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Abstract: 
Bayesian models of human learning are becoming increasingly popular in cognitive 
science. We argue that their purported confirmation largely relies on a methodology that 
depends on premises that are inconsistent with the claim that people are Bayesian about 
learning and inference. Bayesian models in cognitive science derive their appeal from 
their normative claim that the modeled inference is in some sense rational. Standard 
accounts of the rationality of Bayesian inference imply predictions that an agent selects 
the option that maximizes the posterior expected utility. Experimental confirmation of the 
models, however, has been claimed because of groups of agents that “probability match” 
the posterior. Probability matching only constitutes support for the Bayesian claim if 
additional unobvious and untested (but testable) assumptions are invoked. The alternative 
strategy of weakening the underlying notion of rationality no longer distinguishes the 
Bayesian model uniquely. A new account of rationality—either for inference or for 
decision-making—is required to successfully confirm Bayesian models in cognitive 
science.  
 
 
 
 
 
1. Introduction 
 

The past fifteen years have witnessed a dramatic growth in Bayesian models in 

cognitive science, driven both by computational and algorithmic advances, as well as 

experimental findings. Bayesian models of learning and inference have been proposed for 
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just about every major phenomenon in cognitive science.1 Although directed towards 

different problems in each case, these models share a common structure: each assumes 

that every individual has an initial (“prior”) probability distribution over the space of 

possibilities. This prior is updated in response to new data by conditionalization to yield 

new (“posterior”) probabilities for each possibility. The computation, also known as 

Bayesian updating, uses Bayes theorem to determine the probability of each hypothesis 

Hi in a set of mutually exclusive and exhaustive hypotheses H1,…,Hn given the evidence 

E:   

P(Hi | E) = 

€ 

P E |Hi( )P Hi( )
P E( )

. 

P(E | Hi) is the likelihood of observing evidence E if Hi really is true (often given by a so-

called generative distribution that is relatively easy to specify), while P(Hi) is the prior 

probability distribution over the space of hypotheses. Their product is divided by the a 

priori probability of the evidence, P(E), which essentially acts as a normalization term.2 

Despite their superficial simplicity, Bayesian models can produce quite intricate 

behavior, depending on the particular likelihood functions and prior probability 

distribution. 

Bayesian models are appealing as models of human inference because they (i) 

allow for the representation of prior beliefs in the prior probability distribution; (ii) 

represent differences in background beliefs through different prior distributions in 

different individuals; (iii) model the integration of new evidence with prior beliefs 

through Bayesian updating; (iv) explain gradual transitions in belief between various 
                                                
1 For a partial list of phenomena and references see the Appendix. 
2 P(E) need not be computed if we are interested only in the relative probabilities of the 
various hypotheses. It is necessary to model the impact of rare (i.e., surprising) data.  
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hypotheses by the use of probabilities to represent degrees of belief; and (v) are supported 

by arguments that Bayesianism is rational, and hence any learner that acts in a Bayesian 

manner is rational as well.  

Unlike the majority of models in cognitive science, Bayesian models are generally 

not taken to provide a mechanistic explanation of how some cognition or behavior is 

performed. That is, with a few exceptions3, Bayesian models are understood to be wholly 

agnostic about the neural or cognitive bases of the observed behaviors. Instead, they are 

offered as rational analyses: computational level models (in contrast to implementational 

or algorithmic level models) that explain the inferences they describe as rational behavior 

in the given environment (Marr, 1982; Anderson, 1990; Chater & Oaksford, 2000; 

Chater, Tenenbaum & Yuille, 2006; Oaksford & Chater, 1998).4 

Confirmation of the claim that people are Bayesian with regard to learning and 

inference depends on how the Bayesian belief update is expressed in measurable 

behavior. Although not always explicitly stated, this connection is generally taken to be 

provided by the principles of rational choice: namely, that an agent will select the option 

that maximizes the (posterior) expected utility. Since experiments designed to test 

Bayesian models are almost always designed to eliminate the effect of utilities on the 

                                                
3 Examples of Bayesian models with mechanistic commitments include Rao (2005), Lee 
& Mumford (2003), and Doya, Ishii, Pouget, & Rao (2007). 
4 Bayesian models and rational analyses are not coextensive in principle (Danks, 2008); 
there can be non-Bayesian rational analyses and Bayesian models that are not rational 
analyses. For example, standard reinforcement learning models are generally not 
Bayesian, but are rational in a wide range of environments; Bayesian models using 
limited hypothesis spaces are (in the absence of arguments about memory or 
computational limits) not necessarily rational. In practice, though, almost all Bayesian 
models are rational analyses, and the nature of the normative claim of rationality in these 
models will turn out to be one of the main sticking points for their confirmation.  
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participant’s belief, any choice is taken to be indicative of the participant’s posterior 

degree of belief. Thus, if experimental control of prior beliefs is successful, we should 

expect participants within the same experimental condition to make the same choices. 

This is not the case. Instead, the distribution of the participants’ choices is found to 

resemble a random sample of the model posterior distribution. Despite this inconsistency 

with the rational choice predictions, the results are still taken to confirm the Bayesian 

claim. In the following sections we attempt to reconstruct how such a conclusion could 

be reached, starting in Section 2 with a concrete example where such “probability 

matching” is used as confirmation.  

If, as we suggest, no resolution of this deep tension is forthcoming without much 

stronger commitments concerning the account of rationality, then we will have 

successfully undermined the explanation of the observed behavior the Bayesian account 

was supposed to provide: “(i) Behavior B is rational or optimal and (ii) there is some 

process—either ontogenetic or phylogenetic—that leads the individual to engage in 

rational or optimal behavior. Therefore, the individual exhibits behavior B.” The first 

necessary premise would no longer have a foundation. 

