
Reasoning in Non-probabilistic Uncertainty: Logic
Programming and Neural-Symbolic Computing
as Examples

Tarek R. Besold1
• Artur d’Avila Garcez2

•

Keith Stenning3
• Leendert van der Torre4

•

Michiel van Lambalgen5

Received: 15 August 2016 / Accepted: 28 February 2017

� Springer Science+Business Media Dordrecht 2017

Abstract This article aims to achieve two goals: to show that probability is not the

only way of dealing with uncertainty (and even more, that there are kinds of

uncertainty which are for principled reasons not addressable with probabilistic

means); and to provide evidence that logic-based methods can well support rea-

soning with uncertainty. For the latter claim, two paradigmatic examples are pre-

sented: logic programming with Kleene semantics for modelling reasoning from

information in a discourse, to an interpretation of the state of affairs of the intended

model, and a neural-symbolic implementation of input/output logic for dealing with

uncertainty in dynamic normative contexts.

& Tarek R. Besold

Tarek.Besold@uni-bremen.de

Artur d’Avila Garcez

A.Garcez@city.ac.uk

Keith Stenning

K.Stenning@ed.ac.uk

Leendert van der Torre

Leon.vanderTorre@uni.lu

Michiel van Lambalgen

M.vanLambalgen@uva.nl

1 Digital Media Lab, Center for Computing and Communication Technologies (TZI), University

of Bremen, Bibliothekstraße 5, 28359 Bremen, Germany

2 Department of Computer Science, City University London, London EC1V 0HB, UK

3 School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9LE,

Scotland, UK

4 Computer Science and Communication, University of Luxembourg, 2, avenue de l’Université,

4365 Esch-sur-Alzette, Luxembourg

5 Faculty of Humanities, Logic and Language, University of Amsterdam, Oude Turfmarkt 141,

1012 GC Amsterdam, The Netherlands

123

Minds & Machines

DOI 10.1007/s11023-017-9428-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11023-017-9428-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11023-017-9428-3&domain=pdf

Keywords Uncertainty in reasoning � Interpretation � Logic programming �
Dynamic norms � Neural-symbolic integration

1 Introduction

‘‘Almost all everyday inference is uncertain, and, thus, human reasoning

should be assessed using probability theory, the calculus of uncertainty, rather

than logic, the calculus of certainty.’’ (Oaksford and Chater 1998, p. 308)

While fully agreeing on the premise of the statement—namely the observation that

most human reasoning is uncertain in nature—we want to challenge the conclusion

Oaksford and Chater (1998) (and many others) draw from it: in our view probability

theory is neither the perfect solution solving all challenges introduced by

reasoning’s inherent uncertainty, nor should logic be overly casually discarded as

exclusively fit to deal with reasoning in certainty. In fact, the conception of

monotonic classical logic as ‘reasoning in certainty’ can be misleading. In order to

substantiate these two claims, below we first illustrate how logic programming

(LP)—as a logic-based reasoning and computation paradigm—can be used to model

reasoning which involves the resolution of uncertainties of a kind not amenable to

probability theory. This is followed by the presentation of a neural-symbolic

approach to LP extended to implement Makinson and van der Torre (2000)’s input/

output (I/O) logic, which can similarly be used to model non-probabilistic

uncertainty in normative reasoning; uncertainty which is compounded by changing

or newly added norms (i.e. dynamic environments requiring machine learning).

Among the main foundations of our argument is the observation that there are

several qualitatively different kinds of uncertainty, for some of which probability—

as convincingly shown by Oaksford and Chater (1998)—can be a powerful

modelling technique, while others clearly lie outside of the reach of probabilistic

approaches. The need for distinguishing kinds of uncertainty has surfaced regularly,

for instance, in the study of judgement and decision-making. Knight (1921) made an

early distinction between ‘risk’ (which could be modelled in probability) and

‘uncertainty’ (which could not), in economics. Kahneman and Tversky (1982)

already discussed several variants of uncertainty, distinguishing, for example, what

we might call private uncertainty (‘‘How sure am I that Rome is south of New

York?’’ where the truth is taken to be already known by others) from communal

uncertainty (‘‘How likely is it at the time of writing that the euro will collapse?’’).

More recently, (Bradley and Drechsler 2014, p. 1225) proposed a taxonomy of

uncertainties, in which:

‘‘[...] ethical, option and state space uncertainty are distinct from state

uncertainty, the empirical uncertainty that is typically measured by a

probability function on states of the world.’’

T. R. Besold et al.

123

This comes with the claim that a single probability function cannot provide an

adequate simultaneous account.1 Mousavi and Gigerenzer (2014) expand Knight’s

distinctions adding a further type of ‘utter uncertainty’ which describes cases where

models are used in new domains.

One way of making the existence of a range of kinds of uncertainty distinct from

probability generally plausible, is to think in terms of what a probabilistic model has

to specify—and then consider what happens when elements are unavailable.

Probabilistic models have to specify an algebra of propositions (variables) which

exhaust the ‘effects’ encompassed by the model. Structural relations of dependence

and independence then have to be supplied or assumed. Distributional information

has to be attached; and last but not least, an assumption of ‘stationarity’ has to be

made, i.e. the probabilistic relations between the isolated algebra of propositions

have to be assumed to remain constant, and without intrusion of extraneous

influences.

Several example phenomena that make this probabilistic schema impossible or

unfruitful to apply will recur throughout this paper: LP modelling of the

interpretation of discourse (Sect. 2); learning (Sect. 3.5.2) which contributes

various ‘nonstationarities’ to reasoning systems; motivational phenomena which

include both the norms expressed in deontic concepts such as priorities, obligations,

permissions, contrary to duties (CTDs) (Sect. 3.2.1), but also motivational ones

such as goals and values. All these various examples share the requirement for the

flexible handling of dynamic contexts, with the ensuing robustness to exceptions, as

we illustrate.

Discourses are connected language. The process starts with input of discourse

sentences, and sequentially builds a unique minimal ‘preferred’ model at each step.2

The algebra of propositions grows at each step, and when examined carefully, the

propositions already in the model change—if only by taking on temporal/causal

relations to the new ones that arrived (van Lambalgen and Hamm 2004)—even

when they are not dropped nonmonotonically. The structural ‘common core’ of the

last LP model in this sequence can provide, for instance, the basis for creating a

Bayes Net by adding distributional information (Pearl 2000; Pinosio, in prep.). Still,

the propositions had not been identifiable until now, and so, no distributions could

be attached, nor judgments made about causal stationarity. Reasoning to this point

cannot be probabilistic; and even at this point, it is not entirely clear whether or how

the necessary distributional information is available in general. And this is just the

beginning of the difficulties since, for example, LP can freely express intentional

relations between acts and actors’ multiple goals (Varga 2013), which can at best be

inflexibly ‘operationalised’ in extensional systems. Extensional systems may be able

to formulate propositions that, when they become true, indicate that a goal has been

fulfilled. However, they cannot capture what goals are: namely, the abstract

1 However, these authors—somewhat paradoxically—in the end come to the view that whatever

uncertainty is the topic, probability is the framework for modelling it; cf. Sect. 2.2 for some

considerations on the corresponding argument and conclusion.
2 Later, we shall consider an alternative LP semantics based on Answer Sets (Gelfond and Lifschitz

1991), but we choose Preferred Model Semantics (Shoham 1987) for now because the uniqueness of

preferred models is a crucial feature for cognitive processes such as discourse processing.

Reasoning in Non-Probabilistic Uncertainty...

123

flexibility of systems of motivational states and their interactions in unpre-

dictable environments, as we shall see.

It is worth noting that the recent success of probabilistic language models based

on neural networks (Weston et al. 2014; Graves et al. 2013) is orthogonal to the

arguments presented in this paper. Yet, within the area of neural-symbolic

computing (Garcez et al. 2009), equivalences have been proved between LP and

neural networks, which indicate the possibility of reconciling such apparently very

distinct representational frameworks. In fact, later in this paper a (non-probabilistic)

neural characterisation of LP will be proposed which seeks to combine the

requirements identified here of three-valued semantics and spreading of activation

(discussed in what follows) with an ability to learn from examples, which is also a

requirement of discourse processing in the case of dynamic environments. This

neural-symbolic approach will be applied to deontic attitudes which preclude

probability, since they are motivational in the extended notion of the word used in

this paper: an obligation establishes a goal, even if that goal gets overridden by

dynamic changes in circumstance. This will be exemplified in the context of

reasoning in uncertainty about an environment of changing norms, which might

themselves evolve in many as yet indeterminate ways.

At this point we take a step back and include what might seem like a mere

clarification of terminology, but goes in fact much beyond that: the sense of

‘extensional’ and ‘intensional’ we use here are from the psychological decision

making literature—stemming from Tversky and Kahneman (1983)—in which

probability is extensional because its predicates are defined as sets, even though its

conditional is non-truthfunctional. In that literature, ‘intensional’ is often synony-

mous with ‘informal’ as it lacks a suitable logic. Nonetheless, LP (with the

semantics as specified by Stenning and van Lambalgen 2008) is intensional in the

general philosophical sense: its predicates are defined in terms of ‘senses’ which are

cashed out as algorithms (completion), and its closed-world reasoning conditionals

are ‘licenses for inference’ (roughly contentful inference rules) rather than

compound propositions (cf. Sect. 2 for an introduction). An example of the role

this interpretation of the intensional/extensional distinction plays, is the famous

‘Conjunction Fallacy’ (Tversky and Kahneman 1983) which is supposed to be about

judgements of the relative sizes of sets of cases corresponding to predicates and

their conjunctions in probability. If a reader’s interpretation is in LP, then this

extensional distinction makes no sense. The distinctions required for differentiating

qualitatively different kinds of uncertainty can be seen more clearly in the contrast

in the semantics of the intensional and extensional systems we discuss below.

Stenning et al. (2017) use the Linda Task (the origin of the supposed Conjunction

Fallacy) to illustrate this intensional option for interpretation, and its consequences.

In the large, we believe these contrasts between intensional and extensional systems

are at the heart of the contrasts in kinds of uncertainty which are our focus.

All these issues concerning the variety of kinds of uncertainty, and the

characteristics of different formalisms and representation systems, also resound in

the many different types of uncertainty Artificial Intelligence (AI) has to deal with

in realistic scenarios: the world might only be partially observable, observation data

might be noisy, the actual outcome of actions might be different from the

T. R. Besold et al.

123

theoretically assumed one (either due to previously unknown or unconsidered

factors, or due to independent external influences), or a prediction and assessment of

present and future world states, action outcomes, etc. might just practically be

outright impossible due to the immense complexity of the environment and

scenario. As can be expected, there is an accordingly large AI literature on

reasoning in uncertainty, and the variety of systems other than probability which are

available. Quite recently Kern-Isberner and Lukasiewicz (2017) provided a helpful

brief map of approaches to uncertainty—which, among others, demarcates logic

programming under answer set semantics as distinctively outside both the currently

popular system P (Kraus et al. 1990) and the AGM axioms (Alchourrón et al. 1985).

Another aid to navigation is offered by Halpern (2005) who is concerned with

distinguishing different representations of uncertainty, and then studying reasoning

from those representations. The example problems he gives in Chapter 1, pages 1 to

4, all have the property that the domain of interpretation and the properties and

relations defined thereon are fixed at the outset. This need to fix interpretation is

imposed by classical logic and probability, because of their need to generalise about

all assignments of values to the vocabulary. Only the sampling, and with it the

epistemic states of the judges of uncertainties, varies. For such problems, Halpern

argues convincingly that plausibility measures are a generalisation of probability

measures, and that different plausibility measures are more or less appropriate for

different problems.3 But contrary to this general line of investigation, our focus is on

the more radical kind of uncertainty faced by reasoning to interpretations.

Our paper thus has a much more modest exploratory goal than Halpern’s

monumental work. It seeks to develop two examples in some detail of reasoning to

interpretations. So by definition, in these examples, much less is known about the

particularities of their domains until their specification is finished, and it is the

uncertainty during this process of reasoning which is our focus. A great deal of

general knowledge must be applied in the dynamic development of their

specification during the period of interpretation whose uncertainties are of interest.

The example of narrative discourse interpretation exemplifies this character: At the

outset of a story, the hearer may know nothing in particular of what will turn out to

be in the preferred model of the story that will develop; not even what range of

properties and relations will distinguish the characters and events that unfold, even

though the hearer’s knowledge base must contain a great deal of general knowledge,

some of which has to be mobilised to interpret the current input discourse. We

nevertheless succeed in reasoning to interpretations of such stories with remarkable,

though not inevitable, success. This reasoning is omnipresent in human problem

solving and communication (Stenning and van Lambalgen 2008). It has to be a

precursor to modelling in probability, or plausibility measures more generally,

because the vocabulary of predicates and relations has to be established by

reasoning to interpretations. Modelling this reasoning to interpretations requires a

framework that is more radically nonmonotonic than probability theory, whose

underlying propositions to which probabilities are attached, are classical logical

3 In terms of concrete examples, the work by Nilsson (1986) comes to mind as a prominent instance

falling within the domain of Halpern’s plausibility measures.

Reasoning in Non-Probabilistic Uncertainty...

123

propositions. Stenning et al. (2017) argue that such extensional systems are

inherently incapable of providing the requisite flexibility. Understanding how

reasoning to interpretations works with reasoning from them can lead to a deeper

understanding of both.

Still at this synoptic level, another difference between Halpern’s plausibility

measures and LP doing discourse interpretation is that the former begin with

numerical parameters on propositions, and output numerical parameters on inferred

propositions. In contrast, LP reasoning to interpretations of discourse need have no

numerical parameters, even though numerical properties of the logical structures

involved have been shown to be the basis on which reasoners make quantitative

judgments of LP conditionals’ reliability in inference (Stenning et al. 2017).

Counting the defeaters for a conditional can predict confidence in inferences from

that conditional. For another example, Halpern’s conditionals with plausibility

measures treat conditionals as propositions having truth values. In LP with Kleene

semantics modeling discourse interpretation, conditionals are not propositions (they

are licences for inference), and erate (cf. Stenning and van Lambalgen 2008, p. 184,

footnote 9), nor do they become false if they do not apply because of an abnormality

condition.

