms artificialBr€yfus, 2007). A task of such
complexity seems unfathomable, however (Di Paolbiz&ka, 2008) insist that it
iIs not the details of these mechanisms that coowt, rather the underlying
principles which much be identified. It is thesenpiples which aim to clarify
enaction via a radical point of view according thieh, due to the viability
constraints of organisms and on their capacity @act, their interactions
"crystalize” the sensorimotor invariants which dheis the source of enacted
"embodied representations” from agentivity and fregense-making (Di Paolo,
2005). The paradigm demands an absence of repaéisastof a pre-given world

2 These difficulties also relate to the connectiomipproaches which, in this context,
constitute a cognitive background, maintaining étigm at the status of a entrance/exit
processing system.



and also of the biological origins of autonomy: tnetopoiesis principle. This
principle is extended further by the integrationtloé sensorimotor loop, the co-
evolution of the organism and its environment, aindlly the enaction of its own-
world. The notion of own-world (or phenomenal worl@Uexkuill, 1957),
expresses the way in which a subject’s representati the world is unique to
that person and cannot be detached from his pdregparience and sensorimotor
capacities.

In terms of the virtual, enaction and its revolaaoy vision enable us to lay down
new foundations. These new foundations led (Fr&s&emke, 2009) to lay
down the guidelines for “Enactive Artificial Intejence” which clears the
existing ambiguities surrounding the notion of ewlibd cognition highlighted by
(Clark, 1999; Nunez, 1999; Ziemke, 2004). We wdhyain prudent about the
terms we use, considering enaction as a metapharfificial intelligence. We
shall therefore refer instead to “Enaction-Basedifidal Intelligence (EBAI)”.
Indeed, the direct transfer of a paradigm fromdbgnitive sciences might lead to
shortcuts, misunderstanding and confusion regartheginitial notions of the
paradigm. For example, enaction borrows the sp#gifof first-hand experience
from phenomenology, and it is necessary to use grhenology in order to
understand the mind. However, in the case of mashitine notions of first-hand
experience, consciousness and own-world are withadubt inaccessible, if not
absurd. This article does not aim to enter into tiebate surrounding the
functionalism of the intentionality of autonomy @irconsciousness (Searle, 1997;
Chalmer, 1995; Pylyshyn, 2003; Kosslyn, ThomsonGé&nis, 2006; Thompson,
2007). We shall simply embark on analyses of (Ro&d8tewart, 2008) who
propose to replace the traditional distinction kesw ascriptionnal and genuine
autonomy by presenting the hypothesis tlaat attributional judgement based on
knowledge of an underlying behavior-inducing medsranwill be more stable
than a naive judgment based only on observatiobebfaviof. This concept
enables us to use the ideas and advances of a@gratience in order to
contribute to the artificial sciences (Simon, 1968) vice versa. In particular, the
problem of sense-making, crucial in artificial iihtgeence, can be established in an
enactive inspiration.

This article will be structured in the following maer: section 2 outlines the
notions relating to enaction and the charactesstiected of an artificial system
claiming to adhere to the model. In section 3 wallseummarize the main
elements of the approaches in artificial life amdbatics which fall into the
category of enaction. For each of these approagreesiill demonstrate how little
importance is given to the evolution of the envimamt and the difficulties
involved in obtaining ontogenetic mechanisms. Theom of a sense-making for
a machine can also be a problem for a human usérig designed to be
autonomous in a purely virtual world. Having stutlidnese issues, we make a
number of suggestions in section 4: a more expledbgnition of the irreversible
evolution of the environment and of coupling; gaglithe artificial entity in order
to tackle more complex ontogenesis as is the casieei co-evolving nature and
integration of the "man-in-the-loop” with the coeation of meaning, compatible
with the social construction of meaning and théiahiprecepts of Al, illustrated
by the Turingtest. The section then goes on to present the areiat we shall
explore in future research in order to meet thesasy before going on to the
conclusion (section 5).



From enaction to artificial intelligence

Enaction proposes to address cognition as the riisid structural coupling
between an organism and its environment. Hereiglla brief summary of the
concepts closely linked to it. For a more detaidedount, we recommend the
review articles by (McGee, 2005, 2006). Enactioiginates from the notion of
autopoietic systems put forward by Maturana andeMaais model of the living
centred on the capacity of organisms to presemie tability (Varela, Maturana,
& Uribe, 1974). For these authors, this preservatitefines the organism’s
autonomy and constitutes the biological origin tf cognitive capacities. An
autopoietic system is a structure which produceelfitas a result of its
environment. The environment may disrupt the systehmse functioning will
evolve as a consequence of that effect. If thetfaning of the organism evolves
in such a way as to preserve it despite disrupfrom exterior factors, the
organism can be considered viable. This new wafgiétioning will, in return,
influence the environment and the organism-enviremnsystem will co-evolve.
The fact that the environment is but a disruptimplies that it does not seem to
be represented within the organism as a pre-givaitdwurthermore, constraints
on viability and the necessity to remain alive emdbe organism with an identity
by means of its metabolism and its capacity to Hois identity emerges relative
to viability constraints, and the environment graltlutakes on meaning.