 
 
2. Confirmation of Bayesian Models 
 

In a standard experimental set-up used to confirm a Bayesian model, experimental 

participants are provided with a cover story about the evidence they are about to see. This 

cover story indicates (either implicitly or explicitly) the possible hypotheses that could 

explain the forthcoming data. Either the cover story or pre-training is used to induce in 

participants a prior probability distribution over this space. Eliciting participants’ prior 
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probabilities over various hypotheses is notoriously difficult, and so the use of a novel 

cover story or pre-training helps ensure that every participant has the same hypothesis 

space and nearly the same prior distribution. In addition, cover stories are almost always 

designed so that each hypothesis has equal utility for the participants, and so the 

participant should care only about the correctness of her answer. In many experiments, an 

initial set of questions elicits the participant’s beliefs to check whether she has extracted 

the appropriate information from the cover story. Participants are then presented with 

evidence relevant to the hypotheses under consideration. Typically, in at least one 

condition of the experiment, the evidence is intended to make a subset of the hypotheses 

more likely than the remaining hypotheses. After, or sometimes even during, the 

presentation of the evidence, subjects are asked to identify the most likely hypothesis in 

light of the new evidence. This identification can take many forms, including binary or n-

ary forced choice, free response (e.g., for situations with infinitely many hypotheses), or 

the elicitation of numerical ratings (for a close-to-continuous hypothesis space, such as 

causal strength, or to assess the participant’s confidence in their judgment that a specific 

hypothesis is correct). Any change over time in the responses is taken to indicate learning 

in light of evidence, and those changes are exactly what the Bayesian model aims to 

capture.  

These experiments must be carefully designed so that the experimenter controls 

the prior probability distribution, the likelihood functions, and the evidence. This level of 

control ensures that we can confirm the predictions of the Bayesian model by directly 

comparing the participants’ belief changes (as measured by the various elicitation 

methods) with the mathematically computed posterior probability distribution predicted 
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by the model. As is standard in experimental research, results are reported for a 

participant population (split over the experimental conditions) to control for any 

remaining individual variation. Since the model is supposed to provide an account of 

each participant in the population individually, experimental results must be compared to 

the predictions of an aggregate (or “population”) of model predictions. A comparison at 

the population level inevitably complicates any inference to the individual level. The 

following example will illustrate this point. 

We focus throughout on (the relevant parts of) experiment 1 in Schulz, Bonawitz, 

& Griffiths (2007), but there is nothing special about this experiment. The confirmation 

methodology is applied in many other papers, and we could have given a structurally 

identical description for many other experiments (e.g., Kemp, Perfors & Tenenbaum, 

2007; Xu & Tenenbaum, 2005, 2007). The Schulz, et al. experiments examine whether 

children will infer a mental cause for some physical effect given appropriate evidence, 

despite their strong prior beliefs against such cross-domain causation. Children are read 

two story books, each featuring seven days of an animal’s life, where each day constitutes 

a piece of evidence. In the within-domain book, a deer develops itchy spots (E) every 

morning after being exposed to two potential physical causes (A, B, C, and so on), where 

one of the causes (A: “running through cattails”) occurs every day. That is, the seven 

days of evidence have the form:  
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Day 1: A and B then E 

Day 2: A and C then E 

Day 3: A and D then E 

… 

In the cross-domain book, a similar story is presented with two candidate causes each 

day: one is physical and varies from day-to-day; one is mental (“feeling scared”) and 

occurs every day. That is, the cross-domain evidence is structurally identical with the 

within-domain evidence, except that the recurring cause (A) is a mental state.  

After reading a book, children are asked (forced choice) which of the potential 

causes on the last day actually caused the itchy spots. In the within-domain condition, 

they are thus presented with a choice between two within-domain causes; in the cross-

domain condition, they face a choice between one within-domain and one cross-domain 

cause. In a separate baseline control group, the children are not exposed to any evidence, 

but instead proceed directly to the final choice. This baseline provides an indication of 

children’s prior beliefs about potential within- and cross-domain causes of itchy spots; as 

expected, it revealed children’s indifference between within-domain causes, and strong 

bias for within-domain causes compared to a cross-domain cause. In contrast, children 

observing purely within-domain evidence showed a strong preference for the recurring 

cause (A), and children observing cross-domain evidence showed a weaker (but 

significant) shift to preference for the cross-domain cause. That is, the evidence seems to 

have led children to change their beliefs to favor the recurring cause, even if the recurring 

cause was in a different domain than the effect. 
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Schulz, et al. (2007) provide a Bayesian model of these belief shifts. The precise 

mathematical details are not important; the model can be paraphrased as follows: 

Children’s prior probabilities are highly skewed in favor of within-domain potential 

causes as against cross-domain causes, but the strong evidence in favor of a cross-domain 

cause (i.e., that this single factor can explain all of the observations) is sufficient to 

overcome this initial bias. Within-domain causes still retain a significant posterior 

probability in the cross-domain condition, but only because of their high prior 

probability. Schulz, et al. (2007) situate their particular model in a more general 

hierarchical Bayesian model of framework theories (Tenenbaum & Niyogi, 2003; 

Tenenbaum, Griffiths & Niyogi, 2007), but their framework theory simply serves to 

specify prior probabilities. 

In the experiment, each individual participant is asked (using various methods) to 

select the most likely hypothesis about which factor caused the outcome (here, the itchy 

spots); this feature is widespread among experiments testing Bayesian models. Consider, 

however, what prediction is actually made by the Bayesian model. The model predicts 

simply that the participant starts with a prior probability distribution, and updates that 

distribution by conditioning on the evidence. Strictly speaking, the model is silent about 

how the participant makes a choice based on her posterior probability distribution. A 

Bayesian model of inference must therefore be supplemented by a suitable choice 

principle to make any empirical predictions. Despite the importance of choice strategies, 

very few Bayesian models in cognitive science are accompanied by explicit choice 

principles (though see, e.g., Körding & Wolpert, 2006; Oaksford, Chater, Grainger & 

Larkin, 1997).  
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Given a probability distribution over some hypothesis space, and given the 

plausible utilities, the choice strategy that maximizes utility will select the hypothesis 

with greatest probability (or if there are multiple hypotheses with maximal probability, it 

chooses one of them). Consider the empirical prediction implied by that choice strategy. 

In particular, suppose (i) the cover story has the desired effect such that every participant 

has the same hypothesis space, same prior probability distribution, and same utilities; and 

(ii) the Bayesian model of learning and inference is actually correct. In this idealized 

case, every participant should have the same posterior probability distribution. Thus, if 

participants actually maximize utility, then they should all choose exactly the same 

hypothesis. That is, one should expect to discover little variance in individual responses, 

and ideally no variance at all. The distribution of participant responses should be a 

narrowly peaked function with virtually all weight on the hypothesis with greatest 

probability. More specifically, the distribution of responses should not match the 

predicted individual posterior probability distribution particularly well (except for certain, 

very special, posterior distributions). In this ideal case, it does not matter whether the 

hypothesis space is finite (e.g., a set of possible categories) or infinite (e.g., possible 

causal strength ratings). In either case, if people are perfect Bayesian learners and choose 

rationally (and the experiment is well-designed), then every participant should respond 

(approximately) identically. To state the problem more precisely: 

If the individual response provides the hypothesis that maximizes the 

posterior and every individual has the same posterior over the hypothesis 

space, then (assuming uniform utilities) the individual posterior will be 



 10 

different from the distribution of participant responses unless the 

individual posterior places all probability weight on its maximum points. 