At a more technical level, there are a number of contrasts between LP (and also

the later discussed I/O logic) and plausibility measures (Halpern 2005) which adopt

the KLM axioms. For example, plausibility measures apply to systems with the

‘OR-rule’. From p! q; r ! q it follows that ðp _ rÞ ! q. This rule does not apply

in LP because the ‘abnormality clauses’ defeat it: p ^ :ab0 ! q; r ^ :ab00 ! q it

does not follow that ðp _ rÞ ! q.

We close this differentiation of our focus from existing work with an example of

a more empirical dissatisfaction with probability as a model of human reasoning.

Tversky and Kahneman (1974) and Gigerenzer et al. (1999, 2011) have extensively

developed evidence that human reasoning is heuristic with regard to probability

models. In an especially clear case of this relation, Juslin et al. (2009) argue that

peoples’ judgements of likelihoods in uncertainty do not obey probabilistic models.

However, their concern is with heuristic approximations for combinations of

probabilities. They assume that people have access to the probabilities (or their

estimates), and produce evidence that people combine them in the conjunctive case

by ‘weighting and adding’, rather than the probabilistically normative procedure of

multiplying. This is a different, calculative level of issue with probability than the

conceptual differences that concern us here. These authors tiptoe towards the cliff of

appreciation that probability might not be the right normative theory:

‘‘Importantly in this context, to the extent that problems are framed in terms of

probability that often requires multiplicative information integration, the

strong inclination for linear additive integration is a first sense in which

probability theory may often not be a very useful (or useable) guide in life.’’

(Juslin et al. 2009, p. 861)

Nonetheless, they do not take the leap of offering an intensional framework.

Stenning et al. (2017) explore an incorporation of such heuristic approaches within

LP to provide a simple probability-free model of judgement and decision. This

T. R. Besold et al.

123

approach offers insights into how intensional reasoning produces structural

foundations for subsequent probabilistic modelling through their ‘common core’

(Pinosio). This functional relation of the two contrasting types of reasoning in

uncertainty is of central importance in human reasoning, and is possibly one of its

main ingredients which is least represented in current AI.

In Sect. 2 we first focus on the application of LP in building process models of

‘‘reasoning to an interpretation’’ as a crucial part of human reasoning. As, for

instance, Stenning and van Lambalgen (2010) argue, when faced with interpreta-

tional uncertainty about the information involved in a problem, we cannot engage

the computational complexity of probability, but have to take more accessible

inferential paths—which are often quite successful. Here, among other work

building on the book by Stenning and van Lambalgen (2008), a version of LP, using

a semantics based on three-valued Kleene logics, offers itself as a modelling

approach. Since it is a crucial cognitive capacity involved in our daily lives, as

already mentioned above, discourse processing will serve as core theme and

paradigmatic example in this section.

Section 3 subsequently takes a more AI-centric view and describes a neural-

symbolic architecture combining the I/O logic proposed by Makinson and van der

Torre (2000) with artificial neural networks (ANNs), applied to normative reasoning

tasks involving uncertainty introduced by changing norms over time. I/O logic seeks

to analyse the sometimes subtle asymmetries between what can be fed into, and

what can be output from, other logics, wherever there are inputs that cannot occur as

outputs, or vice versa. Normative reasoning is chosen because deontic systems have

to encode obligations and permissions which will be manipulated as propositions by

the ‘inner logic’, but whose force is not entirely captured by such manipulation. For

example, consider ‘cottage regulations’ often discussed in deontic logic. When the

input says that there is a dog, and the output says that there should be no dog, then

there is a violation (which could be sanctioned). Alternatively, if the input says that

there is no dog, and the output says again that there should be no dog, then there is a

fulfilled obligation (which could be rewarded). Moreover, we may also have

according-to-duty relations such that the output says that there should be no fence

either when the input says there is no dog, or when the input is just a tautology; and

contrary-to-duty (CTD) relations in which case the output may say that it is

obligatory that there is a fence when the input says that there is a dog. Examples like

these will be discussed later. Simply put, the challenge of norm dynamics is to

change such—already by themselves quite complex and often highly interdepen-

dent—relations between input and output when new information becomes available

that norms have changed. Interestingly, in neural networks, as in I/O logic, what can

be fed into and what can be output from a neural network is strictly defined, in

contrast to LP. This will be analyzed in detail. The neural part of the neural-

symbolic approach enables the required form of learning, and learning introduces a

dynamics to normative systems that also exercises I/O logic, introducing more kinds

of uncertainty differentiated from probability.

Section 4 then concludes our argument and sketches several directions for future

work.

Reasoning in Non-Probabilistic Uncertainty...

123

2 Logic Programming Modelling Reasoning to an Interpretation

In this section we focus on the applicability and advantages of an LP-based

approach for modelling reasoning in interpretatively uncertain situations, i.e.

situations in which there is uncertainty concerning the relevance or precise meaning/

interpretation of propositions. Section 2.1 introduces the relevant form of LP using

three-valued Kleene semantics, and conceptually motivates its use as a modelling

tool for this human reasoning. This is followed by a more focused treatment of this

type of LP applied to dealing especially with the uncertain aspects of reasoning in

Sect. 2.2.

2.1 Logic Programming Modelling Reasoning

LP is a formal system that has been used extensively to model reasoning in a variety

of domains, as widely separated as motor control (Shanahan 2002), and imitative

learning (Varga 2013). Its employment in cognitive modelling grew primarily out of

an analysis of discourse processing, in particular of interpretation (van Lambalgen

and Hamm 2004; Stenning and van Lambalgen 2008; Stenning and Varga 2016).

People take in sentences online, in fractions of a second, and effortlessly update

their current discourse model, fully indexed for co-references of things, times and

events, and their temporal and causal relations. This may require far-flung bits of

background knowledge, retrieved from a huge knowledge base (KB) of semantic

memory composed of conditional rules understood as licences for inference.

Discourse interpretation involves constructing a preferred or intended model4 of the

context. A crucial application of LP is modelling the efficient inferential retrieval

from long-term memory of the relevant cues needed to construct or decide on an

interpretation of the state of affairs as basis for, e.g., choosing a course of action.

Following Stenning and van Lambalgen (2008), we view reasoning to be a two-

stage process. It starts with reasoning to an interpretation (the computation or

retrieval of a meaningful model of the current situation), which may be followed by

reasoning from the interpretation. In a typical (i.e. cooperative) conversational

context this amounts to computing the model the speaker must have intended to

convey. The computation of the intended or preferred model by LP complies with

cooperative Gricean principles, but is much more efficient than computing directly

with those principles. Imagine you are talking to a friend who is telling you her

holiday stories, including an outing into the countryside by car. She says: ‘‘And then

I press the brake! And then . . .’’. LP is constructed so that it interprets this utterance

online under the assumption that the speaker’s goal is to provide everything the

hearer needs to know and nothing more, in order to construct a minimal model of

the discourse at each point. At this point that model predicts a continuation of the

story consistent with the car slowing down, though this may well be retracted at the

next point. It does not consider, without positive evidence, that there might have

4 Intended model is the psychological notion which corresponds to minimal model. Model is to be read as

semantic model. Preferred model is the logical notion used by Shoham (1987). Keeping in mind the terms

belonging to different fields, we use intended, minimal and preferred as synonyms.

T. R. Besold et al.

123

been ice on the road, or that hers functions differently from all other cars, (or any

other defeater). LP with negation-as-failure and Kleene’s strong semantics has

shown to be a good candidate for a suitable logic of such cooperative intensional

reasoning.

LP conditionals function as ‘licenses for inference’, rather than sentences

compounded by the ‘if ...then’ connective. They can be thought of as highly content-

specialised rules of inference which are always applicable when a clause matches

them. But it has the important consequence, already mentioned, that—like natural

language conditionals—LP conditionals do not iterate, especially in the antecedent,

to produce compound propositions, and do not themselves have truth-values: they

are assumed applicable on an occasion unless evidence of exception arises. LP as

discussed by Stenning and van Lambalgen (2008) and van Lambalgen and Hamm

(2004) formalises a kind of reasoning which uses closed-world assumptions

(CWAs) in order to keep the scope of reasoning to manageable dimensions by

entities with limited time, storage, and computational resources, though with very

large knowledge bases (KBs)—such as we are. Historically, LP is a computational

logic designed and developed for automated planning (Kowalski 1988; Doets 1994)

which is intrinsically preoccupied with relevance—making for an important

qualitative difference between LP and classical logic (CL). Returning to the type of

communicative situation as just introduced in the car example, discourse processing

in LP is cyclical. When a new input sentence arrives, its terms are searched for in

the KB. The existing minimal model of the discourse to this point is then updated

with any new relevant information, according to CWAs, and the cycle repeats. CL,

in contrast, assesses the validity of inferences from premises to conclusions with

respect to all possible models of the premises, so the question of relevance does not

even arise in CL, except outside the logic in the framing of problems. So LP is not

just a poor man’s way of doing what can be done better but with more difficulty in

CL—the two different types of logic simply serve different incompatible reasoning

purposes, and in this sense are incommensurable.

The basic format of CWAs is the one for reasoning about abnormalities

ðCWAabÞ, which prescribes that, if there is no positive information that a certain

abnormality-event must occur, it is assumed not to occur.5 These abnormalities are

with respect to the regularity expressed by a conditional; for example, ice on the

road causing a car not to stop although the brake is pressed, is an abnormality with

respect to the default functioning of brakes. Potential abnormalities are included in

the LP meaning of the conditional!, hence what is labeled ‘counterexample’ in CL

does not invalidate a conditional inference in LP, it is merely treated as an

exception. The conditional has an operational semantics as an operator that modifies

5 Abnormality is a technical term for exceptions and should not be taken as having any other overtones.

Some terminology: in the conditional p ^ :ab! q, ab is the schematic abnormality clause. A distinct ab

is indexed to each conditional, and stands for a disjunction of a list of defeaters for that conditional;

CWAab is the CWA applied to abnormality clauses; : is the 3-valued Kleene connective, whereas

negation-as-failure is an inference pattern that results in negative conclusions by CWA reasoning from

absence of positive evidence; falsum (?) and verum (>) are proposition symbols which always take the

values false or true respectively; turnstile (‘) and semantic turnstile (�) are symbols indicating syntactic

and semantic consequence respectively.

Reasoning in Non-Probabilistic Uncertainty...

123

truth values of atomic formulas. This is the logical mark of its use as an exception-

tolerant ‘licence for inference’. It is represented as p ^ :ab! q; it reads as ‘If

p and nothing abnormal is the case, then q’. The antecedent p is called the body of

the clause, and the consequent q is its head.6 p and q are composed of atomic

formulas, with q restricted to literals (atomic formulas or their negations) and p to

conjunctions of literals. The only connectives that may occur in the antecedent are ^
and :.

Sets of such conditional clauses constitute a general logic program P (i.e. a

program allowing negation in the antecedents of clauses). P can be understood as a

recipe for computing a unique model of the discourse it represents, on the basis of

information from background knowledge inferentially selected as relevant. Nega-

tion in the antecedent requires utilisation of a three-valued semantics.7 We opt for

strong Kleene semantics for LP, where the middle truth value u means ‘currently

indeterminate’; it is not a graded truth akin to a probability—as in Lukasiewicz

three-valued logic—but rather a stage of computation of an algorithm which can

evolve towards either 0 or 1. This gives LP the sort of semantic mobility which

constitutes a crucial reason for claiming that it can capture the particular kind of

nonmonotonic flexibility of reasoning required to deal efficiently with interpreta-

tional uncertainty (cf. Sect. 2.2). Facts q can be represented in logic programs as

consequents of tautologies, > ! q (for simplicity we write only q). The CWAab

requires that for an initial interpretation at least, abnormalities are left ‘at the back of

the reasoners’ minds’, i.e. outside of the minimal model of P. However conditional

clauses have conjoined abnormality conditions of the kind r1 ! ab1; . . .rn ! abn;

when evidence of r1; . . .rn becomes available, it activates the correspondent abk. If

we take P ¼ fIf the brake is pressed, the car will slow downg, the fact ‘there is

ice on the road’ is not represented in its minimal model because this model

disregards all potential abnormalities without explicit evidence. The information in

a minimal model includes all that is currently known to be relevant and nothing

more than that; the only relevant information is explicitly mentioned or derivable.

The derivation capacities of LP’s search of its KB are what achieves this

computation of relevance. If new input is that there was a storm last night, then this,

together with other information in the KB about local meteorology, may yield an

inference that there is ice on the road. The input does not mention ice, but ice on the

road is a relevant defeater for braking causing slowing, that we assume is already in

the list of defeaters for the brakes conditional. Of course, the new information will

lead to many other potential inferences during the sweep through the KB, but if they

do not connect with anything in the current model, these inferences will not be

added because there is no evidence of their relevance. Sometimes such retrieval can

involve several conditional links. This is a computationally explicit example of what

psychology knows as ‘spreading activation’ models of memory retrieval, but has

been neurally implemented for ‘propositional LP’ as described in (Stenning and van

6 Another remark concerning terminology: while in this context the use of the terms ‘head’ and ‘body’ is

commonplace in computer science, we will in the following restrict ourselves to ‘antecedent’ and

‘consequent’ in order to maintain homogeneity also with terminology in philosophy and logic.
7 Cf. (Stenning and van Lambalgen 2008, chapter 2) for the justification, or the Appendix in (Stenning

et al. 2017) for a more succinct version.

T. R. Besold et al.

123

Lambalgen 2008, chapter 8). Spreading of activation will also be given a slightly

different implementation in the neural networks used later in this paper. Such

networks will adopt an answer set semantics (Gelfond and Lifschitz 1991) allowing

the use of default negation for implementing CWA explicitly, and classical

(sometimes called explicit) negation, which allows for reasoning as intended here,

that is, in the absence of a proof of A and its negation, the truth-value of A is

‘currently indeterminate’.