Breaking away from biology, we talk about operasibyn closed systems.
Operationally closed systems form a system of sieely interdependent
processes in order to regenerate themselves, andbeaidentified as a
recognizable unit in the domain of processes. Mgthprevents the notion of
operationally closed systems being applied to thenpmenal domain of the
artificial. The scientific approach would then leegeneralize this mechanism to
multicellular organisms (Varela, 1979), and thustmman beings, the mind, and
social cognition (De Jaegher & Di Paolo, 2007). édch level, there is a
difference linked to the aspects associated wighnibitions of viability and unity
(Stewart, 1996; Di Paolo, 2005). Without enterimgoi further detail and the
arguments behind the theoretical approach, we gieddlin three important
characteristics involved in the development offiarél systems based on this
paradigm:

1- The absence of a priori representations: In the adonof Al, this
characteristic shares similarities with Rodney Bsoaonsiderations
(Brooks, 1991) but which, to be more precise, teas to an absence of
representations of a pre-given world. The organikras not possess an
explicit and definitive representation which it édumanipulate in the
manner of an imperative program, for example tonpta define an
intention as a rule-based calculus. It is theserattions which enable it
simply to "survive” by preserving sensorimotor inkzats.

2- Plasticity: The organism is viable as it is capabfe’absorbing” the
disruptions caused by its environment and to attagitem. This plasticity
can be observed not only in the body for physin&dractions but also at
nerve level for higher-level interactions (cerelpiaisticity).



3- Co-evolution: requires the distinction between ptslsy grounded
cognition and cognition that is rooted in their owmrld (Sharkey &
Ziemke, 1998). A modification of the world by theganism in return
imposes a modification of that organism. This coletton can just as
well be considered a phylogenetic scale as an entli@ scale and gives
rise to structural coupling characterized by itsversibility. The example
is often giving of tracing a path by trampling tp@und with our feet.

In this way, we can see that the artificial sysisrtaking the form of a complex
system i.e. it is heterogeneous, with an open amiti-staled dynamic (Laughlin,

2005). The emergent properties of these systemseatienony to the openness
and the multiplicity of the possibilities of evalom. The notion of "natural

derivation”, highly important in enaction (Varelaa., 1993) is thus converted to
"artificial derivation”. It underlies complex systes and can initiate creativity and
commitment in "bringing forth a new world”. Creaitly is here defined as the
possibility to determine the functions of an undefl element of the environment.

These systems are able to apprehend and to emgarpes relating to the world
with which they interact. These properties, which aften dynamic, are difficult
to represent using symbols and also resist absinacthese characteristics are
fundamental to enaction, which considers that kiaw-precedes knowledge and
highlights the uniqueness of each experience.

Co-evolution involves a recursive transformation tbe system and of its
environment. The environment is thus an actor exgame way as the entity that
occupies it. However, generally, the theories obedied Al neglect the evolution
of the environment, preferring to focus on perfegtihe autonomous system. This
priority is illustrated by the first "Enactive Alesign principles” drawn up by
(Froese & Ziemke, 2009):

- principle EAl-1a: an artificial agent must be capable of generatimg i
own systemic identity at some level of description.

- principle EAI-1b: an artificial agent must be capable of changing\ts
systemic identity at some level of description.

Systemic identity works from the notion of auto-ntanance of a system as it is
understood in the theory of autopoiesis. Princigles a compromise made due to
the complexity of implementing principle la. Thecsed set of principles
introduces the concept of interaction between tigardsm and the environment
by means of the sensorimotor loop:

- principle EAl-2a: an artificial agent must be capable of generatimg i
own sensorimotor identity at some level of deswipt

- principle EAI-2b: an artificial agent must be capable of changing\ts
sensorimotor identity at some level of description.

The active behavior of the agent is here dealt witplicitly. It enables us to
address the construction of meaning in terms ofegsguvation of sensorimotor
loops, but ignores the co-evolution of the envirentn and the agent. In



conclusion, the role of the environment and itatreé capacity to endanger the
viability of the agent, is introduced by the thpdnciple:

- principle EAI-3: an artificial agent must have the capacity to atyiv
regulate its structural coupling in relation toiability constraint.

However, to us, the irreversible nature of the oorgd evolution of the entity and
its environment does not seem to have been made €ler now the challenge is
to introduce regulatory mechanisms in order to ma@&nthe existence of the
entity, knowing that the impositions exerted owiit evolve. The system must be
able to regulate its regulation, to be able to s&€ca meta-regulation (Morin,
1980). The implementation of such a system steom {Froese & Ziemke, 2009)
and particularly the hard problem of enactive miif intelligence. This consists
of concretizing the set of rules governing the exystso as to define the
modifications enabling it to be preserved. To davsald imply an understanding
between the domain of explicit design and thatvol@ionary approaches. This is
the only method currently available when attemptingset up auto-adaptive
artificial systems which rely on a dynamic ratheart a representational approach.
Before putting forward our suggestions for overamgnthis problem, we shall
identify the ways in which current approaches aitigeto the artificial enaction
paradigm fail to consider the role of the environtnand of co-evolution in
sufficient detail.

Co-evolution and environnement in (enactive)

artificial intelligence ?

Research corresponding to an enactive approacttifioial intelligence logically
developed in the domain of artificial life alongsithe study of the principles of
autopoiesis (McMullin, 2004; Beer, 2004; Bourgine tewart, 2004; Beurier,
Michel, & Ferber, 2006; Ruiz-Mirazo & Mavelli, 20R8These studies concern
principles EAI-1a and EAI-1b. Other research inatds has followed a similar
trend with the development of artificial dynamic gottion which can be
associated with the study of principles EAI-2b &xl-3 (Beer, 2000; Di Paolo,
2000; Nolfi & Floreano, 2000; Harvey, Di Paolo, WhdQuinn, & Tuci, 2005;
Wood & Di Paolo, 2007; lizuka & Di Paolo, 2007). Vgball summarize these
findings focusing particularly on the assimilatiasf environment and co-
evolution.