This type of heavily-peaked response distribution is not, however, what is usually found. 

Instead, almost all experiments find (though do not always describe it in these terms) that 

the distribution of individual responses resembles the posterior that the model predicts an 

individual to have. In the case of Schulz, et al. (2007), this is precisely the way the data 

are presented: Bayesian model predictions of an individual’s posterior probabilities are 

shown to match the distribution of choices across the participant population. That is, the 

model posterior probability for each hypothesis is compared with the proportion of 

children that chose that hypothesis when asked to identify the correct cause. 5 More 

importantly, this method of confirmation is widespread for Bayesian models (including 

all of the papers cited at the beginning of this section). These analyses thus imply the 

puzzling conclusion that the population as a whole acts as a rational Bayesian learner, but 

the individual learners do not.6 

                                                
5 For our purposes here the relevant point is that the match of the response distribution 
with the model prediction is considered the relevant criterion to assess fit. We do not 
intend to argue here about whether or not the model actually constitutes a good fit. 
Visually there are some quite clear discrepancies between model prediction and data in 
the cross domain condition, but the authors claim their “model accurately predicted […] 
with a Pearson product-moment correlation coefficient of r(9)=.85.”  
6 There are some notable exceptions that do actually try to compare each individual 
participant’s responses with the predictions of a Bayesian model. For example, Körding 
& Wolpert (2006) directly model each individual learner’s prior probabilities and 
subsequent inferences. Steyvers, et al. (2003) model learning given participant-chosen 
interventions on an individual basis. Tenenbaum & Griffiths (2003) do not directly model 
individuals, but do obtain probability judgments that can be compared to the predicted 
posterior probability distribution (assumed to be the same for all individuals). Whether 
these analyses have provided more support for the Bayesian models is, we believe, open 
to question. The concern about the methodology of the more typical methods discussed 
here remains, independently. 
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As a concrete example of the problem, suppose we have three hypotheses and the 

predicted posterior probability distribution is P(H1) = 0.3; P(H2) = 0.3; and P(H3) = 0.4. 

Hypothesis H3 is slightly more likely than the other two. The rational forced choice for 

this posterior probability distribution (modulo our previous remarks about utilities) is 

“H3”. Thus, if the Bayesian model is correct and participants are choosing rationally, then 

we should expect everyone to respond H3. But that is not what happens in these 

experiments; rather the common “confirmation” of the Bayesian model checks whether 

30% of the participant population chooses H1, 30% chooses H2, and 40% chooses H3. 

The problem is that the following four propositions are jointly inconsistent: 

1. People are Bayesian about learning and inference [explicit claim]; 

2. People choose the option that maximizes expected utility given their beliefs 

[requirement of rationality]; 

3. Experiments successfully constrain participants’ prior beliefs and utilities 

[methodological assumption]; and 

4. The distribution of participant responses matches the model posterior 

[empirical data]. 

 
3. Rationality of Bayesian Models 
 

As we noted in the introduction, almost all Bayesian models can only contribute to 

explanations of observed behavior because of their (putative) status as rational models, 

and so must provide an account of the rationality of the behavior and inference. If a 

Bayesian model is not rational, then it cannot provide even the first premise in a 

rationality- or optimality-based explanation. The Bayesian model itself only constrains 
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the belief update in light of evidence, and so its empirical testability (and overall 

rationality) depends on an (often implicit) account of the connection between the updated 

beliefs, and the reported choice or exhibited behavior. In the previous section, we 

suggested that Bayesian models fit most naturally with a choice principle such as 

maximizing expected utility (proposition 2 above), but gave no particular justification for 

that claim. In this section, we explore in more detail the sense in which Bayesian models, 

and possible accompanying choice principles, can be understood as ‘rational.’7 

One standard defense of the rationality of Bayesian belief updating that is often 

mentioned in the psychological literature is diachronic probabilistic coherence, 

understood as avoidance of diachronic Dutch books. In general, a commonly accepted 

constraint on rationality is that a reasoner is rational only if there is no set of bets that she 

would accept for which she would be guaranteed to lose no matter what the outcome of 

the propositions bet upon; i.e., there is no “Dutch Book.” Synchronic Dutch Book 

arguments show that only degrees of belief satisfying the axioms of probability provide 

betting odds against which no Dutch Book can be made at any single time (de Finetti, 

1937; Ramsey, 1931). Diachronic Dutch Book arguments aim to show a similar result for 

changes of belief over time: namely, that only Bayesian updating, or some equivalent 

method, guarantees that there is no sequence of bets that guarantee a loss (Teller, 1973, 

1976). The Dutch book defense of rationality connects in an obvious way the optimal 

belief update (Bayesian inference) with a choice principle based in standard decision 

                                                
7 Recall that ‘Bayesian model’ refers (in the cognitive science community) to a model of 
Bayesian belief updating. Throughout this section, we share this focus, and so will ignore 
the many arguments for synchronic Bayesianism: the theory that degrees of belief are (or 
should be) given by a coherent subjective probability distribution. Our issue here is only 
with the correct way to change one’s beliefs over time, not whether synchronic 
Bayesianism is the correct way to understand degrees of belief at some moment in time. 
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theory: choose the action that maximizes subjective expected utility. The problem is, as 

we showed in the previous section, that its predictions do not fit the empirical data from 

cognitive science in any obvious way. 

There are several independent reasons why one might view diachronic Dutch 

book arguments with suspicion, as they seem overly restrictive (Levi, 1988, 2002; Maher, 

1992; van Fraassen, 1984). For example, diachronic Dutch book arguments require a 

reasoner to make firm and unchangeable conditional commitments (i.e., commitments 

about degrees of belief given any arbitrary evidence) at the outset of inquiry. While 

various proposals have been made to adjust the diachronic arguments in response to those 

concerns, it suffices for our purposes here to note that all of these weakenings of the 

diachronic Dutch book argument result in the conclusion that Bayesian belief updating is 

only one of many protections against irrationality. That is, if the conditions for diachronic 

rationality are weakened in plausible ways (e.g., if reasoners are permitted to “look 

ahead” before accepting or declining bets), then Bayesian updating no longer has a 

privileged position as the rational method of belief updating, since other (non-Bayesian) 

forms of belief update have similar normative grounds (e.g., Douven, 1999). Additional 

arguments would then be required to distinguish Bayesian updating as the best rational 

explanation. 