LP models embody much information about stereotypes. For a micro example, it

is part of the stereotype of our braking scenario, that the car that is conjured is in

motion when the brake is pressed, as developed below. Minimal models are at the

intersection between the current input (be that heard language, or observations of

any other form) and the reasoner’s background knowledge; they contain all the

relevant information and nothing more. In logical terms, they are constructed using

the two-step rule of completion (comp):

1. take the disjunction _ of all antecedents p1; . . .pn with the same consequent q in

program P;

2. replace ! with $.8

Thus, if P ¼ fp1 ! q; . . .pn ! qg, compðPÞ ¼ fp1 _ . . .pn $ qg. The minimal

model of P is in fact a model of compðPÞ. Such a model does not include

information that is either not explicitly mentioned in P, or not derivable from it, and

in this sense it is minimal. The CWAab provides the notion of valid inference in

LP—an inference is valid if it is truth-preserving with respect to the minimal model

of the premises. The contrast with CL is noteworthy: in CL an inference is valid if

and only if the conclusion is true in all possible models of the premises. Because of

this LP turns out much less computationally complex than CL, and therefore is a

promising candidate framework for realistic performance models of fast, implicit, or

automatic reasoning (online discourse interpretation being the paradigmatic case).9

Once a minimal model is constructed, further reasoning from that model ensues

according to the derivation rule of resolution, or the reduction of goals to subgoals

by means of backwards chaining.10 The syntactic manifestation of the CWAab is the

inferential rule of negation-as-failure, which is applied restrictively to proposition

letters which are consequents of falsum, i.e. to q occurring in formulae like ? ! q.

Queries or goal clauses initiate derivations.

8 Here, $ denotes a classical biconditional in the object language.
9 Basically, in LP queries can be answered in time linear with the length of the shortest inferential path in

the KB.
10 This direction of reasoning is from effect to cause, from goals to subgoals, or simply backwards in

time. The typical backward inferences are modus tollens (p! q;:q � :p) and affirmation of the

consequent (p! q; q � p), initiated by the consequent. The psychological findings that these inferences

are more difficult might well be a result of the micro-scale of the tasks being used (Sloman and Lagnado

2015), or of the slightly more complex form of the CWAab needed (Stenning and van Lambalgen

2008, pp. 176–177).

Reasoning in Non-Probabilistic Uncertainty...

123

‘‘Operationally, one should think of a query ?q as the assumption of the

formula :q, the first step in proving q from P using a reductio ad absurdum

argument. In other words, one tries to show that P;:q � ?. [...] one rule

suffices for this, a rule which reduces a goal to subgoals.’’ (van Lambalgen and

Hamm 2004, p.230)

Suppose one wants to reduce the query ?q with respect to the program

P ¼ fp ^ :ab! q;? ! abg, which contains no positive information about

abnormality. Negation-as-failure allows the reduction of q to p, because ab is a

consequence of falsum.

The formal parameters of LP, e.g., the semantics based on truth in unique

minimal models, the nonmonotonic definition of validity, or the syntactic rules, such

as negation-as-failure, recommend it for applications in the modelling of human

reasoning. In the first place, individuals’ background KBs are sets of exception-

tolerant regularities. Further, LP provides a ‘direct route’ to (the reasoner’s beliefs

about) states of the environment which ground inferences: observations can be

looked at as the effects of those (beliefs about) states, represented as literals

occurring in the consequents of KB clauses. We saw above that the LP syntactic rule

of resolution amounts to stepwise backward reasoning from goals (effects) to

subgoals (causes), i.e. from queries to their causes represented in the bodies of

conditionals. This matches conceptually with the plan-like psychological structure

of reasoning strategies: starting from the goal, i.e. a particular desired state of affairs

that calls for action, one attempts to derive a behaviour that presumably leads to that

state. Similarly, when a certain state is observed, backwards reasoning derives as its

cause the (beliefs about) states which appear in the antecedent of the clause whose

consequent it is. This ‘effect to cause’ inference takes place with respect to the

minimal model of P, after the operation of completion has been performed; further,

it is made under the auspices of CWAab in the syntactic form of negation-as-failure.

Therefore the (beliefs about) states are presumably, to the best of the reasoner’s

knowledge, relevant for the current inference—they are the most plausible

conditions for the observed effect to occur.

Tying back into our overarching theme for this article, it should be noted that LP

has some close correspondences with probabilistic models. At least in causal cases,

LP produces the structural features of the models which are shared with the

structural features of causal Bayes Nets (Pearl 2000; Pinosio). Nevertheless, the

computational properties are highly distinct (Baggio et al. 2016; Stenning and van

Lambalgen 2010). Probability cannot be the basis for what LP does in discourse

processing. Discourse processing at a semantic level requires extremely fast

reasoning about novel arrangements of properties and goals, currently unknown by

the reasoner to be relevant to the discourse, in order to identify the propositions

underlying the discourse, and this without knowledge of the distributions required

for probability models. Probability has the general computational feature that the

heavy computation of critical probabilities has to be done when the information

defining the problem is complete (i.e. the relevant propositions identified and

refined), and this is not viable in on-line discourse processing. Foreshadowing the

discussion in the following subsection, the relevant type of uncertainty here is

T. R. Besold et al.

123

uncertainty of interpretation, not uncertainty about truth values or their probabilities.

We strongly suggest that this state of affairs is not limited to discourse processing,

but continues into many of the situations where people must interpret novel

information.

2.2 The Many Logical Faces of Uncertainty, or What Logic Programming
Can Do for Reasoning

We have introduced LP modelling of discourse interpretation in some detail because

it is perhaps the extreme example of reasoning to interpretation. Once this contrast

with probability models is established, it enables us to understand its kind of

uncertainty as qualitatively distinct from probability. For this we resort to

comparison of the logical systems that define them. In contrast to most of the

proposals of kinds of uncertainty listed in the introduction, we see the necessary

focus as on differences in the epistemic relations of the user of a logic to the

propositions expressed, rather than in the content of the propositions themselves. To

illustrate with examples of the version of LP just described, a speaker and a hearer

are modelled as cooperating for the speaker to communicate to the hearer her

intended preferred model by uttering a sequence of sentences. As is typical in

cooperative action, this is a non-zero sum game. If the hearer doesn’t get the model,

then the pair have failed (blame is another matter irrelevant here). Once this

cooperative nature is captured in the semantics, it becomes evident that there is a

concomitant kind of necessity: one might call it communicative necessity. If the

speaker says ‘‘Once upon a time there was a cat and a dog’’ the hearer can conclude

with certainty that the intended model contains two distinct animals at this point.

This is not certainty about the real world (whatever that is). It is certainty about the

expressed intended model, where the relation of that model to the world is for the

time being suspended. However complex the gyrations in the continuation are that

perhaps reveal that the cat was actually mistaken for the very dog, so that the model

communicated then has only one animal in it, the initial proposition that there are

two animals is ‘communicatively necessary’ in this logic of interpretation. What is

certain is the interpretative facts (as long as the discourse is clear, which in turn

depends whether the speaker and hearer’s KBs are well aligned in their relevant

parts): not any existing situation in the world. Fictional examples are extreme and

therefore helpful, but in fact much of our communication starts out nearer to this

kind of process than to the construction of a state of affairs that the hearer already

knows how to anchor to the world. With ‘true’ stories, we also do not know what is

going to happen, or even who is going to turn up, until they are done. Once the

appropriate kind of necessity is grasped, it is easier to see the kind of uncertainty

that is involved. The hearer is uncertain about what information will arrive, and

what updating of the model will therefore be required to form the propositions that

will be in the final model.

Different disciplines over the last half century or so have contributed to a greater

understanding of the range of logical systems for treating uncertainty. To see the

importance of a qualitative classification of kinds of uncertainty, consider CL as

distinct logic also exhibiting a characteristic kind of uncertainty while reasoning

Reasoning in Non-Probabilistic Uncertainty...

123

toward a proof of a conjecture.11 This is reasoning in uncertainty about whether the

conjecture is a theorem, and it cannot be measured by probability. A proof dispels

this uncertainty with a positive answer, while a counterexample resolves it with a

negative answer. For another example, deontic logic defines reasoning in moral

uncertainty toward moral necessity. Each logic has its own kind of uncertainty. If

there were no uncertainty, the entire motivation behind reasoning would be more

than questionable. Also—coming back to the remark concerning the kinds of

uncertainty treated by a logic being twinned with the logic’s kind of necessity—the

CL example can serve as prime example: CL’s kind of necessity is truth in all

models of the premisses, which is distinctively not explicable in terms of

probability.

First, a general characterisation of the problem of distinguishing kinds of

uncertainty, before returning to the example. Any kind of uncertainty is a three-way

relation between a person, their epistemic state, and a proposition. A probability

model is one kind of specification of an epistemic state, which assigns probabilities

to component propositions. This is not a point about the subjectivity or otherwise of

probability. However objective the probability of an event may or may not be, it

also depends on the epistemic state of the assigner—what they know or believe that

is expressed in the relevant probability model. This epistemic state is also objective.

Epistemic agents with different knowledge and belief about the same objective

events will generally rationally assign them different probabilities on the basis of

different models. Think of the players in a card game who know their own but only

their own hand: each has a different probability model assigning different

probabilities, to say, the next card played.

If the epistemic state of an agent does not permit them to specify a probability

model by identifying the propositions relevant to their epistemic state, then their

uncertainty will be of a different kind than probability. The authors cited in Sect. 1

as advocating varieties of uncertainty—with the exception of Mousavi and

Gigerenzer (2014)—look to identify them through probability models. For example,

take the most elaborated classification by Bradley and Drechsler (2014). It starts out

promisingly qualitative, as demonstrated by the quote above. But the authors still

end up with probabilities. The authors’ argument is only that they cannot be

assigned a single probability function. But they do not consider the variety of logics

that are required to characterise the epistemic states that constitute the uncertainties.

It is the characterisation of epistemic states that requires the different logics; not

particularly the nature of the ‘output proposition’ to which the uncertainty is

assigned.

Again using discourse processing as example, LP describes the sequence of

epistemic states the hearer goes through as they interpret a discourse. In this view,

LP—as candidate for a logic underlying cooperative discourse semantics—specifies

11 Nota bene: This stands in harsh contrast to Oaksford and Chater (1998)’s above quoted conventional

characterisation of CL as ‘reasoning in certainty’. When this way of conceptualising monotonic CL in

contrast to nonmonotonic logics was introduced in the mid-1970s and 1980s—for instance, in the wake of

Minsky (1974)’s frames or McCarthy (1980)’s circumscription approach— the underlying concern was

not with characterising kinds of uncertainty, but with contrasting two systems on the one specific property

of (non)monotonicity.

T. R. Besold et al.

123

a process which takes in new information about the current context of reasoning,

and interprets it in the light of background KB of regularities into a unique minimal

model which identifies the relevant propositions. Consider the case of a discourse-

initial: ‘‘Max fell. John pushed him’’. First it is crucial to see that the discourse

model we construct is more than the set of sentences. The two sentences ‘‘Max fell’’

and ‘‘John pushed him’’ are logically unrelated, but the model we derive (perhaps

unwittingly) is extensively augmented with new information. For example, the link

attributed is causal—Max’s falling follows John’s pushing in time, as its effect—

and there is a spatial contact between Max and John. And the model specifies that

Max is not John. And so on. This extra material is derived based on our general

knowledge about human-on-human pushings and fallings. The example is chosen

because here the KB actually induces an interpretation where the sequence of events

departs from the sequence of narration, making the reasoning more prominent. Of

course, it quickly becomes obvious that here context is everything. If Max and John

were fish in water, we would struggle to interpret, because falling in water is hard

for a fish, and not the typical result of pushing. If, on the other hand, the next clause

were to be a continuation of the second sentence: ‘‘[...], or what was left of him after

hitting the ground, over the cliff.’’, we would have to revise the model in the light of

the new information. Now, the pushing is subsequent to the falling (whose causation

is unknown), and there is a cliff in the model, near to the protagonists. The

uncertainty resides in the fact that we do not know what information is going to be

involved; and this information is not available until we have integrated the current

input and our background knowledge into the developing model, resolving

temporal, causal and referential relations, among others. We will not present an

LP formalisation here (cf. van Lambalgen and Hamm 2004, p. 131): our purpose is

to point to the omnipresence of such inference, and the richness of the general

knowledge that has to be found and applied, generally at speed, and without

awareness. Electrophysiological observations on analogous materials strongly

corroborate these inferences’ occurrence (Pijnacker et al. 2010).

What is also important is that—as already stated above—interpretative

inferences define their own kind of necessity, namely communicative necessity.

They entail nothing about how the world has to be, but they do entail what we have

to take as the speaker’s intended model of her discourse. This does not mean we

have to take it as truth: we may even have good reason to believe it is part of a

deliberate deception. But if we need to understand that deception, we must first

understand the intended model to see what pack of lies is being offered, i.e. what has

been communicated. The general point is that we must construct our interlocutors’

intended models if we are to communicate.

But now, returning to our overarching question, how does this relate to the types

of uncertainty probability theory can and cannot cover? As we engage in this little

cliff top drama, we are uncertain at every new discourse addition what meanings are

involved. Until each new sentence has been successfully incorporated into the

model we do not know which sense it expresses. But the arrival of new propositions

is just the tip of the iceberg. We also do not know its effect on the other bits of

meanings that were there before. They may have disappeared completely, and they

probably have changed, if only by the relations that are now determined between the

Reasoning in Non-Probabilistic Uncertainty...

123

old and the new. In contrast, a probability model has to be founded on a set of

propositions where such relations are explicit. So at best, our discourse could invoke

a sequence of probability models, one at each step. But there need not be any

systematic relation between one and the next. The only one likely to be of much

interest as the foundation of a probability model is the ‘final’ one (cf. Stenning and

van Lambalgen 2010; Baggio et al. 2016). And if one wanted a probability model of

this last one, then the corresponding LP model provides exactly the common

structural core on which the necessary probability information would have to be

hung, perhaps even provided by estimates from the conditional frequencies

available in the LP net involved (cf. Stenning et al. 2017). In other words, while

probability theory does not deal with the dynamics of uncertainty about

interpretation, LP can serve as a modelling approach for this crucial part of human

reasoning (remember the 3-valued Kleene semantics we use for LP, in which the

u truth value can evolve during computations towards 1 or 0).