Simulating autopoiesis: The biological origins of autonomy

Principles

The theory of enaction is rooted in the biologicechanism of autopoiesis. The
autonomy of an autopoietic system constitutes itsimal cognition. We must
remember that an autopoietic system is a compasite much like an element-
producing network in which the elements 1) via thateractions, recursively
regenerate the network of production which produttesin and 2) construct a
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network in which they exist by building up a frartiwith their external
surroundings via their preferential interactionghw the network (Dempster,
2000). Autopoietic systems possess the propertiemergent systems as they are
able to create natural phenomena independent sktfrom which they were
generated (Laughlin, 2005). Figure 1 summarizes pheciples of minimum
autopoietic systems models.

substrat catalyst hole

generation

o o repair

membrane

Fig. 1lllustration of the autopoiesis principle: A celnimembrane encloses a catalyst which
cannot cross that membrane. A substrate can diesaeémbrane. In the presence of the catalyst,
the substrate evolves into elements which will hefiee membrane, should holes appear in it.
Thus the cell is able to regenerate because thdyshais enclosed within it, and because the cell
regenerates, the catalyst remains captive within it

Since the pioneering research by (Von Neumann, ;18@édner, 1970; Langton,
1984), researchers have gone on to study rich&rpat introducing biochemical
mechanisms, physical mechanisms and genomic elengBiitrich, Ziegler, &
Banzhaf, 2001; Madina, Ono, & lkegami, 2003; WaksmaKoizumi, Kishi,
Nakamura, Kobayashi, Kazuno, Suzuki, Asada, & Taga 2007; Hutton,
2007). Both fields of research and reported redige thus become much more
diverse. Consequently, in this section, we shadl daly with the research which
explicitly mentions autopoiesis.

Following on from the analysis put forward by BaktgMullin in (Mc Mullin,
2004), we have organized the different approaahtestinree categories:

1- The study of the dynamics of basic principles imimilist models aiming
at a mathematical analysis of the system’s vigb{Bourgine & Stewart,
2004; Ruiz-Mirazo & Mavelli, 2008). This analysis conducted using
stochastic differential equations. These equatiiigte the way in which
concentrations of the elements forming the systenive and establish
stability criteria for these elements. For thespraaches, the viability of
the system represents its ability to keep its cotmagon stable when
under strain from external forces. The topologythed system cannot be
manipulated via these systems. For example, thiigposf the membrane
of the tessellation automaton is predefined in (Bme & Stewart, 2004).
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It follows that the notions of interior and exterare themselves implicit.
However, this topological distribution plays an on@ant role in the
principle of autopoesis and in evolving phenomenahsas distortion,
which cannot be replicated.

2- The study of the plasticity of configurations whicdin be preserved during
disruptions or which enable the minimal action ofaatificial entity (Beer,
2004; Moreno, Etxeberria, & Umerez, 2008). Thesalist involve the
configurations of different cellular automata. Thise, the topological
elements can be simulated using this type of autmma he viability of
this approach depends on the preservation or eeplubf a shape
inscribed on the grid. Whereas (Beer, 2004) addeeise configurations
of the game of life, (Moreno et al., 2008) devel@garela et al., 1974)’s
initial automaton, giving it the ability to movecand under the influence
of a flow of substrate on the grid. They also destiate the influence of
the automaton’s specifications on the ability & dell to move around.

3- The study of the emergence of autopoietic behgBeurier, Simonin, &
Ferber, 2002). The authors base their researclh@mation of multiple
emergences using a situated multi-agent systenhiliyais summarized
as the maintenance of the emergent process. hffagents positioned on
a grid mutually attract or repel one another adogydo pre-defined rules
and the virtual pheromones that they diffuse ohti grid. They can also
change their "nature” (this nature being represknby a variable),
depending on the state of their surroundings. Timsdel exhibits
properties of autopoietic systems: membraneionio-atganization of the
system, preferential interaction between the elémenf this auto-
organization, and finally the ability to withstandisruptions and to
regenerate the system should it become damaged.

The problem of co-evolution

The possibility of co-evolution for each of thesgpeaches is linked to the
difference of opinion surrounding the notion ofhilay. This clearly illustrates

the variety of different ways in which the autopmseprinciple can be interpreted.
It also raises the issue of status in the "topaalgiand physical nature” of
autopoietic principles. For example, the notion tbé frontier is intuitively

topological but can become completely abstract digial phenomenal domain.
Nevertheless, the first category of approaches doefollow the causality of the
entity’s internal mechanisms. These models theeefdo not convey the
granularity necessary to be able introduce thevadgmt of a membraneionic
distortion or an interaction with an environmentost characteristics would
evolve. To do so would involve using a simulationtegrating the physical
constraints of collision and movement. In (Mana&h De Loor,2007), we

presented the simulation of one such model basechgents situated in a
continuous three-dimensional universe (see figyrd Rese simulations show the
extent to which it is difficult to recreate the thetical results of stabilization
demonstrated in simplified mathematical analysesil& work introducing

physical parameters such as pressure or hydroplnavi@ been put forward by
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(Madina et al., 2003). This is a first step towandegrating the distortion and
thus the evolution of the cell.

Fig. 2 A flexible three-dimensional model of a tesseflatautomaton (and on the right, of its
breakdown). The membrane cells (in green) are aiadéy springs (in gray) which disintegrate
over time. However, the substrate crossing the(teblue), can regenerate those links when in the
presence of a catalyst enclosed within the ceterAd certain amount of time, the impacts cased

by the collisions deform the cell which, in the ediintegrates (Manac’h & De Loor, 2007).

The second category explicitly introduces the etvotuof the form. However, the

discrete nature of cellular automata as describgedBeer, 2004) means that
change of form are abrupt. The system is therdfagle as it is sensitive to an
evolving environment. Furthermore, it is the prga@on of form over time that is

considered proof of viability. In a context suchtls, it is impossible to achieve
irreversibility. It must be noted that the probléiomes not exist for (Moreno et al.,
2008)'s approach, which could more easily tend towao-evolution. The third

category explicitly concerns emergence supportethigynal rules and variables.
Research is still required in order to enable thakss to evolve according to their
environment.