One could instead try to justify the rationality of Bayesian updating by appeal to 

its long-run properties, though this reason is rarely cited in the cognitive science literature 

as a convincing argument (see Perfors et al (in press) for an exception). In particular, a 

plausible necessary condition on any rational belief change method is that it should 

converge to the truth when possible (though the method might also value, e.g., short-run 
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predictive accuracy). Given a resolution to some technical issues,8 one can prove that 

Bayesian updating converges to the truth (when possible)9 and is provably not dominated 

in speed of convergence by any other method.10 This observation leaves unanswered the 

question of what choice of hypothesis is rational in situations in which the distribution 

has not converged, which is presumably the case in most experimental situations.11 We 

still require an additional account of how a particular choice is made in light of a non-

trivial posterior probability distribution. An obvious candidate would again be to choose 

the hypothesis that maximizes the posterior probability distribution. But as we found 

                                                
8 One natural assumption is that learners should only invoke computable functions, but 
this constraint is sometimes incompatible with the requirement (on synchronic Dutch 
book grounds) that a Bayesian reasoner know all (relevant) logical and mathematical 
implications of the various hypotheses that she entertains (Gaifman & Snir, 1982). 
Moreover, there are learning problems that can be solved in the long run by computable 
falsificationist methods (e.g., Popper’s method of “assert the hypothesis until it is 
refuted”) that cannot be solved by a computable Bayesian reasoner (Juhl, 1993; Kelly & 
Schulte, 1995; Osherson, Stob, & Weinstein, 1988). In these circumstances the Bayesian 
reasoner only converges to the truth (whenever the truth can be learned) if she can 
sometimes “compute” uncomputable functions. 
9 If the true hypothesis H is empirically distinguishable from other hypotheses and P(H) ≠ 
0, then for all ε, P(Bayesian reasoner has degree of belief greater than 1–ε in the truth) → 
1 as the number of datapoints goes to infinity; see Savage (1972) for a canonical 
expression of this result. 
10 More precisely, Bayesian updating (for any non-dogmatic prior probability 
distribution) provably satisfies the condition that there is no method that gets to the truth 
faster than Bayesian updating in every “world” (i.e., regardless of which hypothesis is 
true, and the order of the randomly sampled evidence). There may be alternative non-
Bayesian methods that get to the truth faster in particular worlds, but none outperforms 
Bayesian updating in every world (Schulte, 1999). There are, however, methods that are 
similarly non-dominated by Bayesian updating, so any argument along these lines does 
not identify Bayesian inference as uniquely rational. 
11 Virtually no experiment that uses Bayesian models has a degenerate posterior 
distribution. If the Bayesian model is supposed to provide a normatively correct 
description of the belief update of an individual, then it follows that the experiment is 
explicitly considering circumstances in which the distribution over the hypotheses has not 
converged. Moreover, much of the appeal of Bayesian models (in contrast to logic-based 
models) results from the ability to describe shifts in degree of belief that are not 
complete, i.e. where uncertainty over the true hypothesis remains. 
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earlier, this combination of belief update and choice principle is inconsistent with the 

empirical results.  

The two standard defenses of the rationality of Bayesian updating offered in the 

cognitive science literature both imply that the rational choice principle is to choose the 

hypothesis with maximal expected utility. In essentially all psychological experiments, 

that choice principle implies choosing the hypothesis with maximal probability, but that 

implication is inconsistent with empirical data, and so the “maximize expected utility” 

choice principle is unavailable to the proponent of Bayesian models in cognitive science.  

In light of this tension, various weaker notions of rationality that explicitly deny 

the existence of an overarching general formal account of rationality have been suggested 

in the cognitive literature (e.g., in Oaksford & Chater, 2007). These accounts focus on 

rationality as successful, goal-directed action, where the constraints used to judge this 

particular notion of ‘rationality’ are situation- and behavior-specific, rather than formal: 

“which…rational principles should be used to define a normative standard for 

particular…tasks…is constrained by the empirical human reasoning data to be explained” 

(Oaksford & Chater, 2007, p. 31). That is, the scientist assumes that people’s behavior is 

largely rational, and then finds a (small, coherent) set of formal principles that justify that 

behavior as normatively correct in the given situation. Violations of a normative theory 

(e.g., the well-known Allais or Ellsberg “paradoxes”) are seen as challenges to the 

appropriateness of the putative normative theory, not indicators of irrationality. Put 

crudely, such approaches claim that rationality of type A with normative principles P1, 

…, Pk applies in situations of type S, and rationality of type B with normative principles 

Q1, …, Qn applies in situations of type S’, and rationality A and rationality B need not 
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have anything more in common than identifying optimal behavior relative to their 

respective principles. 

This response misunderstands what normative principles of rationality are 

supposed to do, as they are exactly supposed to not be situation-dependent in this way. If 

they are situation-dependent, then they are only restatements of the observed behavior, 

and so simply instrumentalist. As Oaksford & Chater (2007) note, the appeal to a weaker 

notion of ‘rationality’ only works if we avoid extreme situation-dependence by finding 

normative standards that are “consistent with other knowledge, independently plausible, 

and so on” (p. 31). But in that case, we are right back in the situation of searching for 

relatively abstract formal constraints that justify some particular method as ‘rational’ (see 

also Evans, 2009; Khalil, 2009). 

The dilemma we face is that none of the standard accounts of the rationality of 

Bayesian belief update naturally predict empirical data in which the response distribution 

matches the model posterior. We thus consider the possibility that rationality requires 

something other than maximizing expected utility (i.e., rejecting proposition 2 above), or 

that experimental controls are perhaps less successful than is typically thought (i.e., 

amending proposition 3 above). 

 

 

 

4. Alternative Reponses 

Many different psychological theories (both Bayesian and non-Bayesian) hold on 

empirical grounds that choices are made by probability matching: participants select 
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hypothesis H with a probability corresponding to the (posterior) probability of H 

(assuming constant utilities); in other words, the behavioral response looks like a random 

sample by the individual participant from her (posterior) probability distribution. The 

Luce choice axiom that characterizes a pair of constraints on human choice implies under 

fairly weak assumptions that an option is selected in proportion to its weight (Luce, 1959, 

1977).12 Assuming that experiments appropriately control the utilities and other saliencies 

across the available hypotheses, it then follows from the Luce choice axiom that a 

hypothesis is selected according to its posterior probability, i.e. it is probability matched. 