So discourse processing provides our first example of a prevalent cognitive

process which deals in uncertainties and certainties of a kind not treated by

probability. And LP provides an alternative logic for this examples’ analysis.

3 Neural-Symbolic Computing Modelling Dynamic Normative Contexts

Following our presentation of LP as a promising approach to modelling reasoning to

an interpretation (and resolving the associated communicative uncertainty), in this

section—building upon and expanding the ideas from Sect. 2 conceptually as well

as formally—we focus on normative reasoning and the associated form of

uncertainty resulting from dynamic changes or expansions of norms. Regarding

aspects of uncertainty, norms and norm-based reasoning pose several challenges:

among others they tend to be highly sensitive to the context the reasoner finds

herself in and her interpretation thereof (e.g., when deciding which norms apply,

or—if several options could be chosen from—which would be preferred options,

either due to the resulting actions or to abstract value-related considerations), and

usually are subject to change over time (e.g., when existing norms are altered in

content or interpretation, or new norms are introduced). These properties establish a

natural connection to the virtues of LP-based models of reasoning described above:

LP’s construction of preferred models can be seen as construction of contexts. Still,

while in the previous section we were mostly focused on the application of LP in

modelling human reasoning, we now shift emphasis to a more AI-based perspective,

considering reasoning in intelligent agents in general. In artificial social systems,

norms serve as mechanisms to effectively deal with coordination in multi-agent

systems (MAS). Among the open problems relating to the use of norms in these

systems is how to equip agents to deal effectively with norms that change over time

(Boella et al. 2009), either due to the introduction of new norms, due to explicit

changes made by legislators to already existing norms, or due to different

interpretations of the law by judges, referees, and other judicial bodies.12

12 Terminology yet again: for the purpose of this article we use law, norm, rule, etc. as synonymous.

T. R. Besold et al.

123

In trying to tackle the difficulties arising from the dynamic nature of norms, we

combine I/O logic (Makinson and van der Torre 2000, 2001, 2003a) with neural-

symbolic computation (Garcez et al. 2002) in order to propose a formal framework

for reasoning and learning about norms in a dynamic environment. I/O logic is a

symbolic formalism—in several ways closely related to LP as will become apparent

below—used to represent and reason about norms, providing reasoning mechanisms

to produce outputs from the inputs, each of them bearing a specific set of features.

The neural-symbolic paradigm of Garcez et al. (2002) on the other hand embeds

symbolic logic, and in particular LP into ANNs. Neural-symbolic systems provide

translation algorithms from symbolic logic to ANNs and vice-versa: the resulting

network is used for robust learning and efficient computation within a connectionist

framework, while the logic provides background knowledge to help learning, as the

logic is translated into the ANN, and high-level explanations for the network

models, when the trained ANN is translated into logic. The combination of logic and

networks is achieved by representing the I/O logic within the computational model

of ANNs, leveraging a similarity between I/O logic and ANNs: both have separate

specifications of inputs and outputs. We exploit this analogy to encode symbolic

knowledge expressed as I/O logic rules into a standard ANN, and use the resulting

ANN to learn new norms in a dynamic environment. Thus, two main steps have to

be achieved, namely the translation of I/O logic rules into ANNs, and the evaluation

of the ANN learning mechanism at refining normative rules in time.

With the exception of game-theoretic approaches (cf., e.g., Sen and Airiau 2007;

Boella and van der Torre 2006; Shoham and Tennenholtz 1997), few machine

learning techniques have been applied to tackle open problems like revising and

learning new norms in open and dynamic environments. We show how to use ANNs

to cope with some of the underpinnings of normative reasoning—namely

permissions, CTDs and exceptions—by using the concept of priorities between

I/O (or LP) rules, i.e. LP rules with metalevel priorities (Antoniou et al. 1998).

Thus, the contribution here is in allowing the handling of the uncertainty associated

with norm changes by combining symbolic and sub-symbolic representations to

provide a flexible and effective methodology for learning, normative reasoning, and

specification in MAS. After a short introduction to neural-symbolic integration and

the corresponding conceptual and architectural paradigm in Sect. 3.1, I/O logic is

formally introduced in Sect. 3.2, explaining abstract normative systems, proposi-

tional I/O logic, and the notion of permissions in the corresponding normative

framework. Section 3.3 then gives an overview of the neural-symbolic architecture

implementing I/O logic, before Sect. 3.4 shows how priorities can be used to encode

and regulate certain types of normative problems. Section 3.5 then finally draws all

pieces together in presenting the resulting system for normative connectionist

learning and LP.

3.1 Neural-Symbolic Systems

The main purpose of neural-symbolic integration is to bridge the gap between

symbolic and sub-symbolic representations. To this end, neural-symbolic systems

bring together connectionist networks and symbolic knowledge representation and

Reasoning in Non-Probabilistic Uncertainty...

123

reasoning (Garcez et al. 2015). In this way, neural-symbolic systems seek to take

advantage of the strengths of each approach whilst hopefully avoiding their

drawbacks. For our current purposes, we are particularly interested in three

consecutive steps: representing the norms governing a normative system formally

and soundly in an ANN, using the network to achieve efficient parallel computation,

and finally exploiting the instance learning capacities of ANNs to adapt the norms in

the system through learning. This should give rise to a normative system capable of

integrating reasoning and learning capacities in an effective way. In what follows,

we introduce the basic concepts of ANNs and neural-symbolic systems used in this

article, with an emphasis on an extension of the connectionist inductive learning

and logic programming (CILP) system by Garcez et al. (2002).

An ANN is a directed graph with the following structure: a unit (or neurone) in

the graph is characterised, at time t, by its input vector IiðtÞ, its input potential

UiðtÞ, its activation state AiðtÞ, and its output OiðtÞ. The units of the network are

interconnected via a set of directed and weighted connections such that if there is a

connection from unit i to unit j then Wji 2 R denotes the weight of this connection.

The input potential of neurone i at time t (UiðtÞ) is obtained by computing a

weighted sum for neurone i such that UiðtÞ ¼
P

j WijIiðtÞ (see Fig. 1). The

activation state AiðtÞ of neurone i at time t—a bounded real or integer number—is

then given by the neuron’s activation function hi such that AiðtÞ ¼ hiðUiðtÞÞ.
Typically, hi is either a linear function, a non-linear (step) function, or a sigmoid

function (e.g.: tanh(x)). In addition, hi (an extra weight with input always fixed at 1)

is known as the threshold of neurone i. We say that neurone i is active at time t if

AiðtÞ[hi: Finally, the neurone’s output value OiðtÞ is given by its output function

fiðAiðtÞÞ. Usually, fi is the identity function.

The units of an ANN can be organised in layers. A n-layer feedforward network

is an acyclic graph. It consists of a sequence of layers and connections between

successive layers, containing one input layer, n� 2 hidden layers, and one output

layer, where n� 2. When n ¼ 3, we say that the network is a single hidden layer

network. When each unit occurring in the i-th layer is connected to each unit

occurring in the iþ 1-st layer, we say that the network is fully-connected.

A multilayer feedforward network computes a function u : Rr ! Rs, where r

and s are the number of units occurring, respectively, in the input and output layers

of the network. In the case of single hidden layer networks, the computation of u
occurs as follows: at time t1, the input vector is presented to the input layer. At time

Wi1

Wi2

Win

Ui(t) Ai(t+ t) Oi(t+ t)

Ai(t)I1(t)

I2(t)

In(t) - i

1

Fig. 1 The neurone or
processing unit

T. R. Besold et al.

123

t2, the input vector is propagated through to the hidden layer, and the units in the

hidden layer update their input potential and activation state. At time t3, the hidden

layer activation state is propagated to the output layer, and the units in the output

layer update their input potential and activation state. At time t4, the output vector is

read off the output layer. In addition, most neural models have a learning rule,

responsible for changing the weights of the network progressively so that it learns to

approximate u given a number of training examples (input vectors and their

respective target output vectors).

In the case of backpropagation—probably the most commonly applied neural

learning algorithm (Rumelhart et al. 1986)—an error is calculated as the difference

between the network’s actual output vector and the target vector, for each input

vector in the set of examples. This error E is then propagated back through the

network, and used to calculate the variation of the weights MW. This calculation is

such that the weights vary according to the gradient of the error, i.e. MW ¼ �grE;
where 0\g\1 is called the learning rate. The process is repeated a number of

times in an attempt to minimise the error, and thus approximate the network’s actual

output to the target output, for each example. In order to try and avoid shallow local

minima in the error surface, a common extension of the learning algorithm above

takes into account, at any time t, not only the gradient of the error function, but also

the variation of the weights at time t � 1, so that MWt ¼ �grEþ lMWt�1, where

0\l\1 is called the term of momentum. Typically, a subset of the set of examples

available for training is left out of the learning process so that it can be used for

checking the network’s generalisation ability, i.e. its ability to respond well to

examples not seen during training.

CILP now is a neural-symbolic system based on an ANN that integrates inductive

learning and deductive reasoning. In CILP, a translation algorithm maps a logic

program P into a single hidden layer ANN N such that N computes the least fixed-

point of P (Lloyd 1987). This provides a massively parallel model for computing

the stable model semantics of P (Gelfond and Lifschitz 1988). In addition,N can be

trained with examples using a neural learning algorithm, having P as background

knowledge. The knowledge acquired by training can then be extracted (Garcez et al.

2001), closing the learning cycle, as advocated by Towell and Shavlik (1994).

Let us exemplify how CILP’s translation algorithm works. Each rule (rl) of P is

mapped from the input layer to the output layer of N through one neurone (Nl) in

the single hidden layer of N . Intuitively, the translation algorithm from P to N has

to implement the following conditions: (c1) the input potential of a hidden neurone

Nl can only exceed its threshold hl, activating Nl, when all the positive antecedents

of rl are assigned truth-value true while all the negative antecedents of rl are

assigned false; and (c2) the input potential of an output neurone A can only exceed

its threshold (hA), activating A, when at least one hidden neurone Nl that is

connected to A is activated.

Example 1 (CILP) Consider the logic program P ¼ fB ^ C ^ �D! A;
E ^ F ! A;Bg, where � stands for LP’s negation by failure (a.k.a. default

negation) (Lloyd 1987). Given P, the CILP translation algorithm produces the

network N of Fig. 2, setting weights (W) and thresholds (h) in a way that conditions

Reasoning in Non-Probabilistic Uncertainty...

123

ðc1Þ and ðc2Þ above are satisfied. Note that, if N ought to be fully-connected, any

other link (not shown in Fig. 2) should receive weight zero initially. Each input and

output neurone of N is associated with an atom of P. As a result, each input and

output vector of N can be associated with an interpretation for P. Note also that

each hidden neurone Nl corresponds to a rule rl of P such that neurone N1 will be

activated if neurones B and C are activated while neurone D is not; output neurone A

will be activated if either N1 or N2 is activated; and output neurone B will be

activated if N3 is, while N3 is always activated regardless of the input vector (i.e. B

is a fact). To compute the stable models of P, the output vector is recursively given

as the next input to the network such that N is used as a recursive network to iterate

the fixed-point operator of P as suggested by Garcez et al. (2002). For example,

output neurone B should feed input neurone B. N will eventually converge to a

stable state which is identical to the stable model of P provided that P is an

acceptable program (Apt and Pedreschi 1993). For example, given any initial

activation in the input layer of N r (i.e. the network of Fig. 2 recurrently connected),

it always converges to a stable state in which neurone B is activated and all the other

neurones are not. We associate this with literal B being assigned truth-value true,

while all the other literals are assigned truth-value false, which represents the unique

fixed-point of P.

CILP thereby provides a (provably sound) translation from a symbolic

representation into an ANN that can be trained with examples as part of a

knowledge evolution process, whereby the original symbolic representation is seen

as background knowledge to the network. In what follows, we extend CILP to

handle a range of normative rules and prove soundness. Notice how in the standard

CILP translation, the weights of the connections linking the hidden and output

layers of the network are always positive. As will become clearer in what follows,

normative rules require the use of negative weights from the hidden to the output

layer of the CILP network as well. This implements priorities in the rules (Garcez

et al. 2002) and is responsible for adding alternative paths that enable robustness in

the networks also. As we study such different forms of representation in different

E

D

D

W

W

C

C

B

BA

W

W W

W

A E F

F

N1 N2 N3

W

Fig. 2 A neural network for
logic program P

T. R. Besold et al.

123

applications, such as CTD, we are interested in proving soundness, but also in

efficient computation and learning, as exemplified later in this article.

3.2 Input/Output Logic

As explained by Makinson and van der Torre (2003b), I/O logic takes its origin in

the study of conditional norms which, either in imperative or indicative form,

express obligations under some legal, moral, or practical code, goals, contingency

plans, advice, etc. Putting this overall notion in formal terms, Makinson and van der

Torre (2000) represent rules by ordered pairs (a, x), where the antecedent a is

thought of as an input, representing some condition or situation, and the

consequent x is thought of as an output, representing what the rule tells us to be

desirable, obligatory, or whatever else in that situation.

Concerning the overall motivation behind the development of I/O logic, in

philosophy—but also significant in our current context—norms are commonly

distinguished from declarative statements. The latter may bear truth-values, while

describing norms as true or false is meaningless. Instead, norms may be respected (or

not), can be in force in the current context (or not), or can be assessed from the standpoint

of other norms (e.g., when judging a law from a moral point of view). Still, much work

addressing deontic formalisms in the study of logic and AI seem to ignore this

distinction: most presentations of deontic logic—whether axiomatic or semantic—treat

norms as if they could be subjected to an assessment in terms of truth-values. In

particular, the truth-functional connectives ‘and’, ‘or’, and ‘not’ are routinely applied to

norms, forming compound norms out of elementary ones. Semantic constructions using

possible worlds go further by offering rules to determine, in a model, the truth-value of a

norm. I/O logic has its source in precisely this tension between philosophy and studies in

formal logic (the reader may identify a similar tension between human reasoning and

formal classical logic, as discussed earlier in the case of discourse processing).