In more general terms, to achieve co-evolutiondregproaches must address the
possibility of acting towards and modifying the gomment which, in turn, could
modify the autopoietic entity. In order to do due troles of the environment and
of the modification must be explicitly incorporatedevertheless, the main issue
in terms of enaction based artificial intelligenasnich remains in the background
of this approach, is still the relevance of thisadeand of the phenomenal nature
of the autopoiesis principle itself. Precise biot@d) considerations are not, by
definition, necessary if the principles put forwényg (Froese & Ziemke, 2009) can
exist at the heart of an artificial model. Artiai dynamic cognition was
developed based on considerations much like these.

Autonomy through action: Artificial dynamic cognition

Being linked to evolutionary robotics (Pfeifer & fgger, 1999; Nolfi & Floreano,
2000), artificial dynamic cognition explicitly adeBses the capacity of
sensorimotor loops with regards to the preservatioan agent’s viability (Beer,
2000; Daucé, 2002; Harvey et al., 2005). It is mftéaimed that it is associated
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with enaction even if, erring on the side of cantithe term "Enactive Atrtificial
Intelligence” is not explicitly mentioned. For expl®, (Rohde & Di Paolo, 2006)
suggest, that at least for now, evolutionary raisotnight simply serve to study
the hypotheses of cognitive science. In order tsa@dhey propose to concentrate
on specific aspects of natural behavior so as tluae the complexity of the
problem as a whole. However, this would mean thabuld be necessary to take
precautions in the conception of such a reducedratipa as complexity,
dynamicity and plasticity must all prevail. Thisase of the main challenges of
this approach.

Plasticity rules

ohservation \\ %modiﬁc,t;tionsf

VO]
perturbations >O O O O compensations
0

CTRNN

. —
Environment ef———

Fig. 3 The network of neurons is recurrent and geneeilations which are disrupted by the
environment. Plasticity consists of altering thedfications of the differential equations using

different criteria (ultra-stability, Hebb’s lawsce).

The physiochemical phenomenal domain addressetebgproaches simulating
autopoiesis is not discussed here, so that we naghtentrate on the dynamic
neuronal domain of a complete agent. The notiorviability will therefore
undergo a change of perspective. The model ofeeéer here is the Continuous
Time Recurrent Neural Network (CTRNN) (Beer & Ggltar, 1992), which
originates from the theory of dynamical systemso@itz, 1994). (Funahashi &
Nakamura, 1993) highlights the advantage of belslg o estimate the majority
of families of dynamical systems. A network likeistthas chaotic dynamic
behavior endowed with attractors (Bersini & Ser2802). In concrete terms, all
of the nodes are interconnected and the outpuewvailleach one is defined by a
differential equation. The parameters for theseagas are defined using genetic
algorithms which select and improve the right Soh& according to Darwinian
metaphor. In the rest of the article we shall adglslfghylogenetic approaches. The
outflows of the nodes have an oscillatory pattérwvery small proportion of arcs
are linked to the agent’s sensors or actuatorsditheulty is to develop networks
which will enable these sensorimotor loops to adapt as they gain experience.
Research by (Beer & Gallagher, 1992) demonstrateadaptation like this by
giving the example of a network whose dynamic camspees for a modification
of the robot’'s body. To do so, the genetic algonitipreselected individuals
functioning with and without the modification. Theetwork was also pre-
structured and not completely recurrent. Thereosigpproximator so universal as

10



the unstructured CTRNMhodel. In order to overcome these limitations, E. D
Paolo proposes to render the network of neurons plasticas to allow a
modification of the connections’ characteristicsths robot gains experience.
Different plasticities may be used. Homeostatisixtay, that which is closest to
enaction, is based on the notion of ultra-stabibty Ashby (Ashby, 1960). It
consists of setting up a stabilization loop whichl wodify the network arcs
involved in the over- or under-activity of neurons. comparison with the
biological conditions of the organism, maintainthgse values within an interval
represents a condition of the viability of the netkvsuch as maintaining a certain
temperature or blood-sugar level. Hebbialasticity consists of adjusting the
weight of network arcs according to the correlatmmnon-correlation of the
activities of the nodes which they link togethemn. both cases, the rules of
plasticity are defined by genetic algorithms. (Wdwdi Paolo, 2007) compare
these techniques, complicating homeostatic behdwodefining the zones of
stable homeostatic functioning designed for preaigerities (lizuka & Di Paolo,
2007).

The general pertinence of these approaches hasddeesmmstrated by reproducing
numerous experiments, often inspired by psycholdégy. example, (Di Paolo,
2000) explains the architecture used to give atrti® ability to make up for a
visual inversion when following a target (inversiohthe robot’'s sensors). What
is remarkable is that, when the sensors are inVettee rules of plasticity are
activated and the robot is able to behave as itldheven though these rules have
never been phylogenetically learnt in such condgioHere, phylogenesis has
allowed the preservation of adequate internal dyodmehavior for the viability of
the system, even if the sensorimotor loops mushbeified accordingly. Another
remarkable factor is that the longer the functignperiod in a particular mode,
the longer the re-adaptation will be, thus suppgrtAshby’s theory and the
psychological approach. Using other experimentsargely et al.,, 2005)
demonstrated that these networks possess theyabiliemember, and (Wood &
Di Paolo, 2007) highlight behaviors also observedrird) psychological
experiments with children.