The axiom should not be mistaken for an axiom of rational behavior. It does not itself 

explain why probability matching constitutes the normatively correct behavior. Such an 

account would have to describe why the conditions of the Luce choice axiom are 

hallmarks of rationality.  In particular, its second condition concerning “choice 

probabilities” effectively begs the question of the rationality of probability matching. 

In practice, the content of the claim that hypotheses are probability matched is 

typically ambiguous between two claims: (A) the distribution of responses from a 

population of participants corresponds to the posterior distribution over hypotheses 

determined by the model; and (B) each participant in a population chooses a hypothesis 

using a method that is equivalent to taking a random sample from her posterior 

                                                
12 The Luce choice axiom states:  

(i) If options a and b are in a choice set S and a is never chosen over b in the 
binary choice situation, then a can be removed from S without affecting any 
choice probabilities; and 

(ii) If R is a subset of S, then the choice probabilities for the choice set R are 
identical to the choice probabilities for S conditional on R having been chosen 
(i.e. PR(a) = PS(a | R) for all a in R). 

Luce (1959) shows how the axiom implies that PS(x) = v(x) / Σy in S v(y), where v(.) is 
a measure of value or weight over the options y in the choice set S. 
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distribution over hypotheses (which supposedly corresponds to the posterior of the 

model). Claim (B) implies (A), but not vice versa. Moreover, (B) is significantly harder 

to test: one must collect repeated choices in the “same” situation from the same 

participant in order to determine whether her behavior corresponds to the appropriate 

posterior probability distribution.  

Claim (B) says that probability matching is, for reasons of fit-to-data, the proper 

choice principle to be tacked onto the Bayesian belief update. Without further 

explanation, however, this response removes (almost) all of the normative justification 

for the Bayesian model of inference. The claim being defended in this response is that 

humans use Bayesian updating for learning and inference, and then probability match 

their current posterior distribution when asked to make a choice (given equal utilities). 

But without an account of the rationality of probability matching, the proponent can no 

longer claim that people are approximately rational Bayesians. If the aim is to make the 

right choice as often as possible, then probability matching is provably sub-optimal and 

so usually thought to be “irrational” or a “bias” (e.g., Shanks, Tunney & McCarthy, 2002; 

Vulkan, 2000; West & Stanovich, 2003). For example, if we have a coin that is biased 

with probability 0.7 towards heads, we should always bet on heads, and not probability 

match (i.e., bet heads on 70% of trials). The former strategy can expect to win 70% of the 

time; a probability matching strategy can only expect to win in 58% of trials.  

Thus, a model with a Bayesian belief update and a probability matching choice 

strategy implies that people are rational learners, but to no particular point, since they are 

irrational decision makers. Thus, a host of questions arise: In what sense is such a process 

rational? What efficiency or optimality could probability matching provide for a 
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learner?13 Why would probability matching develop in the first place, rather than 

maximizing the posterior?  

The “Bayesian inference + probability matching choice procedure” hypothesis 

might be descriptively correct, but without substantial additions to the account, there is 

no justification for describing such a cognitive agent as rational, and there are natural 

arguments that she actually is irrational. Moreover, there is a peculiar internal tension in 

models of this type, as they claim that people (approximately) compute the quite difficult 

Bayesian updates, but then fail to use a computationally quite simple choice strategy. If 

people can (approximately) carry out the first computations, it would be surprising 

(though not impossible) if they were unable to use the optimal choice method. 

This leaves two alternatives. Either (I) one finds circumstances in which it is 

optimal or rational for an individual to take a random sample from her posterior, and then 

demonstrates that these circumstances apply in the experimental conditions. This 

response would amount to a rejection of proposition 2 (from our earlier list of four), that 

choices are made by maximizing expected utility. Or (II) one holds that probability 

matching is only descriptive of population behavior (claim A), and then shows how this 

population-level probability matching can arise from rational Bayesian learners. As we 

will later show, any argument endorsing option II maintains claim 2 at the cost of a 

weakening of claim 3, that experiments successfully constrain participants’ prior beliefs 

and utilities. We start, however, with option I. 

 

                                                
13 This question is particularly pressing, since rational analyses must ultimately provide a 
developmental story (in phylogenetic time, ontogenetic time, or both) that exploits some 
optimality property of the model. Such a story seems much less plausible if people are 
probability matching. 
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4.1 Changing the circumstances  

There are several different avenues for trying to characterize circumstances in 

which probability matching is rational, but the most obvious candidates are circumstances 

with competition and resource constraints (Stephens & Krebs, 1986).14 For example, 

suppose each individual in a population believes that some resources are located at 

location X with probability .75, and at location Y with probability .25. If there is no 

competition for the resources, then (assuming more is better) the optimal behavior for an 

individual is to go to location X, since it is the more likely location. If, however, 

resources are constrained by competitors, then there are scenarios in which the optimal 

strategy is to go to location X 75% of the time, and to location Y 25% of the time. That 

is, one should probability match. In particular, when all individuals have the same 

utilities for the resources, the resource payoffs for each location are based on competition 

(i.e., more individuals at a location means fewer resources for everyone), and no 

communication is possible, then probability matching can form a Nash equilibrium: if 

everyone probability matches, then there is no incentive for any individual to unilaterally 

change her strategy.15 Qualitatively, the idea is simply that randomizing can decrease the 

likelihood that we directly compete for a resource at a particular location (or at least, 

                                                
14 An alternative suggestion is made in Fiorina (1971), who argues that many experiments 
use non-random event probabilities that may appear non-constant to the participant. If 
event probabilities fluctuate, then choosing the hypothesis with maximal posterior 
probability is no longer optimal. This response is insufficient, though, since fluctuating 
probabilities do not automatically imply probability matching behavior is optimal. 
Moreover, probability matching occurs even in experiments in which participants appear 
to consider the event-probabilities stable. 
15 We have omitted many technical details, including some additional necessary 
assumptions. Interested readers should consult any standard book on optimal foraging 
theory (e.g., Stephens & Krebs, 1986) or see the appendix for a simple concrete example. 
We argue that this response is unsuccessful, and so these additional constraints on its 
scope are irrelevant for our present purposes. 
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make my success not depend on your strategy). To the extent that strategies implied by 

Nash equilibria are rationally justifiable (and there is debate about this), then probability 

matching is rational in these types of circumstances.  