In the following, we first present abstract normative systems as a general

descriptive framework for formal approaches to normative reasoning and basis for

the subsequent introduction of propositional I/O logic, both of which then are

applied to modelling the three types of permissions commonly encountered in

normative context.

3.2.1 Abstract Normative Systems

Modal logic has been the standard for normative reasoning ever since von Wright

(1951). Still, for instance in Gabbay et al. (2013)’s ‘‘Handbook of Deontic Logic

and Normative Systems’’, the classical modal logic framework is mainly confined to

the historical chapter. Another chapter presents the alternatives to the modal

framework, and three chapters discuss concrete approaches, namely I/O logic, the

imperativist approach (Hansen 2006), and the algebraic conceptual implication

structures (Lindahl and Odelstad 2003).13 Against this multitude of approaches as

13 Of course this list is non-exhaustive as there are further alternative candidates for a new standard, such

as nonmonotonic logic (Horty 1993) or deontic update semantics (van der Torre and Tan 1999).

Reasoning in Non-Probabilistic Uncertainty...

123

backdrop, Tosatto et al. (2012) proposed abstract normative systems as common

framework for comparing and analysing these new proposals.

Abstract normative systems study frameworks such as I/O logic on a general

level, to which Tosatto et al. (2012) add two notions. First, each element in the

(finite) universe comes with its ‘‘anti-element’’: this is the minimal extension to

represent violations, namely elements in the input whose anti-element is in the

output. Second, there is an element in the universe called >, contained in every

context.

Definition 1 [Universe L (Tosatto et al. 2012)] Given a finite set of atomic

elements E, the universe L is E [f�e j e 2 Eg [f>g. For e 2 E, let a ¼ �e iff

a ¼ e, a ¼ e iff a ¼ �e, and undefined iff a ¼ >.

An abstract normative system is a directed graph, and a context is a set of nodes

of the graph containing >. In abstract normative systems there are three kinds of

relations, for the regulative, permissive, and constitutive norms, respectively. We

start with the regulative norms only. The edges in an abstract normative system

exactly define what a ‘‘conditional norm’’ (with respect to this abstract normative

system) is.

Definition 2 (ANS hL;Ni [Tosatto et al. 2012)] An abstract normative system

ANS is a pair hL;Ni with N � L� L a set of pairs of the universe, called conditional

norms, and A � L a subset of the universe such that > 2 A, called the context.

In a context, an abstract normative system generates or produces an obligation

set, a subset of the universe, reflecting the obligatory elements of the universe. The

class of deontic operations is specified by their domain and codomain. Some

examples of deontic operations are given below.

Definition 3 (Deontic operation 	 [Tosatto et al. 2012)] A deontic operation 	
is a function from an abstract normative system hL;Ni and a context A to a subset of

the universe 	ðhL;Ni;AÞ � L. Since L is always clear from context, we write

	ðN;AÞ for 	ðhL;Ni;AÞ.

Simple-minded output or 	1 is Makinson and van der Torre’s minimal system.

Basic output or 	2 allows for reasoning by cases, which now means that if

something is obligatory in the context of a and its complement a, then it is

obligatory also in the minimal context. Reusable output or 	3 allows for deontic

detachment, which now corresponds to iteration of the rules. Throughput or 	þi
allows for identity. All possible combinations lead to eight input/output operations.

Definition 4 [Eight deontic operations (Tosatto et al. 2012)] A context A � L is

complete if for all e 2 E, it contains either e or e (or both).

	1ðN;AÞ ¼ NðAÞ ¼ fx j ða; xÞ 2 N for some a 2 Ag
	2ðN;AÞ ¼ \fNðVÞ j A � V;V completeg
	3ðN;AÞ ¼ \fNðBÞ j A � B
 NðBÞg
	4ðN;AÞ ¼ \fNðVÞ j A � V
 NðVÞ;V complete g
	þi ðN;AÞ ¼ 	iðN [fða; aÞ j a 2 Lg;AÞ

T. R. Besold et al.

123

Equivalently, 	3ðN;AÞ can be defined as N(B) where B is the smallest set

containing A and closed under N, i.e. A � B
 NðBÞ. Moreover, to emphasise

symmetry, 	1ðN;AÞ can be defined equivalently as \fNðBÞjA � Bg.

At least since the work of Horty (1993), nonmonotonic techniques have been

used to deal with reasoning in the context of dilemmas, CTD reasoning, and

defeasible norms:

• Dilemmas are two (or more) obligations with contradictory content, like the

obligation for a and the obligation for a.

• CTD or secondary obligations (a, x) are in force only in case of violation of a

primary obligation, e.g., generated using ð>; aÞ.14

• Defeasible deontic logic is concerned with violations and exceptions (van der

Torre 1997; Nute 1997).

3.2.2 Propositional Input/Output Logic

As explained by Makinson and van der Torre (2000), propositional I/O logic

establishes a relatively simple setting, abstracting from important aspects of deontic

reasoning, such as CTD reasoning or permissions.15 The construction of the

semantics is analogous to the just discussed abstract normative systems, adding the

closure of input and output under propositional consequence. As before,

NðAÞ ¼ fx j ða; xÞ 2 N for some a 2 Ag.

Definition 5 [out (Makinson and van der Torre 2000)] Let L be a propositional

logic with Cn the consequence operator of L, > a tautology of L, a complete set one

that is either maxiconsistent or equal to L, and let N be a set of ordered pairs of L

(called the generators). A generator (a, x) is read as ‘if input a then output x’. The

following logical systems are defined:

out1ðN;AÞ ¼CnðNðCnðAÞÞ
out2ðN;AÞ ¼ \ fCnðNðVÞÞ : A � V;V complete g
out3ðN;AÞ ¼ \ fCnðNðBÞÞ : A � B ¼ CnðBÞ
 NðBÞg
out4ðN;AÞ ¼ \ fCnðNðVÞÞ : A � V
 NðVÞ;V complete g

14 To give an intuitive example of a CTD, we report the so-called dog-sign example by Prakken and

Sergot (1997) already hinted at in the introduction: ‘‘Suppose that: there must be no dog around the house,

and if there is no dog, there must be no warning sign, but if there is a dog, there must be a warning sign.’’

Obviously, if there is a dog, the conditional obligation that there must be no sign does not become

unconditional, since its condition is not fulfilled. On the other hand, it can also be inferred that if no

obligations are violated, there will be no sign (modulo exceptions, of course).
15 These require much more involved I/O operations, which we shortly discuss in Sect. 3.4 below. Cf. the

work by Makinson and van der Torre (2001) and Makinson and van der Torre (2003a) for more detailed

treatments.

Reasoning in Non-Probabilistic Uncertainty...

123

Note that neither in the I/O logic framework, nor in the abstract normative

systems framework, does a normative system ‘imply’ a norm. Norms are used to

generate obligation sets; we can axiomatise deontic operations using a proof system

based on conditionals, but this does not mean that norms are ‘‘implied’’ or

‘‘derived.’’ The most we can say is that a norm is ‘‘accepted’’ by a normative system

(van der Torre and Tan 1999), or ‘‘redundant’’ in a normative system (van der Torre

2010). The latter point may be related to two philosophical considerations of the I/O

logic framework. First, as already explained above, the framework is based on the

idea that norms do not have truth values, known as Jörgensen’s dilemma in the

deontic logic literature (Jörgensen 1937). Second, the role of logic is not to create or

determine a distinguished set of norms, but rather to prepare information before it

goes in as input to such a normative code, to unpack output as it emerges and, if

needed, coordinate the two in certain ways. A set of conditional norms is thus seen

as a transformation device, and the task of logic is to act as its ‘‘secretarial assistant’’

(Makinson and van der Torre 2000).

3.3 Overview of the Architecture

Our goal is to allow the agent to learn about norms and their interpretation from

experience, and to take decisions which respect the norms she is subject to at the

respective point in time. Thus, the agent needs to know what is obligatory and

forbidden according to norms (conditional rules) in any situation in real time: what

is obligatory can eventually become an action of the agent, while what is forbidden

inhibits such actions. Also, rules may change as the normative environment changes

over time. The agent should be flexible enough to adapt her behaviour to the context

using as information the instances of behaviours which have been considered illegal.

To allow an intelligent agent to have a internal representation of a normative

code, we follow the process visualised in Fig. 3. The encoding process is a single

and unique task, and we just decompose it in subtasks to give a more detailed

explanation. The first step involves encoding a list of normative aspects in terms of

priorities and will be described in the next subsection. The second step translates a

normative code in I/O logic into an extended logic program (i.e. LP extended with

classical negation, a.k.a. explicit negation, which leads to the answer set semantics

of LP mentioned earlier in the context of three-valued logics. The third step applies

a translation algorithm to convert the logic program into a neural network. The last

two steps will be analysed in detail in Sect. 3.5.

Normative code
with priorities,
permissions,
exceptions,
contrary to

duties.

Normative code
with priorities

Extended logic
program

Neural network

Fig. 3 From normative codes to neural networks

T. R. Besold et al.

123

Figure 4 describes our approach from a more abstract perspective. Note that the

encoding of a normative code in an ANN is lumped to a single step. Our framework

starts from the symbolic KB of norms contained in the agent, transforming it into an

ANN using the encoding introduced in Fig. 3 and described below. The ANN is

structured as follows: input neurones of the network represent the state of the world,

while the output neurones represent the obligations of the agent, or the prohibitions.

The ANN is used as part of the controller for the agent and, given its ability to

change (i.e. learn from examples), it is expected to give the agent the required

flexibility.

3.4 Normative Problems as Priorities

Recall, as discussed, that normative reasoning requires agents to deal with specific

problems such as dilemmas, exceptions, and CTDs. In what follows, a norm N will

be expressed as labelled generators N ¼ ðI;OÞ, read ‘if input I then output O’. In

general, I in (I, O) is any propositional formulae, which will be restricted later to

conjunctions of literals.

Dilemmas Two obligations are said to be contradictory when they cannot be

accomplished together. A possible example of contradictory norms is the dilemma.

This usually happens when an agent is subject to different normative codes (i.e.

when an agent has to follow the moral and the legal code). How to overcome

dilemmas is left as future work, as we are focusing on how to use priorities to

regulate exceptions and CTDs.

Priorities are used to give a partial ordering between norms. This is useful when,

given two applicable norms, we always want one to preempt the other, for instance

when dealing with exceptions. We encode priorities among the norms by using

negation by failure (�). Given two norms N1 ¼ ðA1 ^ A3; b1Þ and N2 ¼ ðA2 ^
A3; b2Þ and a priority relation N1 � N2 between the norms (such that the first norm

has priority), we encode the priority relation by modifying the antecedent of the

norm with lower priority. Specifically, we include in the antecedent of the norm

with the lower priority the negation-as-failure of the literals in the antecedent of the

higher priority norm that does not appear in the antecedent of the lower priority

norm. We do so in order to ensure that, in a situation where both (unmodified)

norms would be applicable, the newly inserted negation-as-failure atoms in the

Fig. 4 Normative agent architecture

Reasoning in Non-Probabilistic Uncertainty...

123

antecedent of the modified lower-priority norm evaluate to false and make the norm

not applicable. Considering for example the two norms given above, we have to

modify N2. The only atom appearing in N1’s input and not in N2’s input is A1, and

therefore we introduce �A1 as a conjunct in N2’s input. After embedding the

priority, the second norm becomes N 02 ¼ ðA2 ^ �A1 ^ A3; b2Þ. Note that in a

potentially conflicting situation when A1, A2 and A3 hold, N1 and N2 are applicable,

but N 02 is not, thus avoiding the conflict.

Exceptions occur when, due to particular circumstances, a norm should be

followed instead of another. Suppose that a norm N3 ¼ ða; bÞ should be applied in

all the situations containing a. For exceptional situations we consider an additional

norm N4 ¼ ða ^ c;:bÞ. The latter norm should be applied in a subset of situations

w.r.t. N3: specifically all those when, in addition to a, also c holds. We can call

situations where both a and c hold exceptional situations. In these exceptional

situations both norms could be applied. This would produce two contrasting

obligations: b and :b. To avoid this we add the following priority relation:

N4 � N3. Therefore we modify the input of the norm with lower priority as

described earlier. The result is a new norm N 03 ¼ ða ^ � c; bÞ, that would not be

applied in the exceptional situations, avoiding the problem of contrasting

obligations.

CTDs An important property of norms is that they are soft constraints and,

accordingly, can be violated. CTDs provide additional obligations to be fulfilled

when a violation occurs. For example, consider a norm N5 ¼ ða; bÞ that should be

applied in all situations containing a and producing the obligation b. As mentioned,

norms can be violated, therefore we can also define a norm that produces alternative

obligations to be followed in case of a violation. Let this new norm be

N6 ¼ ða ^ :b; cÞ. The latter norm contains in its input both the input of N5 and

the negation of its output. In this way it describes which should be the alternative

obligation to b in the case that it cannot be achieved, in this example c. We use a

priority relation between the two norms in order to avoid the generation of the

obligation b in case it is already known that it is not satisfiable. We add then the

following priority relation N6 � N5 that modifies the first norm as follows:

N 05 ¼ ða ^ �:b; bÞ.
Permissions An important distinction between obligations and permissions is that

the latter will not be explicitly encoded in the ANN. In our approach we consider

that something is permitted to the agent if not explicitly forbidden (note that we

consider the ought of a negative literal as a prohibition). Due to this, we assume that

norms with a permission in their output implicitly have priority over the norms that

forbid the same course of action16. For example, using P in the output of a norm to

denote a permission, consider two norms N7 ¼ ðA1;Pðb1ÞÞ, N8 ¼ ðA2;:b1Þ. The

first norm permits b1 and the second forbids it. In this case, we use the following

priority relation: N7 � N8.

16 Makinson and van der Torre (2003a) consider three kinds of permissive norms, namely negative,

positive, and static positive permission. In this article, we restrict discussions to the above, and should

note that much future work is left to be done when it comes to the provision of connectionist

representations for normative and deontic reasoning systems

T. R. Besold et al.

123

3.5 Normative Connectionist Inductive Learning and Logic Programming

In this section we introduce a new approach for coding a fragment of I/O logic

which corresponds to extended LP into ANNs. The main intuition is that, although

logic programs in general do not explicitly capture the concepts of inputs and

outputs, a neural-symbolic system based on extended logic programming does - on a

purely structural level: inputs and outputs in I/O logic correspond to the input and

output layers of the ANN - and allows the representation of norms in ANNs.