Problems for co-evolution

Other researches involving the plastic evolution refuronal networks are
presented in evolutionary robotics (Floreano & Uaze2000). However, we have
presented the findings of E.A. Di Paolo’'s team, tasy are particularly
representative of enactive inspiration and insigbruthe system’s agentivity.
Plasticity also enables the system to auto-adaptst@nvironment using the
principle of ultra-stability, which is fundament& this domain (lkegami &
Suzuki, 2008). However, even if the action of thebat is followed, the
environment is not altered in the irreversible sen$ the word mentioned in
section2. The robot moves, but does not undergoreversible modification in
its environment. For example, if the sensors ofgghetotaxic robot are inverted,
the plasticity of the neuronal network will enaliléo behave correctly. In theory,
if we return the sensors to their initial positidhe configuration of the neuronal
network should return to its initial state and th@eriment could be repeated as
many times as we like, without any major changesuotg between them
except, perhaps, readaptation time. In other tetimesyisual inversion experiment
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does not irreversibly alter the phototaxic robts.dxperience will not have taught
it anything, nor changed it in any way. Therefdhe saying "one never forgets”,
is not supported by a model such as this. Knowladgsored in the network’s
dynamics, but the following stage, in which theitgntetains and remembers that
knowledge so that the system might use it in theréy is missing. The difficulty
is in finding the “essential variablegissociated with rules which could enable a
more radical evolution than this. The principle ulfra-stability alone does not
give access to that of irreversibility, at leassimplified models. As (lkegami &
Suzuki, 2008) suggest, the entity must also beestitip evolution. In fact, the
evolutionary approaches are also faced with the blpro of
phylogenetic/ontogenetic articulation, which seetmse extremely difficult to
resolve.

Propositions: Toward co-evolution with humans in

the loop

Positioning

We shall now go on to present a proposition thatsaio push back the limits
previously identified here so as to enable an EBAkefine its agentivity by
means of more complex co-evolution. This proposabased on the following
arguments involving irreversibility, ontogenesigsiaense-making.

The problem of irreversibility

The irreversibility of co-evolution is often ovedked as the evolution of the
environment, which follows the actions of the agestneglected in favor of
initiating an adaptivity to external changes, tleose which do not follow the
actions of the agent itself. We suggest that trentaghould actively modify an
environment which, in turn, should also evolve. sSTlgrinciple is based on
research suggesting that an entity’s environmenmnagle up of other similar
entities (Nolfi & Floreano, 1998; Floreano, MitMagnenat, & Keller, 2007). It is
a mechanism such as this which must be set ughéopteceding entities. In the
following section we shall present our argumentsupport the hypothesis that
this is not sufficient to control this co-evolutiomor to enable it to access sense-
making which might be relevant to humans. First, skall try to complete the
principles suggested by (Froese & Ziemke, 2009}Herconstitution of an agent
from an enactive perspective, by a "principe aéwersibility”.

- EBAIl irreversibility design principle: an artificial agent must have the
ability to actively regulate its structural cougirdepending on its
viability constraints, with an environment whichmbdifies and for which
certain modifications are irreversible.

This implies that it is possible that, as a resiiidn action, the agent’s perception
of its environment may be altered in such a way ithaill never again perceive
that environment in the same way. The fact thas thmly involves certain
modifications and not all of them thus enablesabent to stabilize its coupling,
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which cannot be done in an environment which isftexible. One difficulty is
thus to find the balance between sufficient ressgdor it to be able to remember
the interactions, ané€h habitus depositidn(Husserl, 1938), and sufficient
plasticity for it to be able to evolve.

The problem of ontogenesis

Even if the modeled agents are complex in the straene call upon the notion
of emergence in order to characterize their gereghhvior, their ontogenesis can
be considered relatively simple. Either the pritespof autopoiesis and viability
are the sole focus of attention, to the detriménhe evolution of these principles
or, the ontogenesis of the agent is defined usimgewolutionary approach.
However, the Darwinian inspiration behind the etiolary approach is not
compatible with an explanation of ontogenesis avaluated a whole agent. The
agent is ready to function and fulfill the taskttitahas been selected for. That
being said, if we want to progress in terms of cédgaand to broaden the
cognitive domain of artificial agents, we must tak® account the fact that the
more complex agents are, the greater the ontogermtiponent of their behavior
compared to the phylogenetic component. Furthermasethey develop, the
influence of the environment becomes superior te ihfluence of genetic
predetermination (Piaget, 1975; Vaario, 1994). Fram enactive perspective,
evolution is considered more as a process of aganization than a process of
adaptation. It is therefore important to distinguisetween an auto-adaptive
system and a system which learns (Floreano & Uirz2@00). For example, in
robotics, it is necessary to express evolutionasgarch differently so that it does
not rely on the selection of agents capable oflfinl a task or of adapting to a
changing environment, but rather on a selectiomag#nts capable of "adapting
their adaptation” to that of the other and thusecaqith new environments. This is
debatable, as we could argue that the behavicgatieity of natural organisms is
inherited from the adaptation characteristics getkc throughout their
phylogenesis. It remains nonetheless true thatyemaganism’s past conditions
both its identity and what it will become, and esply so in the case of
organisms with highly developed cognitive abiliti#&aget, 1975). Even if the
aforementioned research shows that the principlaltod-stability supports this
argument, one important issue still needs to beremddd: that of the
generalization of ontogenetic development prin@plehis problem is so tricky
that we suggest associating evolutionary approaeitbsguided online learning,
during ontogenesis. Here, we fall under a Vygotski@rspective according to
which training constitutes a systematic enterprigdich fundamentally
restructures all of the behavioral functions; indae defined as the artificial
control of the natural development process (VygntskO86). Now is a good
moment to refer back to the biological world frorhieh, generally speaking, we
can deduce that the greater an organism’s cogndagacities, the greater the
need for guidance in the early stages of its lifeis may require the use of a
different kind of model of plasticity, for exampteorphological plasticity of the
configuration of the system itself so that it mightrease and specialize selected
components as it gains experience. The problemméaming these principles and
proposing models, techniques and processes capBbdeognizing them is thus
raised.
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The problem of sense-making