Our present focus, however, is on seemingly quite different circumstances that do 

not obviously involve competition or constraints on shared resources. A claim that such 

competitive considerations (conscious or not) are at work in the experimental 

circumstances of inference and hypothesis learning implies that an experimenter’s efforts 

to remove or control for aspects that might induce competitive behavior are futile, and so 

the proposal would be a rejection of both proposition 2 and 3. Of course, the success of 

experimental control will never be perfect, but in the case of learning hypotheses, one 

uses counter-balancing to control for differences in the specific utility of any hypothesis, 

and so the trigger of competitive behavior must derive from the posterior probability 

alone. Perhaps people exhibit competitive behavior for pure truth in real life, rather than 

just in psychological experiments, but there is little evidence for this. Moreover, it is 

quite unclear why there would be such competition, as true propositions are not a 

constrained resource: my knowledge of a true proposition does not preclude you from 

knowing it. Much more explanation is thus needed for why participants would import 

such competitive behavior in the first place, and if they do, why a suitable competitive 

payoff structure is appropriate.  

A different argument (though to our knowledge not published in the cognitive 

literature) for the rationality of selecting a hypothesis by probability matching is based on 

an approach combining statistical learning theory with Bayesian inference procedures: 
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PAC-Bayesian theory (see, e.g., Seeger, 2003 for a review).16 Probably Approximately 

Correct (PAC-) learning theory provides bounds that, with high probability, constrain an 

algorithm’s worst-case generalization error; that is, it bounds (with high probability) the 

error-rate of an algorithm on a test sample given the algorithm’s error-rate on a training 

sample. The appealing aspect of integrating features of PAC-learning with Bayesian 

inference is that PAC-bounds are robust even when the true hypothesis is not included in 

the hypothesis space. However, known PAC-Bayesian results only imply that probability 

matching on the posterior is optimal (i.e., provides the tightest PAC-Bayesian bounds) for 

tasks that already contain in their description some aspect of probability matching, such 

as estimating a distribution, selecting a hypothesis stochastically, or providing a weighted 

average (McAllester, 1999, 2003). In fact, for the task of interest to us⎯selecting the true 

hypothesis⎯PAC-Bayesian considerations imply the same response as rational choice: 

select the hypothesis that maximizes the posterior of the model (McAllester, 1999, p. 

165). We are thus in the same situation as with the arguments for competitive behavior: 

we need an independent explanation why participants would import behavior that is 

suboptimal for the task they are asked to solve. In addition, PAC-Bayesian arguments 

further require motivation for why long-run, worst-case considerations are relevant.  

We thus fall back on option II: probability matching results from other 

phenomena or inaccuracies in the individual computation (rather than actual individual 

probability matching) and is therefore only descriptive of the group-level behavior.  

                                                
16 Josh Tenenbaum (personal communication) suggested that PAC-Bayesian approaches 
provide a potential solution to the dilemma we point to and so we address the proposal 
here. A thorough description of PAC-Bayesian learning would go far beyond the scope of 
this article. We only aim here to indicate the reasons why we do not think this is a fruitful 
approach. 
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4.2 Explaining group-level probability matching 

Since option II attributes probability matching to differences between participants, 

this proposal inevitably implies either a rejection that people are Bayesian, or a 

weakening of the assumption of successful control in the experiments (i.e., proposition 

3). We assume the prior option is unavailable to the committed Bayesian. There are both 

strong and weak ways of rejecting proposition 3. A strong rejection might argue that 

priors and utilities differ widely across participants, and these differences actually fall 

outside the bounds of the purported (or plausible) measurement error reported in 

experiments. 17 If there are widely varying priors or utilities in the population, then the 

match of empirical response distribution and Bayesian model posterior can arise simply 

from aggregation over the (varying) participant population. There may well be significant 

variation between participants in the prior beliefs imported into the lab, the extent to 

which they are imported, and the participant’s utilities. But this strong rejection of 

proposition 3 calls into question many of the standard methods of experimental design in 

                                                
17 We note that any rejection of proposition 3 that exclusively focuses on the prior faces a 
significant formal challenge. Suppose N participants have priors P1(H), …, PN(H). 
Assume also that all individuals have the same likelihoods (P(D | h) for all h in H), and 
that they choose optimally given their beliefs. The “population prior” (the initial 
aggregate response distribution) is the distribution over H of the number of participants 
for which h maximizes their prior, i.e. Ppop(h) = #N argmaxH Pi(h) / N. If all individuals 
use Bayesian updating, then the “population posterior” (the final aggregate response 
distribution) is Ppop(H | D) = #N argmaxH Pi(h | D) / N.  

The puzzle can be solved by appeal to variation in the participant priors only if 
the population posterior is distributionally equivalent to Bayesian updating on the 
population prior: Ppop(H | D) must be distributionally equivalent to P(D | H)Ppop(H)/P(D). 
Mathematically, this holds when: #N argmaxH P(D | h)Pi(h) ≈ P(D | H) #N argmaxH Pi(h). 
For arbitrary likelihoods, this condition is not satisfied for standard prior distributions 
(e.g., flat or Gaussian), although it may be satisfied for such priors given particular 
likelihoods P(D | H). (We know of no such analyses.) But satisfaction in special cases 
would only provide further support that the appearance of probability matching is largely 
accidental.   
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psychology and the procedures used to control for alternative explanations. It is a rather 

big pillar to start shaking. Moreover, most experiments cited here counterbalance relevant 

aspects of the cover story to control for (among other things) differing utilities, and use a 

control condition in which participants are asked to report the most likely hypothesis 

without seeing any evidence. Thus, any rejection of proposition 3 must argue not just that 

there is variation, but that the non-degenerate response distribution could arise from 

individual variation that would not be picked up in these controls.  