As described above, in I/O logic norms are represented as ordered pairs of

formulas like ða; bÞ. A peculiarity of I/O logic is that it does not have ða; aÞ for any

a (i.e. identity is not an axiom). In normative reasoning, the input does not

necessarily become an output: the reason is that the output is interpreted as what is

obligatory, thus, just because a is in the input, it is not necessarily the case that a is

obligatory as well. This I/O perspective corresponds straightforwardly to the general

intuition behind an ANN. Activating input neurone A in Fig. 2 does not necessarily

activate output neurone A also; this is true for any neurone, and it allows a subtle but

important distinction between the activation of an input neurone which is derived

from the context, that is, the input values provided to the network, and the activation

of an output neurone, which is derived from the KB. For example, in Fig. 2, the

truth-value of B in the input is, at first, obtained from the input to the network (its

context), whilst the truth-value of B in the output is true (B is a fact in the KB).

Modifying the original CILP algorithm, we first translate I/O logic into an extended

logic program to be processed by CILP without requiring inputs to be always

translated into outputs as well, so that the ANN is allowed different input and output

layers. The input a of an I/O norm ða; bÞ is subsequently passed as an input vector to

the network, producing an output representing what is obligatory (e.g. b, if the

translation to the ANN is proved correct). Only some input appears in the output, if

it is made obligatory by a norm. In CILP, output nodes are always connected to

input nodes creating a recurrent network, to represent the transitivity of logical rules

when computing minimal or stable models. In normative reasoning, transitivity is

not always accepted (since if you are obliged to do a and, if a then you are obliged

to do b does not imply that you are obliged to do b). Thus, the normative CILP

extends CILP also to allow that certain outputs might not be connected to their

corresponding inputs (or will not even have a corresponding input as a result of the

first change made to CILP earlier).

3.5.1 Mapping Input/Output Logic into Neural Networks

We now first introduce a specific fragment of I/O logic relevant for our purposes,

then we present an embedding of this fragment into extended logic programs, and

finally, how to represent such norms with priorities in ANNs.

Definition 6 An extended logic program is a finite set of clauses of the form

L0 L1; . . .; � Ln; � Lnþ1; . . .; � Lm, where Li (0� i� n) is a literal i.e. an atom or

a classical negation of an atom denoted by :, and � Lj (nþ 1� j�m) is called

default literal, where � represents negation-as-failure. Following Gelfond and

Reasoning in Non-Probabilistic Uncertainty...

123

Lifschitz (1988), from now on we use ‘ ’ in place of ‘!’, and say that L0 is true if

L1; :::; Lm is true (L0 L1; :::; Lm), where L1; :::; Lm denotes a conjunction of literals

(with ‘,’ used in place of ‘^’).

Given an extended logic program P we identify its answer sets (Gelfond and

Lifschitz 1991) as EXT(P).

Definition 7 (I/O Normative Code) A normative code G ¼ hO;P;�i is composed

by two sets of rules r : ða; bÞ and a preference relation � among those rules. Rules

in O are called obligations, while rules in P are permissions. Rules in O are of the

type ða; bÞ, where:

• a ¼ a1 _ . . . _ an is a propositional formula in disjunctive normal form, i.e. ai

(for 0� i� n) is a conjunction of literals ð:aai1
^ . . . ^ :aaim

^ aaiðmþ1Þ ^ . . .

^aa1ðmþpÞ Þ. Without loss of generality we assume that the first m literals are

negative while the other p are positive.

• b ¼ :bb1
^ . . . ^ :bbm

^ bbmþ1
^ . . . ^ bbmþp

is a finite conjunction of literals.

Rules in P are of type ða; lÞ, where a is the same as for obligations, but l is a literal.

As put forward by Boella and van der Torre (2005), one of the roles of

permissions is to undercut obligations. Informally, suppose to have a normative

code G composed of two rules:

1. b is obligatory (i.e. ð>; bÞ 2 O).

2. If a holds, then :b is permitted (i.e. ða;:bÞ 2 P).

We say that the rule ða;:bÞ has priority over ð>; bÞ, i.e. b is obligatory as long as a

does not hold, otherwise :b is permitted and, therefore b is not obligatory anymore.

The fact that we consider only the I/O rules as introduced in Definition 7 permits

us to give a natural embedding of this fragment of I/O logic into extended logic

programs.

Definition 8 Let d�e denote a function mapping I/O rules (Definition 7) into

extended logic programs (Definition 6), as follows:

dr : ða1 _ . . . _ an; b1 ^ . . . ^ bmÞe ¼
fr11 : ðdb1eout da1einÞ; . . .; r1m : ðdbmeout da1einÞ; . . .;

rn1 : ðdb1eout daneinÞ; . . .; rnm : ðdbmeout daneinÞg

dl1 ^ . . . ^ lnein=out ¼ dl1ein=out; . . .; dlnein=out

daein ¼ in a daeout ¼ out a

d:aein ¼ :in a d:aeout ¼ :out a

We call rules rij instances of r, and we informally write rij 2 IntsðrÞ.

Notice that the program resulting from the application of d�e has a unique model

because it is negation-as-failure free.

T. R. Besold et al.

123

Lemma 1 Given a set of obligations O ¼ fða1; b1Þ; . . .; ðan; bnÞg. Then it holds

that:

If ða; bÞ 2 O then dbeout 2 EXTðfdða1; b1Þe; . . .; dðan; bnÞeg [daeinÞ:

Proof The if direction is trivial while the only if can be proven by showing that

every application of the immediate consequence operator T (as defined by Gelfond

and Lifschitz (1991)) can be encoded into an application of d�e (Definition 8).

We now show how to extend the preference relation�w.r.t. rules generated with d�e.

Definition 9 Given a normative code G ¼ hO;P;�i we define a transformation

Troð�Þ such that TroðGÞ ¼ hdOe;P;�0i, where �0 is defined as follows: tij �0 t0i0j0 ,

for all tij 2 InstðtÞ and t0i0j0 2 Instðt0Þ for t; t0 2 O such that t � t0.

For this reason, for a given normative code TroðGÞ, we introduce a further

transformation Trpð�Þ as follows:

Definition 10 Given a normative code Go ¼ TroðGÞ ¼ hdOe;P;�0i we define

TrpðGoÞ ¼ hdOe;P;�00i, where �00 is defined as follows: For all p : ða; lÞ 2 P,

p �00 tij, for all tij : ða;:lÞ 2 dOe:

We now recall how to encode (metalevel) preference relations, which define a

priority between LP rules into (object-level) extended logic programs (Nute 1994).

Definition 11 (Object-level Priorities) Given a preference relation between ri and

r such that ri � r for 1� i� j, replace the clause r : Lqþ1 ðL1; :::; LpÞ with the

clause Lqþ1 ðL1; :::; Lp; � L1
pþ1; :::; � L1

q; :::; � L
j
pþ1; :::; � L j

qÞ, where rið1� i� jÞ :

ðLi
qþ1 Li

pþ1; :::; Li
qÞ.

Example 2 Take the following normative code:

G ¼ hfr : ða;:b ^ cÞg; fp : ðd; bÞg; fgi:

Then TroðGÞ ¼ fhr11 : ða;:bÞ; r12 : ða; cÞg; fp : ðd; bÞg; fgi, and TrpðTroðGÞÞ ¼
fhr11 : ða;:bÞ; r12 : ða; cÞg; fp : ðd; bÞg; fp � r11ig.

For rules with permissions in the output, which are of the form

pi : Limþ1
 ðLi1 ; . . .; Lin ; Linþ1

; . . .; LimÞ, such that, for any other rule, r : :Limþ1

ðLi1 ; . . .; LinÞ (resulting from the application of dGe), we impose pi � r. As

discussed, the role of permissions is to undercut obligations in dGe, and permissions

will not be encoded explicitly into the ANN (every output of the ANN counts as an

obligation; something is permitted if the contrary is not obligatory, see Sect. 3.5.2).

Lemma 2 Let P� ¼ fr1; r2; :::; rng be an extended logic program with an explicit

preference relation �. Let P denote the translation of P� into a program without �
(Definition 11). It follows that EXTðP�Þ ¼ EXTðPÞ.

We are particularly interested in the translation of P� into P because it is well-

known that CILP networks will always compute the unique answer set of P, by

Reasoning in Non-Probabilistic Uncertainty...

123

converging to a unique stable state, provided that P is well-behaved (i.e. locally

stratified, or acyclic, or acceptable, cf. Garcez et al. (2002)). This will be explored

further in the next subsection. Before proceeding, let us use an example to illustrate

what has been achieved so far.

Example 3 (Translation of normative code into extended logic program) Consider

the following normative code:

r1 : ða _ b;OðcÞÞ

r2 : ðd ^ e;Oðf ÞÞ

r3 : ðg;Pð:f ÞÞ

r1 � r2

First, obligations are decomposed into instances:

r1 : ða _ b;OðcÞÞ r11 : c a

r2 : ðd ^ e;Oðf ÞÞ r12 : c b

r3 : ðg;Pð:f ÞÞ r2 : f d; e

r1 � r2 r3 : ðg;Pð:f ÞÞ

r1 � r2

Secondly, the priorities are decomposed:

r11 : c a r11 : c a

r12 : c b r12 : c b

r2 : f d; e r2 : f d; e

r3 : ðg;Pð:f ÞÞ r3 : ðg;Pð:f ÞÞ

r1 � r2 r11 � r2

r12 � r2

Finally, the permission-generated priorities are added:

r11 : c a r11 : c a

r12 : c b r12 : c b

r2 : f d; e r2 : f d; e

r3 : ðg;Pð:f ÞÞ r3 : ðg;Pð:f ÞÞ

r11 � r2 r11 � r2

r12 � r2 r12 � r2

r3 � r2

T. R. Besold et al.

123

And the priorities are encoded as norm inputs:

r11 : c a r11 : c a

r12 : c b r12 : c b

r2 : f d; e r2 : f d; e; � a; � b; � g

r3 : ðg;Pð:f ÞÞ

r11 � r2

r12 � r2

r3 � r2

The result is an equivalent extended logic program.

3.5.2 The N-CILP Algorithm

In this section we introduce the translation algorithm encoding a normative code

into a feedforward ANN (with semi-linear neurones), namely the Normative-CILP

(N-CILP) algorithm. The proposed algorithm differs from CILP (Garcez et al. 2002)

in how priorities are encoded into the ANN, and it does not assume identity.

N-CILP Algorith (Input: normative code G; Output: ANN)

1. G0 ¼ TroðGÞ;G00 ¼ TrpðG0Þ
2. Apply the encoding of priorities as described in Definition 11 to G00.

3. For each rule Rk ¼ bo1
 ai1 ; . . .; ain ; � ainþ1; . . .; � aim 62 P.

(a) For each literal aij (1� j�m) in the input of the rule: if there is no input neurone labeled aij in

the input level, then add a neurone labeled aij in the input layer.

(b) Add a neurone labeled Nk in the hidden layer.

(c) If there is no neurone labeled bo1
in the output level, then add a neurone labeled bo1

in the output

layer.

(d) For each literal aij (1� j� n): connect the respective input neurone with the neurone labeled Nk

in the hidden layer with a positive weighted arc.

(e) For each literal � aih (nþ 1� j�m): connect the respective input neurone with the neurone

labeled Nk in the hidden layer with a negative weighted arc (the connections between these input

neurones and the hidden neurone of the rule represent the priorities translated with negation-as-

failure).

(f) Connect the neurone labeled Ni with the neurone in the output level labeled bo1
with a positive

weighted arc (each output in the rules is considered as a positive atom during the translation; a rule

with a negative output :b is translated in the network as output neurone labeled b0 that has the

same meaning of :b but for the purpose of the translation can be treated as a positive output).

Reasoning in Non-Probabilistic Uncertainty...

123

Proposition 1 For any normative code in the form of an extended logic program

there exists an ANN obtained from the N-CILP translation algorithm such that the

network computes the answer set semantics of the code.

Proof Definition 8 translates a normative code into an extended logic program

having a single extension (or answer set). From Lemma 2, the program extended

with a priority relation also has a single extension. Garcez et al. (2002) show that

any extended logic program can be encoded into an ANN. N-CILP performs one

such encoding using network weights as defined by Garcez et al. (2002). Hence,

N-CILP is sound. Since the program has a single extension, the iterative recursive

application of input-output patterns to the network will converge to this extension,

which is identical to the unique answer set of the program, for any initial input.

We end this subsection with a complete example of a translation of a normative

code to an ANN. The following captures parts of the rule set a soccer-playing agent

might be equipped with regarding the need to stop an opponent from scoring a goal

in different situations (as, for instance, potentially encountered in the RoboCup

robot soccer competitions):

R1 = (opponentShooting ^ closeToOpponent, O(impactingOpponent))

R2 = (goalkeeper ^ insideOwnArea ^ closeToOpponent ^ opponentHasBall,

O(impactingOpponent))

R3 = (haveBall ^ closeToGoal ^ closeToOpponent, O(impactingOpponent))

This set of norms is translated to an extended logic program:

impactingOpponent opponentShooting ^ closeToOpponent

impactingOpponent goalkeeper, insideOwnArea, closeToOpponent, opponentHasBall

impactingOpponent haveBall, closeToGoal, closeToOpponent

Which, in turn, is embedded in the following ANN:

opponent
shooting

closeTo
opponent

goalkeeper
inside

OwnArea
opponent
HasBall

R1 R2 R3

impacting
opponent

haveBall
closeTo

goal

T. R. Besold et al.

123

3.5.3 Initial Experimental Evaluation of the N-CILP Algorithm

In order to gain a first idea of the performance and properties of the proposed

N-CILP algorithm and the resulting networks, it has been implemented in a proof-

of-concept simulator then applied to the above RoboCup example scenario. While

the results reported here are still preliminary, they indicate the capabilities of the

neural-symbolic approach to normative reasoning and learning under uncertainty.