Let us imagine that the previous step has beereaetiiand that we know how to
obtain an artificial system capable of co-evolutibet us also imagine that we
could imitate the environment of such a systemhm same way as the system
itself. There would be a co-evolution of these tardities. Both systems could
engage themselves along "uncontrollable naturavagons”. Enaction considers
that a subject’s world is simply the result of @stions on its senses. Thus, the
presence of sensorimotor invariants evolving atithart of an artificial system is
the machine’s equivalent of "virtual sense-making”the virtual own-world.
What would this sense-making represent for ani@gifsystem co-evolving with
another artificial system? We must be wary of asgbmorphism, which is
inappropriate here as the construction of meanmdy sense for such machines
cannot be compared to those of humans. We arguentening; coherent within
the perspective of Man using the machine, and @wplirom the cooperation
between Man and machine, can only emerge througiaictions with a human
observer. Otherwise we will find ourselves facedhwmachines resembling
patterns created by fractal evolutionary algorithiibey would be extremely
complex and seem well organized, but would be iablgpof forming social and
shared meaning. This by no means leads us to qudsie value of experiments
in evolutionary robotics for the understanding afndamental cognitive
principles, but rather to attempt to address tloblpm of sense-making. We must
nevertheless take precautions, keeping in mind pibkential impossibility of
attaining such knowledge, just as (Rohde & Steve&®3) argue for the notion of
autonomy. We simply wish to explore the leads whidlght enable us to come
closer to one of the aims of artificial intelligendhe confrontation of a human
user and a machine (Turing,1950). We hypothesiz, thom an enactive
perspective, one relevant approach would be to oegplthe sensorimotor
confrontation between Man and machine. In this &antwe believe that Man
must feel the "presence” of the machine which esggs itself by a sensorimotor
resistance in order to construct meaning aboultf.it$éis idea of a presence,
much like the Turingtest, evaluates itself subjectively. This has nigtdizen
studied in the domain of virtual reality (Auvrayakheton, Lenay, & O Regan,
2005; Sanchez & Slater, 2005; Brogni, VinayagamoorSteed, & Slater, 2007)
and enables us to link phenomenology and Enactese Artificial Intelligence.
We therefore make the hypothesis that a presestedald be to Enaction-Based
Artificial Intelligence what the Turingest is to the computational approach to Al.
An EBAI compatible with this presence test mustitbesensorimotor interaction
with Man in order to coordinate its actions witlogle of the machine, which in
turn could guide and learn from it so that togetileey might construct
"interaction meanings”.

(De Jaegher & Di Paolo, 2007) comment on the ppdiory aspect and on
coordination as a basis for the construction ofmreain an enactive perspective.
The actions of the other are as important as therecof a subject in contributing
to the enaction of its knowledge. Thus, we argag tine human’s participation in
this co-evolution will enable both he and the maeho create meaning. If Man is
not part of this loop, from his point of view therg no intelligent system.

Inversely, with his participation, the coupling esas an own-world to emerge for
the user. This raises the issue of the mode ofaadten between Man and
machine, which we shall address in section 4.2.

14



Summary of our proposals

To clarify our remarks, our proposals are summadringhe following paragraph:

- Proposal 1:To overcome the problem of irreversibility, we pose to add
a principle obliging the agent to actively modify environment which
would also be evolving.

- Proposal 2:In order to overcome the issue of the complexity o
ontogenesis, we propose the introduction of interaguidance for the
agent throughout its ontogenesis so as to leavenmory of its
interactions, as in the case of complex cognitiothe animal kingdom.

- Proposal 3:To overcome the problem of the creation of relevaeaning
in terms of the presence test, we suggest integratimans into the loop
so that a co-creation of meaning relevant to Maghtrélso occur in the
artificial system.

These three proposals should not be addressedomeal us, it would seem
appropriate to address the evolution of the enwremt without considering
Man’s presence in the loop or even to set up intem guidance without
addressing the environment. However, for each eddhstages, we must not lose
sight of the ultimate necessity for these two eletsien order to guide the
theoretical or technical choices that must be nvéltien designing them. The final
objective is to design ontogenetic mechanisms @nplex dynamical systems
which will be guided by people. This objective lisstrated in figure 4. Artificial
entities are complex systems enriched with ontaeneechanisms which guide
their evolution via anén habitus depositidrof their interactions. This guidance
can be conducted via a simulated environment, bustminclude human
interaction. We shall see that it must be done qu&nactive interfaces. The
complexity of online guidance such as this leadstausmagine progressive
exercises linking the evolutionary and ontogenefpproaches. We shall thus
present the elements which seem relevant to thigati®n of our research
program. Section 4.2 addresses the issue of tlezfane between Man and
machine, and section 4.3 addresses that of guidamtentogenesis.
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Fig. 4 Artificial entity based on enaction metaphor.