A weak rejection of proposition 3 would instead argue that the variation in the 

population is smaller than the plausible measurement error in the controls of the 

experiment, but is nonetheless sufficient to explain the empirical results. Random utility 

maximization provides one such proposal. McFadden (1974) explores the circumstances 

under which a group of utility maximizers will exhibit a response distribution that looks 

like every individual reported a random sample from the same function. That is, 

McFadden attempts to explain observed probability matching as a result of aggregation of 

optimal responses from a population. Specifically, suppose that each individual’s utility 

function, U(H), is given by: U(H) = V(H) + e(H), where H is a hypothesis in the space 

under consideration, V(.) is a non-stochastic function representing a utility function 

shared by every member of the population, and e(.) is stochastic, representing the 

individual’s deviation from the population utility V(.). Individuals in McFadden’s model 

choose the hypothesis that maximizes their own personal U(H). Under a fairly weak set 

of assumptions on the distribution of individual variations18, McFadden shows that choice 

                                                
18 If e(.) is i.i.d. with a Weibull distribution for each hypothesis in the space (and each 
participant), then the distribution of responses is given by 

€ 

exp(U(Hi)) / exp(U(H j ))
j
∑ . 
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based on individual utility maximization leads to a population response distribution with 

the same maxima and minima as the shared, population-level utility function. 

Specifically, there are plausible conditions on e(.), and sensible monotonic functions f(.), 

such that the set of responses from a population of utility maximizers is given by: 

€ 

f (U(Hi)) / f (U(H j ))
j
∑ . 

The focus on utilities is irrelevant here. The basic point is: if a population of 

participants share a common function (whether utility or probability) over a space of 

options (including hypotheses) but have independent individual deviations (of a certain 

kind) from this trend, then the population-level response distribution when each 

individual selects the maximum of her individual function is a distribution that has the 

same maxima and minima as the population function. Moreover, the individual 

deviations can arguably be sufficiently small that they would not be easily observed in 

experimental settings. One could even remain agnostic as to the source of the individual 

deviations, as long as they satisfy the condition in McFadden’s theorem (see previous 

footnote). In the Bayesian case, the trend-function can be the posterior probability, or the 

expected posterior utility, and individual deviations could arise in either the inference 

computation or the utilities. 

A McFadden-style response preserves the rationality (if any) of both the update 

and choice procedure, and potentially explains the appearance of probability matching at 

the population level as the result of individual differences within the population. In a 

McFadden-style response, the functional relation between the response distribution and 

                                                                                                                                            
The Weibull distribution is sufficient; weaker constraints on the distribution of e(.) can be 
given. 
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the population function (the model prediction) depends on the precise distribution of 

individual discrepancies. For the specific distribution of individual variations in 

McFadden (1974), the response distribution is an exponential transformation of the 

population trend (in the Bayesian case, the model posterior). The response distribution 

should thus share the location of maxima and minima with the model posterior, but not be 

identical with it. Since identity is the standard confirmatory test for Bayesian models (as 

stated or implicit in the papers we have cited19), that individual variation distribution is 

not appropriate. It is unknown whether there is a plausible distribution for individual 

deviations that implies identity between the model posterior and the response distribution. 

More generally, any use of a McFadden-style response depends crucially on establishing, 

on independent grounds, either that the individuals in the population exhibit the suitable 

variation, or that two populations exhibit specific differences in variation. Such testing 

has, to our knowledge, never been done in the psychological literature on Bayesian 

models. Nevertheless, this proposal is of great interest, since the necessary sources of 

variation potentially exist in psychological experiments, and the proposal lends itself to 

precise empirical predictions. 

 

4.3 Solving a different task 

An alternative response—which could also be combined with the optimal betting 

or PAC-Bayesian response—argues that problem solving and learning strategies are 

automated and optimized for everyday use to such an extent that the artificial settings of 

                                                
19 For example, Schulz, et al. (2007), which we discussed in Section 2, claim in their 
conclusion: “The Bayesian model presented in the Appendix [in their paper] … show[s] 
that the judgments of the four- and five-year-olds in our experiments are close to the 
probabilities entertained by an ideal Bayesian learner using a particular causal theory.” 
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psychological experiments are unable to control and focus the subject on the best strategy 

for the task of the experiment. Despite an experimenter’s best efforts at developing an 

ecologically valid experiment, and despite debriefing reports by participants that they 

understood the task and did their best, the underlying learning and inference machine 

might have been solving a different problem. If so, then the participant response is not an 

indication of how she solved the task at hand, but rather an indication of which ingrained 

problem solving strategy was triggered by this task. For all we know, this strategy may 

involve Bayesian inference and be highly optimized for most of our everyday learning 

problems, just not for the specific task of the experiment. This response is ultimately 

unsatisfactory, however, as it raises more questions than it answers: 

a) What is the nature of rationality employed for the automated cognitive processes? 

b) What is the underlying task that the behavior is rational for, and how can we 

determine such a task? 

c) Why do we solve a task other than the one the experiment poses? 

In particular, question (a) brings us full circle back to where we started: the standard of 

rationality.  

 

4.4 A return to behaviorism? 

Without an account of the rationality of the observed input-output relation, the 

computational level models provide a summary of the observed data, but no rational 

explanation for the behavior. That is, their models begin to look very similar to those 

advocated by (methodological) behaviorists: the model happens to capture some 

important behavioral regularities, but implies no commitments beyond that. Such an 
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interpretation has been (informally) offered for Bayesian models. A “data summary” 

Bayesian model is principally (but perhaps not solely) of interest when it is the most 

compact or efficient representation of some empirical phenomena. In many cases, 

however, comparable levels of empirical fit can be achieved by simpler models with less 

conceptual baggage (e.g., Chater, Oaksford, Nakisa & Redington, 2003; Gigerenzer, 

Czerlinski & Martignon, 1999; Nelson, 2009). Thus, some alternative argument must be 

provided for their use.  

The most plausible such justification is the widespread applicability of Bayesian 

models: the existence of Bayesian models for a wide range of domains provides some 

measure of unification to those disparate domains (assuming the method of confirmation 

is more successful in these domains). This argument, however, only has non-pragmatic 

force when the widespread applicability arises because of some similarity in the 

underlying mechanisms that generate the phenomena, or the function/role of the 

phenomena in a containing system. In either case, stronger commitments than simple 

unification can (and should) be made. And if there is no such shared mechanism or 

function/optimality, then there is no particular reason to prefer Bayesian models as data 

summaries. Moreover, the idea that Bayesian models should be only data summaries is a 

surprising reversal for cognitive science. Much of the debate in the “cognitive revolution” 

was precisely about whether psychologists could justifiably talk about internal states. The 

suggested restriction would amount to giving up on that hard-won right. 
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5. Conclusion 

Our assessment of the standard confirmation methods for Bayesian models in 

cognitive science has been largely negative. But we are explicitly not concluding that 

Bayesian models are not testable, or that the use of Bayesian models in cognitive science 

is inevitably misguided; such claims would require an exhaustive exploration of the space 

of possible models, and would constitute, in light of evidence from several other 

experimental techniques that appear to support parts of the Bayesian paradigm, a 

surprising rejection of the whole methodology. Our conclusion is more conservative, and 

largely methodological. All of the problems we have raised can ultimately be traced back 

to insufficient specification of the Bayesian models, either in the justification that they 

are ‘rational,’ or in the choice mechanism that maps a posterior probability distribution to 

a behavior. Full specification of the models is, in a certain sense, risky: such specified 

models are more readily disconfirmed and rejected. Such specification is, however, 

absolutely necessary if the models are to help us understand the nature of cognition. 