In the simulator, the KB contains the normative rules that an agent knows. We

assume that the priorities are embedded in the rules. The KB is then read as input to the

N-CILP translation algorithm, which produces a standard ANN trainable with

backpropagation (cf., e.g., Haykin 1999). The results of training the ANNs are

evaluated in the usual way, whereby the performance of a network with random

weights initially, i.e. without KB, is compared with that of a network set-up using N-

CILP, that is, with KB. Both networks are trained on the same set of examples: pairs of

input vectors (opponentShooting, closeToOpponent, etc.) and target output vectors

(ImpactingOpponent) with values 1, 0 and �1 denoting, respectively, true, unknown

and false. The networks are trained and tested using cross-validation, where the set of

examples is divided systematically into a training and a test set, multiple networks are

trained and tested on each division (with the test set never seen by the network during

training), and results are averaged out to produce a better estimate of the network’s

ability to generalise to new data, that is, its test set performance.

In evaluating the test set performance of the network, two distinct measures are

used: tot and part.

tot ¼
Pn

i¼1 Ið
Vk

j¼1ðcij ¼¼ oijÞÞ
n

part ¼
Pn

i¼1

Pk
j¼1 Iðcij ¼¼ oijÞ

n
 k

Here, n refers to the cardinality of the test set, k is the number of output neurones in

the network, oij is the value of the j-th output of the network for the i-th test

instance, cij is the target (desired) value of the j-th literal for the i-th test instance,

Ið�Þ is the indicator (i.e. a function returning 1 if the argument is true, and zero

otherwise). The tot measure evaluates how many examples were estimated by the

ANN correctly in their entirety (that is w.r.t. the entire target output vector), while

part measures the average number of output neurones correctly evaluated by the

ANN.

Comparison with a purely connectionist approach The test-set performance of a

network built using N-CILP is compared with that of a non-symbolic ANN. One of

the well known issues in neural-network training is how to decide the number of

neurones in the hidden layer. In the case of N-CILP, this number is given by the

number of symbolic rules. We adopt the same number of hidden neurones for both

networks and do not perform model selection. The difference between the networks

is in the values of the connection weights only. As mentioned, the ANN built with

N-CILP sets its weights according to the rules in the KB, whilst the non-symbolic

network has its weights initialised randomly. The expected advantage of the

Reasoning in Non-Probabilistic Uncertainty...

123

network built with N-CILP is that, even without any training, it should be capable of

estimating correctly the output value of some of the examples by applying the rules

contained in the KB (if the translation is correct, as proved, and the KB is relevant to

the data classification problem at hand).

The network built with N-CILP, thus, has the head-start of a KB containing rules

similar to (and including) the ones used in the example given at the end of the

previous section. During the training phase, the network tries to learn additional

rules provided in the form of training examples (input-output vectors). In the

interest of fairness, the non-symbolic network is also provided with training

examples derived from the initial rules,17 but has to learn all rules from scratch

using backpropagation. The entire set of rules and preference relations used in our

experiments, now with multiple outputs, is given below.

R1 = (kickoff , O(-score))

R2 = (kickoff & MateTouchesBall , P(score))

R3 = (kickoff & MinBallMoved , P(score))

R4 = (True , O(-useHands))

R5 = (goalkeeper & InsideOwnArea , P(useHands))

R6 = (True , O(-contactingOpponent))

R7 = (True , O(-impactingOpponent))

R8 = (impactingOpponent , O(minimizeImpact))

R9 = (contactingOpponent , O(terminateContact))

R10 = (mateInsideOwnArea , O(-insideOwnArea))

R11 = (mateInsideOpponentArea , O(-insideOpponentArea))

R12 = (opponentFreeKick , O(keepDistance))

R13 = (goalkeeper & OpponentPenaltyKick & -ballTouched , O(-getBall))

R14 = (haveBall & OpponentApproaching , O(pass))

R15 = (haveBall & OpponentApproaching & OpponentCloseToMate , O(-pass))

R16 = (haveBall & CloseToGoal , O(shoot))

R17 = (opponentShooting & CloseToOpponent , O(impactingOpponent))

R18 = (goalkeeper & InsideOwnArea & CloseToOpponent & OpponentHasBall ,

O(impactingOpponent))

R19 = (-goalkeeper & MateInsideOwnArea & OpponentShooting , O(-

impactingOpponent))

R20 = (haveBall & CloseToGoal & CloseToOpponent , O(impactingOpponent))

R21 = (opponentHasBall & CloseToOpponent & CloseToGoal , O(-

impactingOpponent))

R22 = (-mateInsideOwnArea & CloseToOpponent & OpponentHasBall ,

O(useHands))

R23 = (insideOwnArea & MateInsideOwnArea & OpponentApproaching , O(-

impactingOpponent))

R24 = (insideOwnArea & HaveBall , O(pass))

R25 = (opponentFreeKick , O(-canScore))

R26 = (opponentPenaltyKick , O(keepDistance))

17 Given a rule, e.g. B A, input and output vectors are created having ‘1’ in the position corresponding

to A in the input vector, and ‘1’ in the position corresponding to B in the output vector.

T. R. Besold et al.

123

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 18 20 22 24 26 28

A
cc

ur
ac

y

of Rules

tot
part

Fig. 5 Accuracy of tot and part measures for increasing numbers of rules in the knowledge base

R2 � R1

R3 � R1

R5 � R4

R8 � R7

R9 � R6

R15 � R14

R17 � R7

R18 � R7

R19 � R17

The results show that the non-symbolic ANN is not able to achieve the same level of

accuracy as the N-CILP network. Using the first 20 rules above (R1 to R20) to set

up the ANN with N-CILP and the remaining 6 rules (R21 to R26) for testing

produced test-set performances tot ¼ 5:38% and part ¼ 49:19%, while the non-

symbolic network achieved tot ¼ 5:13% and part ¼ 45:25%. More importantly,

when we evaluate how the N-CILP ANN perform with increasing number of rules

in the KB, test-set performances also increase in a consistent way (see Fig. 5. This

confirms empirically that the ANN is capable of computing the same semantics as

given by the rules in the KB (rules R23 and R24 seem to be particularly relevant),

and to exploit learning from examples, which allows a normative agent to increase

and adjust its knowledge in the face of multiple possible obligations which may

change dynamically in time.

The test is done incrementally using the same 26 rules. The experiment’s first run

starts with a KB containing the first 20 rules, as before. Subsequently, two additional

rules are added to the KB, with each consecutive run decreasing the number of

unknown rules that the network has to learn by two, as shown in Fig. 5. In the last

experiment, with 26 rules, the figure reports the network’s traning set performance

since there are no rules left from which to derive test set patterns.

Reasoning in Non-Probabilistic Uncertainty...

123

For the first two experiments, accuracy remains low, while for the last two,

performance increases considerably reaching a peak of 98.01% for the part measure

and 91.18% for tot.

Learning CTDs In a final experiment, we measure the capacity of an ANN built

with N-CILP to learn new CTDs. This is done by using a KB with the priority-based

orderings that regulate the CTDs left out.

We tested the network on learning three different CTDs, again in the robot-soccer

context. The first refers to a situation where a robot player should never impact on

an opponent (R7), but if a collision route is inevitable, then the robot should make

its best to minimise the impact (see R7c below). The second CTD addresses a

situation where the soccer robot is in physical contact with an opponent, which for

most situations is forbidden by standard soccer rules (R6), and should try to

terminate the contact (see R6c below). The third CTD handles a situation where,

although generally not being allowed to use its hands (R4), the robot finds itself in

the role of the goalkeeper (see R4c below). Rules R4, R6 and R7 are reproduced

below for convenience.

R7 = (> , O(: impactingOpponent))

R7c = (impactingOpponent , O(minimizeImpact))

R6 = (> , O(:contactingOpponent))

R6c = (contactingOpponent , O(terminateContact))

R4 = (> , O(:useHands))

R4c = (goalkeeper & InsideOwnArea , P(useHands))

Removing the priority-based orderings results in an incomplete system that

produces, in similar situations, both the unfulfillable obligation and the relative

obligation to handle the suboptimal situation that is being analysed. Delivering on

the promise to be able to deal with this type of uncertainty in the context of norms,

what we expect from our approach is the ability to learn the priority-based orderings

that regulate the CTDs. The ANN is trained with a set of examples containing both

regular situations (R4, R6, R7) and situations in which the CTD is applied (R4c,

R6c, R7c). The resulting network is tested with a test set containing situations where

an application of the CTD becomes necessary.

For the first CTD, results show a 95% test-set performance by the network, which

generated minimizeImpact only when in the suboptimal CTD situation in question.

For the two other CTDs, the results show an accuracy of 93 and 87% on their

respective test sets. This indicates that N-CILP is capable of learning CTDs not

included in the construction of the ANN. It, thus, allows us to avoid a total

description of the corresponding domain (which very often turns out overly

expensive or simply infeasible) as missing norms can be acquired through learning

from examples.

T. R. Besold et al.

123

4 Conclusion

At the beginning of Sect. 1 we set out to argue two connected claims. Firstly, we

aimed to show that probability is not the only way of dealing with uncertainty (and

even more, that there are kinds of uncertainty which are for principled reasons not

addressable with probabilistic means). Secondly, we wanted to provide evidence

that logic-based methods can well support reasoning with uncertainty, using two

paradigmatic examples: LP with Kleene semantics for modelling reasoning from

information in a discourse, to an interpretation of the state of affairs of the intended

model, and a neural-symbolic implementation of a fragment of I/O logic expressed

as extended LP for dealing with uncertainty in dynamic normative contexts.

Looking back at what has been reported in the previous sections, we believe that

both goals have been met. Even more, while at first sight seeming fairly independent

from each other, we hope that also the intrinsic—formal and conceptual—

connection between LP for reasoning to an interpretation on the one hand, and the

neural-symbolic I/O logic approach combining normative reasoning and learning on

the other hand, have become apparent. The neural-symbolic I/O setting presents a

natural expansion of the LP approach. In addition, the normative features also (via

the additional ANN characteristics) add learning capacities to the previously

exclusively reasoning-focused framework.18 Still, it should be clear that the

discussed account of LP and neural-symbolic I/O logic are only two examples

among several for logic-based methods dealing with forms of uncertainty, and that

even for these two the presented work can only be considered initial steps in the

direction of fully exploring—and exploiting—the possibilities offered by the

respective approaches beyond the use of probabilistic models.

As a general insight gained from our described explorations into uncertainty and

logical methods, we note that in fact examining the nature of the uncertainty and its

twinned necessity in each logic provides at least a semi-systematic method of

exploring for species of uncertainty. As we noted, at least LP, and deontic logics

provide examples which are clearly interesting for human cognition and the

modelling thereof with computational means. These are the first which we have

examined in any detail. We do not claim that every logic has its own distinct

species, nor that every species enumerated in this way is of any interest to cognitive

modelling or AI. However, even from these examples, it is clear that logic can serve

as a royal road to the exploration (and handling) of different kinds of uncertainty.

The only generalisation we would offer at this point is that logics differ in their kind

of uncertainty insofar as they specify distinct kinds of epistemic state. It is the

epistemic states that cannot always be matched by other logics that give rise to

different kinds of uncertainty, rather than some general property of the inferences

that are valid, or the content of their propositions.

Concerning future work, it seems desirable to also develop an architecture

combining the described form of LP modelling with neural-symbolic computing

18 The presented approach to LP modelling of discourse does not tackle the learning of KB rules, as

discourse comprehension generally is assumed to proceed with a mature KB. But an account of learning is

nevertheless an important goal for LP models of discourse.

Reasoning in Non-Probabilistic Uncertainty...

123

analogous to the I/O logic setting. As discussed, for instance, by Stenning and van

Lambalgen (2008), there is already a neural implementation for simple LP.

Constraint LP is a more expressive logic which includes the Event Calculus, and is

required for modelling, among other things, all but the simplest reasoning in the

processing of time and causality in narrative discourse (van Lambalgen and Hamm

2004). A neural network implementation for this formalism is currently lacking, but

would most likely have great advantages: on the one hand, introducing the ANN

characteristics as part of the neural-symbolic implementation would allow the

introduction of learning capacities into the discourse processing context, expanding

the approach and corresponding model in a natural way. On the other hand the

availability of such an architecture would further bridge from the currently still

(mostly) cognitive modelling-oriented setup to applications of the paradigm in

corresponding models in cognitively-inspired AI.

Regarding the neural-symbolic implementation of I/O logic, we next hope to

introduce an explicit notion of context in the neural-symbolic system. In reality,

choices are not made by only taking into consideration the current situation, but are

usually also influenced by past events. Continuing with the robot soccer example,

for instance we might want to consider situations where a robot changes its style of

play due to the previous and current history: yellow cards received would make the

robot play in a safer way to avoid being sent off; if the current result suggests that

the robot team is already winning, they could prefer to play more defensively to

prevent the other team equalising. In order to implement those mechanisms, the

system must be capable of memorising past events. One way to solve this might be

to add external memory to the networks (Weston et al. 2014). With this solution the

context nodes in the ANN could be added in the same way as for the rules, the

difference being that for each context in the input level there would be a

correspondent output context which is linked from the output to the input levels, in

order to maintain memory if any context modified its status during computation. A

related line of potential future research involves the area of argumentation.

Argumentation has been proposed, among other things, as a method to help

symbolic machine learning. In Mozina et al. (2007)’s approach, an expert’s reasons

for some of the training examples can be used to try and guide the search for

hypotheses, in a way similar to our use of background knowledge (Garcez et al.

2005).

In a third line of development on the systems-oriented side, we want to take the

neural-symbolic architecture for I/O and—reusing insights from the LP approach

described in this article— develop a follow-up framework additionally modelling

interpretation-related aspects of reasoning. If successful, this would allow to address

the case when one does not know which propositions are actually relevant (i.e.

combining reasoning to an interpretation with subsequent normative reasoning

while maintaining the ability to deal with dynamically changing sets of rules).