Interface requirements

The interface between the system and its envirohimsesne of the more delicate
points of our proposal. Indeed, in enaction, thiomoof the body as an entity able
to feel and to act, originating from Merleau-Ponig,essential and should be
referred back to for an artificial system. The olody conditions the creation of
an own-world. What do own-world and body mean toaatificial entity? We
must admit that, with our technique in its currastate, there is a substantial
difference between a machine and a living organisrterms of both body and
cognition. Due to the technical implications, wee asbliged to restore the
separation between the cognitive element and s f@hich, together make up
the equivalent of an own-body. The entity’s”forn8 actually a keyboard, a
mouse, a screen, a speaker or any other devicehwhpresents the behavioral
interfaces of virtual reality. It thus transformschanical and energetic signals
into electronic signals and vice versa. The formditions the combinations of
physical and thus electronic signals. These eleiir@ignals represent the
entrances/exits of the cognitive system (for whieé reiterate the temporary
status). The form simply limits the possible conalbions between the entrances
and exits of the cognitive system. In this contéxése entrances and exits are not
to be considered as representations of a pre-gnend, but as a means of
coupling for the cognitive system and the environmn&hat which is technically
referred to as a system’s entrance or an exit g@atno bearing on the notion of
information but rather on dynamics. These entraacesexits are elements of the
sensorimotor loops. The artificial system’s ability act thus correlates with its
ability to modify the links between the entrancad axits of the cognitive system
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already bound within its cover. The complexity bktartificial self-world is
relative to the richness of the possible adventsugtessive entrances/exits of the
cognitive system. The more possible successivearrds and exits, the more
variable, and thus more creative, the system wdtdme. Of course, the
complexity of the cover can make up for the sinmipliof the cognitive system
(McGeer,1990), but the opposite is also true. Thture of a sensorimotor’s
system, complex as it may be, is still not complarab that of a human. The
claim that the machine must have a physical bodyilai to ours is thus
problematic (Brooks, 1991). Whatever the physiotdrface enabling the machine
and its environment to interact, this interactismothing but a disturbance of the
digital sensorimotor system. This is not the casewholly embodied biological
human beings who must be endowed with enactivefaaes (Luciani & Cadoz,
2007). These interfaces consist of replacing tmel®jic communications (words,
icons, etc.) between Man and machine with an inteEna, using gestures and
forces which then form "phycons”. We believe thaimmerous types of enactive
interfaces between the system and its user areibp®sas perception is a
morphogenetic process (Gapenne, 2008). Once pencegutd virtual or digital
action become dynamically interwoven within the hiae, the technical interface
can be both simple and varied. The important elésneere are the presence of an
uninterruptable dynamic, the absence of given sysnlamd the presence of
evolving processes on both sides of the interfa#cesimple example of an
interface like this is that used in minimalist expeents of the recognition and
awareness of space in blind subjects (Auvray e2@D5). For the blind subject to
be able to perceive, she must be able to act afiddasensorimotor invariants.
This experiment is even more interesting as (Ste®aGapenne, 2004) has
shown that these interactions can be recreated tmaechine using qualitative
descriptions of the experiment. Experiments suchthese have led to the
rethinking of the notion of virtual reality in ord® bring it closer to the notion of
resistance (Tisseau, 2001) and presence (SancH&lat&r, 2005; Brogni et al.,
2007; Rohde & Stewart, 2008) which we referredddier. whatever the chosen
means of interaction, the essence of virtual neahin be identified as its ability to
resist actions, to enable the user to construchimgaSimilarly, "real virtuality”
could be created by an artificial system if it @bulegotiate its own resistance
with that of its user and establish its own semsotor invariants. In this case, we
would be confronted with an artificial sense-makiogmparable to that of
humans.

Guiding and explaining ontogenesis

We have argued for the need to use models whosaatbastics are irreversibly
transformed through ontogenesis during the intemactwhich also acts as
guidance. To do so, we would need to associatenifeartechniques such as
reinforcement (Sutton & Barto, 1998) or imitatioMdtaric, 2001) with the
principles of transformation and evolution. Diffateapproaches could be used
and combined.

Learning by reinforcement, which allows an entibyuse its past experience to
modify its behavior is used as much for symbolioreatation models (Holland &
Reitman, 1978; Wilson, 1987; Butz, Goldberg, & 3tohnn, 2000; Gerard,
Stolzmann, & Sigaud, 2002) as for neurocomputatiapproaches (Daucé, Quoy,

17



Cessac, Doyon, & Samuelides, 1998; Henry, Dauc8p@la, 2007). We discuss
"symbolic connotation” approaches first as they lbased on discrete variables
and a selection of atomic actions. However, theyrmt confined to using a given
representation of an environment but rather toteraanodel of possible coupling
with this environment. They are thus viable for sideration in our context.

Recently, (Chandrasekharan & Stewart, 2007) hawesvishithat it is possible to

associate a network of neurons which loop backeontselves with a Q-learning
type of algorithm. The functioning of this networkerves as a proto-

representation. The idea is that these protoreptatsens act as internal epistemic
structures which reflect the sensorimotor invasgaréarnt by experience.

However, the learning process requires hundredsnafilated steps for a simple
example (i.e. virtual ants foraging). This is ai®&s drawback for an online

application of these approaches. In terms of neunputation, (Henry et al.,

2007) proposes reinforcement learning for a netwadrkecurrent neurons. The
network’s Hebbian plasticity is only activated ihet presence of reward or
punishment stimuli. This approach is also well addgo our context. However,

there is a difference between this approach aificettdynamic cognition, as the

experiments are not based on sensorimotor leaamdgthe networks of neurons
used are not CTRNN.