Commitment to a non-trivial account of rationality with a fully specified choice 

procedure would turn experiments like the one described in Section 2 into proper tests of 

Bayesian models. An alternative solution, such as random utility maximization 

(McFadden, 1974), could provide a resolution of our puzzle that maintains the standard 

view of rationality in terms of Bayesian belief update combined with rational choice. And 

just as it adds plausible commitments, it also provides further constraints for new types of 

tests for Bayesian models. Alternatively, an account of rationality that is weaker than 

Dutch Book rationality, but is sufficiently concrete to satisfy the explanatory demands of 

a computational level model (i.e., does not imply a large number of “rational” inference 
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methods), would almost certainly be of interest well beyond the confirmation of Bayesian 

models. We doubt that these are the only possible alternatives, but commitments of this 

type simply have not been openly suggested and defended in the psychological literature. 

One of the most important desiderata of a scientific theory⎯perhaps the most 

important one⎯is explanatory power. Bayesian models are commonly presented as 

computational models describing how beliefs are updated, and so are taken by many 

(though certainly not all) in the community to have marginal or non-existent implications 

for the algorithmic and implementation level. If a Bayesian model describes only input-

output relations, then it has no substantial explanatory power. Thus, a Bayesian model 

must be rational for it to play a role in any substantive explanation at all. As we argued in 

Section 3, however, the standard accounts of rationality fail to account for the behavior in 

the empirical data. We thus reached our four claims that are jointly inconsistent: 

1. People are Bayesian about learning and inference [explicit claim]; 

2. People choose the option that maximizes expected utility given their beliefs 

[requirement of rationality]; 

3. Experiments successfully constrain participants’ prior beliefs and utilities 

[methodological assumption]; and 

4. The distribution of participant responses matches the model posterior [empirical 

data]. 

The question that remains open is: If one is committed to claim 1, what can be given up? 
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Appendix 

Recent books on Bayesian models include: Oaksford & Chater (2007) with Open Peer 

Commentary (Oaksford & Chater, 2009); Doya, Ishii, Pouget, & Rao (2007); and Chater 

& Oaksford (2008). Bayesian models were also the focus of a 2006 special issue of 

Trends in Cognitive Science (Chater et al., 2006; Courville, Daw & Touretzky, 2006; 

Körding & Wolpert, 2006; Steyvers, Griffiths & Dennis, 2006; Tenenbaum, Griffiths & 

Kemp, 2006; Yuille & Kersten, 2006). A very incomplete sample of phenomena for 

which Bayesian models have been proposed includes:  

• Category learning and inference (Heit, 1998; Kemp & Tenenbaum, 2003; Kemp 

et al., 2007; Tenenbaum & Griffiths, 2001)  

• Causal learning and reasoning (Bonawitz, Griffiths & Schulz, 2006; Griffiths & 

Tenenbaum, 2005; Schulz et al., 2007; Sobel & Kushnir, 2006; Sobel, Tenenbaum 

& Gopnik, 2004; Steyvers, Tenenbaum, Wagenmakers & Blum, 2003)  

• Inference about conditionals (Oaksford & Chater, 2007; Oaksford, Chater & 

Larkin, 2000) 

• Covariation assessment (McKenzie & Mikkelsen, 2007)  

• Imitation (Rao, Shon & Meltzoff, 2004)  

• Information selection (Oaksford et al., 1997)  

• Framing effects (McKenzie, 2004)  

• Memory effects (Schooler, Shiffrin & Raaijmakers, 2001; Shiffrin & Steyvers, 

1997; Steyvers & Griffiths, 2008) 

• Object perception (Kersten & Yuille, 2003; Kersten, Mamassian & Yuille, 2004) 

• Repetition effects and priming (Mozer, Colagrosso & Huber, 2002, 2003)  
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• Word learning (Xu & Tenenbaum, 2005, 2007)  

 

Example of optimality of probability matching strategy in competitive circumstances 

 

Suppose that a resource occurs with probability 0.75 at location X and with 

probability 0.25 at locations Y. Further, suppose that for two competitors the pay-off is 

structured such that a competitor only obtains resources if (i) resources are present at the 

chosen location and (ii) the other competitor did not select the same location. The pay-off 

matrices for the two possible locations of resources are shown below: 

Resource is at location X (75% 
of cases) 

Competitor 2 selected 
location X 

Competitor 2 selected 
location Y 

Competitor 1 selected location X 0 / 0 1 / 0 
Competitor 1 selected location Y 0 / 1 0 / 0 
 

Resource is at location Y (25% 
of cases) 

Competitor 2 selected 
location X 

Competitor 2 selected 
location Y 

Competitor 1 selected location X 0 / 0 0 / 1 
Competitor 1 selected location Y 1 / 0 0 / 0 
 

In foraging theory the optimal strategy is generally taken to be the one that 

maximizes the average pay-off over several foraging trials (Stephens & Krebs, 1986). We 

can thus combine the two possible payoff structures by weighting them according to the 

rate of occurrence of the resource at each location: 

Combined pay-off structure Competitor 2 selected 
location X 

Competitor 2 selected 
location Y 

Competitor 1 selected location X 0 / 0 0.75 / 0.25 
Competitor 1 selected location Y 0.25 / 0.75 0 / 0 
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If both competitors select location X with probability 0.75 and location Y with 

probability 0.25 then no unilateral change of strategy by a competitor would improve that 

competitor’s payoff, that is, these two strategies that “match the probabilities” of the 

occurrence of the resource at the two locations specify a Nash equilibrium.20 Note, 

however, that the optimality of the probability matching strategy crucially depends on the 

combination of the resource distribution and the specific resource payoff structure. In 

particular, if competitors can split resources when they both select the same location, then 

probability matching no longer constitutes a Nash equilibrium. 
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