From a conceptual perspective, we would like to get clearer how uses of

intensional and extensional systems—as already discussed in Sect. 1—might work

together. Stenning et al. (2017) argue that systems that use extension sets to capture

the meanings of predicates—at least when those systems are used for cognitive

modelling—necessarily rely for their foundations on intensional systems that can

T. R. Besold et al.

123

capture the interplay of motivations of the reasoner (desires, purposes, goals,

preferences, ...). The extensional systems ‘precisify’ or perhaps operationalise

intensional meanings in specific contexts. But different extensional precisifications

of the same intensional concept may be incompatible in having different extensions.

Intensional systems can capture the crucial abstractions due to the flexibility of

motivational elements, answering the question ‘Why this extension in this

interpretation?’. Extensional systems are important, but their importance cannot

be understood without understanding their basis in intensional systems. The issues

of operationalising concepts for statistical modelling are commonplace to psychol-

ogists, but analogous decisions have to be made in many other related domains,

including everyday discourse. If we are reasoning about the reliability of the

conditional ‘‘If the brake pedal is pressed, the car slows down.’’ then the extension

of cars excludes ones on the dump. If a mechanic is searching for a spare part, and

reasons about the conditional: ‘‘If the car is a 2009 or later, it complies with the

emissions regulations.’’ then the ones on the dump may be exactly the ones that are

in the relevant extension. We negotiate extensions for ‘car’ through our intensional

purposes for reasoning, and when we construct them, they do not replace the vague

intensional meanings that went into their construction. Reiterating a point already

argued in the introduction, ‘‘intensional’’ systems like LP with Kleene semantics can

express goals in a sense which is not fully possible in ‘‘extensional’’ systems like

probability theory. So, once again, it is important to distinguish the different kinds

of uncertainty they treat. At the most general level, this paper is an argument for a

strategy in understanding uncertainty. The novel kinds of uncertainty exemplified

here are of a rather extreme kind. Establishing extreme examples is important.

Extreme examples may not make good law, but they greatly aid exploration.

Acknowledgements We want to thank the following people for their indispensable contributions to

different parts of the work reported in this article: Guido Boella, Silvano Colombo Tosatto, Valerio

Genovese, Laura Martignon, Alan Perotti, and Alexandra Varga.

References

Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet

contraction and revision functions. The Journal of Symbolic Logic, 50(02), 510–530.

Antoniou, G., Billington, D., & Maher, M. (1998). Sceptical logic programming based default reasoning:

defeasible logic rehabilitated. In R. Miller, M. Shanahan (Eds.), COMMONSENSE 98, The 4th

symposium on logical formalizations of commonsense reasoning, London.

Apt, K. R., & Pedreschi, D. (1993). Reasoning about termination of pure prolog programs. Information

and Computation, 106, 109–157.

Baggio, G., Stenning, K., & van Lambalgen, M. (2016). The cognitive interface. In M. Aloni & P. Dekker

(Eds.), Cambridge handbook of formal semantics. Cambridge: Cambridge University Press.

Boella, G, & van der Torre, L (2005). Permission and authorization in normative multiagent systems. In

Procs. of int. conf. on artificial intelligence and law ICAIL (pp. 236–237).

Boella, G., & van der Torre, L. (2006). A game theoretic approach to contracts in multiagent systems.

IEEE Transactions on Systems, Man, and Cybernetics, Part C, 36(1), 68–79.

Boella, G., Pigozzi, G., & van der Torre, L. (2009). Normative framework for normative system change.

In 8th Int. joint conf. on autonomous agents and multiagent systems AAMAS 2009, IFAAMAS (pp.

169–176).

Bradley, R., & Drechsler, M. (2014). Types of uncertainty. Erkenntnis, 79, 1225–1248.

Reasoning in Non-Probabilistic Uncertainty...

123

Doets, K. (1994). From logic to logic programming. Cambridge, MA: MIT Press.

Gabbay, D., Horty, J., Parent, X., van der Meyden, R., & van der Torre, L. (Eds.). (2013). Handbook of

deontic logic and normative systems. London: College Publications.

Garcez, A., Broda, K., & Gabbay, D. M. (2001). Symbolic knowledge extraction from trained neural

networks: A sound approach. Artificial Intelligence, 125, 155–207.

Garcez, A., Broda, K., & Gabbay, D. (2002). Neural-symbolic learning systems: Foundations and

applications. Perspectives in neural computing. Berlin: Springer.

Garcez, A., Gabbay, D., & Lamb, L. (2005). Value-based argumentation frameworks as neural-symbolic

learning systems. Journal of Logic and Computation, 15(6), 1041–1058.

Garcez, A., Lamb, L. C., & Gabbay, D. M. (2009). Neural-symbolic cognitive reasoning. Berlin: Springer.

Garcez, A., Besold, T.R., de Raedt, L., Földiak, P., Hitzler, P., Icard, et al. (2015). Neural-symbolic

learning and reasoning: Contributions and challenges. In: AAAI Spring 2015 symposium on

knowledge representation and reasoning: Integrating symbolic and neural approaches, AAAI

technical reports (vol SS-15-03). AAAI Press.

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In Proceedings

of the 5th logic programming symposium, MIT Press (pp. 1070–1080).

Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive databases. New

Generation Computing, 9, 365–385.

Gigerenzer, G., Todd, P. M., & The ABC Research Group. (1999). Simple heuristics that make us smart.

Oxford: Oxford University Press.

Gigerenzer, G., Hertwig, R., & Pachur, T. (2011). Heuristics: The foundations of adaptive behavior.

Oxford: Oxford University Press.

Graves, A., Mohamed, A., & Hinton, G.E. (2013). Speech recognition with deep recurrent neural

networks. CoRR arXiv:abs/1303.5778.

Halpern, J. (2005). Reasoning about uncertainty. Cambridge, MA: MIT Press.

Hansen, J. (2006). Deontic logics for prioritized imperatives. Artificial Intelligence and Law, 14(1–2),

1–34.

Haykin, S. (1999). Neural networks: A comprehensive foundation. Upper Saddle River: Prentice Hall.

Horty, J. F. (1993). Deontic logic as founded on nonmonotonic logic. Annals of Mathematics and

Artificial Intelligence, 9(1–2), 69–91.

Jörgensen, J. (1937). Imperatives and logic. Erkenntnis, 7, 288–296.

Juslin, P., Nilsson, Håkan, & Winman, A. (2009). Probability theory, not the very guide of life.

Psychological Review, 116(4), 856–874.

Kahneman, D., & Tversky, A. (1982). The concept of probability in psychological experiments. In D.

Kahneman, P. Slovic, & A. Tversky (Eds.), The concept of probability in psychological experiments

(pp. 509–520). Cambridge: Cambridge University Press.

Kern-Isberner, G., & Lukasiewicz, T. (2017). Many facets of reasoning under uncertainty, inconsistency,

vagueness, and preferences: A brief survey. Künstliche Intelligenz. doi:10.1007/s13218-016-0480-6.

Knight, F. (1921). Risk, uncertainty and profit. New York: Hart, Schaffner and Marx.

Kowalski, R. A. (1988). The early years of logic programming. Communications of the ACM, 31, 38–42.

Kraus, S., Lehmann, D., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models and

cumulative logics. Artificial Intelligence, 44(1), 167–207.

Lindahl, L., & Odelstad, J. (2003). Normative systems and their revision: An algebraic approach.

Artificial Intelligence and Law, 11(2–3), 81–104.

Lloyd, J. W. (1987). Foundations of logic programming. Berlin: Springer.

Makinson, D., & van der Torre, L. (2000). Input/output logics. Journal of Philosophical Logic, 29(4),

383–408.

Makinson, D., & van der Torre, L. (2001). Constraints for input-output logics. Journal of Philosophical

Logic, 30(2), 155–185.

Makinson, D., & van der Torre, L. (2003a). Permissions from an input-output perspective. Journal of

Philosophical Logic, 32(4), 391–416.

Makinson, D., & van der, Torre L. (2003b). What is input/output logic? In B. Löwe, W. Malzkorn &

T. Räsch (Eds.), Foundations of the formal sciences II: Applications of mathematical logic in

philosophy and linguistics, trends in logic (Vol. 17). Kluwer.

McCarthy, J. (1980). Circumscription: A form of non-monotonic reasoning. Artificial Intelligence, 13(1),

27–39.

Minsky, M. (1974). A framework for representing knowledge. Tech. Rep. 306, AI Laboratory,

Massachusetts Institute of Technology, Cambridge, MA, USA.

T. R. Besold et al.

123

http://arxiv.org/abs/abs/1303.5778
http://dx.doi.org/10.1007/s13218-016-0480-6

Mousavi, S., & Gigerenzer, G. (2014). Risk, uncertainty, and heuristics. Journal of Business Research,

67, 1671–1678.

Mozina, M., Zabkar, J., & Bratko, I. (2007). Argument based machine learning. Artificial Intelligence,

171(10–15), 922–937.

Nilsson, N. J. (1986). Probabilistic logic. Artificial intelligence, 28(1), 71–87.

Nute, D. (1994). Defeasible logic. In D. Gabbay & J. Robinson (Eds.), Handbook of logic in artificial

intelligence and logic programming (Vol. 3, pp. 353–396). Oxford: Oxford University Press.

Nute, D. (Ed.). (1997). Defeasible deontic logic, synthese library (Vol. 263). Alphen aan den Rijn: Kluwer.

Oaksford, M., & Chater, N. (1998). Rationality in an uncertain world: Essays in the cognitive science of

human understanding. Hove: Psychology Press.

Pearl, J. (2000). Causality: Models, reasoning, and inferece. Cambridge: Cambridge University Press.

Pijnacker, J., Geurts, B., van Lambalgen, M., Buitelaar, J., & Hagoort, P. (2010). Exceptions and

anomalies: An ERP study on context sensitivity in autism. Neuropsychologia, 48, 2940–2951.

Pinosio, R. (in prep.) A common core shared by logic programming and probabilistic causal models.

Prakken, H., & Sergot, M. (1997). Dyadic deontic logic and contrary-to-duty obligations. In D. Nute

(Ed.), Defeasible deontic logic (pp. 223–262). Berlin: Springer.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error

propagation. In D. Rumelhart, J. McClelland & PDP Research Group (Eds.), Parallel Distributed

Processing (Vol 1. pp. 318–362). Cambridge: MIT Press.

Sen, S., & Airiau, S. (2007). Emergence of norms through social learning. In Procs. of the 20th

International Joint Conference on Artificial Intelligence—IJCAI (pp. 1507–1512).

Shanahan, M. (2002). Reinventing Shakey. In J. Minker (Ed.), Logic-based artificial intelligence.

Dordrecht: Kluwer.

Shoham, Y. (1987). A semantical approach to non-monotonic logics. In Proceedings of the tenth

international joint conference on artificial intelligence (IJCAI) (pp. 388–392).

Shoham, Y., & Tennenholtz, M. (1997). On the emergence of social conventions: Modeling, analysis, and

simulations. Artificial Intelligence, 94(1–2), 139–166.

Sloman, S., & Lagnado, D. (2015). Causality in thought. The Annual Review of Psychology, 66, 1–25.

Stenning, K., & van Lambalgen, M. (2008). Human reasoning and Cognitive Science. Cambridge, MA:

MIT Press.

Stenning, K., & van Lambalgen, M. (2010). The logical response to a noisy world. In M. Oaksford (Ed.),

Cognition and conditionals: Probability and logic in human thought (pp. 85–102). Oxford: Oxford

University Press.

Stenning, K., & Varga, A. (2016). Many logics for the many things that people do in reasoning. In L. Ball

& V. Thompson (Eds.), International Handbook of Thinking and Reasoning. Abingdon-on-Thames:

Psychology Press.

Stenning, K., Martignon, L., & Varga, A. (2017). Adaptive reasoning: integrating fast and frugal

heuristics with a logic of interpretation. Decision.

Tosatto, S. C., Boella, G., van der Torre, L., & Villata, S. (2012). Abstract normative systems: Semantics

and proof theory. In G. Brewka, T. Eiter, & S. A. McIlraith (Eds.), Principles of knowledge

representation and reasoning: Proceedings of the thirteenth international conference. AAAI Press.

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based artificial neural networks. Artificial

Intelligence, 70(1), 119–165.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science,

185(4157), 1124–1131.

Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in

probability judgment. Psychological Review, 90(4), 293.

van der Torre, L. (1997). Reasoning about obligations. PhD thesis, Erasmus University Rotterdam.

van der Torre, L., & Tan, Y. (1999). Deontic update semantics. In P. McNamara & H. Prakken (Eds.),

Norms, logics and information systems. new studies on deontic logic and computer science.

Amsterdam: IOS Press.

van der Torre, L. (2010). Deontic redundancy: A fundamental challenge for deontic logic. In Deontic

Logic in Computer Science, 10th International Conference (DEON 2010).

van Lambalgen, M., & Hamm, F. (2004). The proper treatment of events. Oxford: Blackwell.

Varga, A. (2013). A formal model of infants’ acquisition of practical knowledge from observation. PhD

thesis, Central European University, Budapest.

von Wright, G. H. (1951). Deontic logic. Mind, 60, 1–15.

Weston, J., Chopra, S., & Bordes, A. (2014). Memory networks. CoRR arXiv:abs/1410.3916.

Reasoning in Non-Probabilistic Uncertainty...

123

http://arxiv.org/abs/abs/1410.3916

	Reasoning in Non-probabilistic Uncertainty: Logic Programming and Neural-Symbolic Computing as Examples
	Abstract
	Introduction
	Logic Programming Modelling Reasoning to an Interpretation
	Logic Programming Modelling Reasoning
	The Many Logical Faces of Uncertainty, or What Logic Programming Can Do for Reasoning

	Neural-Symbolic Computing Modelling Dynamic Normative Contexts
	Neural-Symbolic Systems
	Input/Output Logic
	Abstract Normative Systems
	Propositional Input/Output Logic

	Overview of the Architecture
	Normative Problems as Priorities
	Normative Connectionist Inductive Learning and Logic Programming
	Mapping Input/Output Logic into Neural Networks
	The N-CILP Algorithm
	Initial Experimental Evaluation of the N-CILP Algorithm

	Conclusion
	Acknowledgements
	 References