To fully address the notion of transformation, theeoduction of morphogenetic
principles gives the advantage of being able teesxdrreversibility. With the
work on modeling the growth of a mutlicellular onggm, we therefore return to
the biological origins of cognition (Federici & Donmg, 2006; Stockholm,
Benchaouir, Picot, Rameau, Neildeiz, & Paldi, 208¢jldeiz, Parisot, Vignal,
Rameau, Stockholm, Picot, Allo, Le Bec, LaplaceR&ldi, 2008). Certain authors
even introduce the role of the environment ints thansformation (Eggenberger,
2004; Beurier et al., 2006). In robotics, it is teeolution of the body of the
machine that is of interest (Dellaert & Beer, 19%ara & Pfeifer, 2003).
Eventually, these approaches might access co-eéwolut the fullest sense of the
term. In the case of an EBAI, the connection whibbuld be made is to integrate
the principles of autopoiesis with those of morpdrugsis so as to preserve the
biological essence of an identity built up withihet constraints of viability
(Miller, 2003). The research pertaining to neuropatmg can be found in
(Gruau, 1994; Nolfi & Parisi, 1995; G.vHornby & &lRck, 2002). Finally, in
order to study these principles, we must rely am ftlrmal tools adapted to the
models which present the properties of multipleav&dral drifts. However, these
tools are uncommon and in (Aubin, 1991)’'s theoryviaibility, which aims to
define all of the parameters of models capable taimimg their own behavior in a
given area, we can observe an interesting perspedbr associating the
simulation’s bottom-up approach with the analysfsgtobal properties. We
believe this theory to be under-used, whilst itgagis a turnaround in terms of
the most common point of view in studying complggtems.

It remains that, in terms of an interaction betwddan and machine, an

association of the principles of reinforcement amdnsformation must be
developed.

18



Conclusion

The aim of this paper was to analyze and define approaches for addressing
the difficulties in constructing independent adidil systems which rely on
enactive metaphor. First, we brought together thigons of Enactive Artificial
Intelligence and Enaction-Based Artificial Inteligce. We particularly wanted to
avoid addressing certain phenomenological aspertls as the notion of first-
hand experience in order to avoid any confusior whie human perspective of
the paradigm. We then went on to demonstrate thatthree current main
approaches were confronted with the following thpesblems:

1. The absence of the implementation of a real cotgw characterized by
its irreversibility. To overcome this problem, waggiest that the agent
should more actively modify its environment and ihaurn that
environment should evolve and present a certainegegf irreversibility.

2. The difficulty establishing a complex ontogenetiogess "which
determines its own outcome”. This necessitatesnbdification of the
phylogenesis/ontogenesis ratio that follows ithst auto-organization
might prevail over auto-adaptation. As an answehi®problem, we
suggest the use of interactive guidance througi®ontogenesis, as is the
case during the complication of cognition in th@wal kingdom.

3. The immeasurable difference between the creationeatning for
machines and for humans. Due to this differeneepe of machines
capable of exchange or social partnership with msmarendered
extremely hypothetical. To answer this problem pn@pose to integrate
humans into the loop so that the creation of a mngamelevant to humans
might also develop within the artificial system. \Aleo suggest that a
presence test, the enactive equivalent of the guast from a
computational angle, should be taken by the machine

There follows the proposal to assimilate interactietween Man and machine
during the ontogenetic process of an artificialtgntia an enactive interface. One
difficulty is thus to set up irreversible evolvingechanisms which are carried out
in real time at the heart of the system. This iy wile have listed the approaches
that would enable us to clarify the ontogenetingfarmation and to adapt them.
Our perspectives tend towards the assimilatiomese approaches via minimalist
experiments associating evolutionary robotics witkractive guidance (Manac’h
& De Loor 2009). Despite the complexity of the taslbe accomplished, it seems
to us that the inclusion of humans in the loopwa#l as being essentiai-fine,
might help us to establish the strategies of ewmtuand guidance and to push
back the limits of the obstacles highlighted byo@dse & Ziemke, 2009).
Considerating the phenomenology of interactionsvbeh Man and machine in
the constitution of sensorimotor skills for humansild in fact prove an important
basis for establishing analogical principles forchiaes. Attempts made to model
and simulate such interactions by (Stewart & Gape004) seem to us to be an
important starting point. They might help us to gme minimal experiments
combining phylogenesis and ontogenesis in estabfsinechanisms of "learning
how to learn” via principles inspired from morphogsis. These minimal
interactions pass through simple but enactive fiates, i.e. based on a
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sensorimotor dynamic. The important thing is takksh sensorimotor coupling
between Man and machine and to keep in mind theeptagical, rather than the
ontological, aspect of the system. The intricacsld be provided later.

These reflexions lead us to sketch some interegigngpectives in the context of
interaction and virtual reality: Virtual environmeponstitute a good base to
develop guided models capable of co-evolution. Herewe must remain
prudent because of the incommensurable distanegebrtthe continuous nature
of the physical world which lead to the biologicaktabolism and the discrete
nature of numerical systems. Numerical and natwallds are based on two
different phenomenal domains and the later is trefoesly more complex that
the former. Nevertheless, it doesn’t prevent thesgmlity to bring forth a world
into a dynamical simulation, even if this world will lecommensurable with
such of the human. The only interest for this iif world would be in the fact
that it would be constituted by the way of humarchiae interaction and
consequently that human might find a sense in thgseactions. If it is the case,
a man-machine common sense might be co-constitdteddo that, we must
imagine experimentations easy enough to be sugpbstectual artificial models
but also representative for a human in term of @astitutive interaction. Artistic
creation seems to be favorable to following thiywa

This by no means aims to disqualify the interestapproaches which do not
include humans in the loop, which progress moreckdyi in terms of
understanding internal mechanisms using artifidild and evolutionary or
coevolutionary robotics. However, we here limit easearch, having presented
what seems to us to be the most important appreadiese thoughts are a result
of our work on the necessary coupling between Maah machine for the co-
construction of knowledge (Parenthon & Tisseau, 520Desmeulles,Querrec,
Redou, Kerdlo, Misery, Rodin, & Tisseau, 2006; leaw& De Loor, 2006; De
Loor, Bénard, & Bossard, 2008). This is thus aleingle for software engineering
which must consider the "experience of the machimad of its interactions, as
well as those of the user. It is also a challergetfeoretical artificial intelligence
which must integrate interaction at the heart®hitodels as suggested by (Goldin
& Wegner, 2008).
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