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Abstract
This paper traces a relatively linear sequence of early research approaches to the formal
verification of concurrent programs. It does so forwards and then backwards in time.
After briefly outlining the context, the key insights from three distinct approaches
from the 1970s are identified (Ashcroft/Manna, Ashcroft (solo) and Owicki). The
main technical material in the paper focuses on a specific program taken from the last
published of the three pieces of research (Susan Owicki’s): her own verification of
her Findpos example is outlined followed by attempts at verifying the same exam-
ple using the earlier approaches. Reconsidering the prior approaches on the basis of
Owicki’s useful example illuminates similarities and differences between the propos-
als. Along the way, observations about interactions between researchers (and some
“blind spots”) are noted.

Keywords Program correctness · Formal methods · History · Concurrency

1 Introduction

Research in the late 1960s provided a firm basis for showing that sequential programs
satisfied their specifications (key papers by Bob Floyd and Tony Hoare are briefly
outlined in Sects. 1.1 and 4). Around 1970, the technical challenges of extending such
formal approaches to tackle the verification of concurrent software came into focus.
Contextually there was pressure from machines becoming large enough to run mul-
tiple processes, from the ability to link machines and—crucially—from applications.
“Interference” is identified as a key technical challenge to reasoning about concurrency
in Sect. 1.2.

The main purpose of the current paper is to review three early approaches to the
verification of concurrent programs (joint work by Ed Ashcroft and Zohar Manna is
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described in Sect. 2, a solo publication by Ashcroft in Sect. 3 and Susan Owicki’s
contribution in Sect. 5). There is no attempt in the current paper to identify “firsts”.
Extensive other work by, for example, Carl Adam Petri is not even referenced. The
three chosen sources contain key insights on concurrency and represent progress in
practicality. Readers might find the apparent linearity of these ideas suspicious; this
point is addressed in the concluding section.

The objective is to convey—at least in outline—the technical contribution of each
of the three approaches. This is attempted by bringing the three approaches to bear
on a common example presented in Owicki’s PhD thesis. For this reason, the initial
descriptions in Sects. 2 and 3 are brief and are revisited in Sects. 6.1 and 6.2.

One issue which dogs all three chosen approaches is “atomicity” and this is dis-
cussed in Sect. 7. Conclusions are sketched in Sect. 8.

1.1 PriorWork on Sequential Programs

The reference points for formal verification of sequential (non-concurrent) programs
are taken here as Floyd (1967) and Hoare (1969).1 Common to both approaches is
the use of state assertions that are predicates defining relationships between the val-
ues of variables. State assertions can be used as annotations on a program and their
consistency can be checked against the meaning of the program. The assertion at the
end of the program is a “post condition” describing the overall effect of the program;
few programs work for all possible inputs and the assertion at the beginning of the
program is its “pre condition”.

Although strongly related, there is a crucial distinction between the approaches of
Bob Floyd and Tony Hoare to the verification of sequential programs. The starting
point for Floyd (1967) is a flowchart of a program towhich “state assertions” are added
that justify that any execution of the program will be in accord with the assertions.2

As such, the approach to verification is “post facto”: a program is written and only
after its creation is it subjected to formal reasoning. Hoare (1969) contains a generous
acknowledgement to the influence of Floyd (1967)3 but Hoare’s “axiomatic approach”
offers a clear path to a development approach that is described in Sect. 4 below and
can be labelled “posit and prove” (a designer posits a design decision that is shown to
match a given specification; one development step is verified before moving on to the
design of any sub-components).

The distinction in the preceding paragraph can also be made by applying the term
“bottom up” to the post facto approach (in the sense that the assertions construct

1 Earlier work by John vonNeumann andAlan Turing is discussed in various papers including Jones (2017)
and Priestley (2020).
2 Floyd makes the modest comment that “These modes of proof of correctness and termination are not
original, they are based on ideas of Perlis and Gorn, and may have made their earliest appearance in
an unpublished paper by Gorn”. The current author exchanged letters with Floyd after Maurice Wilkes
had objected to the description in Morris and Jones (1984) of Turing’s contribution in Turing (1949);
unfortunately this did not uncover more about Floyd’s—possibly overly generous—acknowledgement.
Fuller details can be found in Jones (2003).
3 In fact, Hoare’s attempts to find an axiomatic approach can be traced in drafts [discussed in Jones and
Misra (2021)] from which one can see the transformative effect of him studying (Floyd, 1967).
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an abstraction above the relatively concrete code of the program) and, in contrast,
development of a program from an abstract specification can be termed “top down”.4

1.2 Challenges from Concurrency

There are, in fact, many challenges concernedwith the development of concurrent pro-
grams. “Liveness” issues such as deadlocks are not addressedby the subject approaches
here; their focus is on interference.

In a sequential program, an assignment of 42 to a variable x ensures that the next
access to x will yield the value 42. If x is a variable that can be affected by a concurrent
thread, this assurance no longer pertains. Interference between concurrent threads is a
major headache for designers of concurrent software and many key algorithms rely on
shared variables; this is often the case to improve performance. Programming language
constructs have been conceived that limit and/ormakemore evidentwhere interference
can occur.

A further observation in Ashcroft (1975) about interference and concurrency is
worth noting: Ed Ashcroft observes that—because debugging concurrent programs
is so inadequate—there is a greater payback for applying formality to concurrent
programs than to simpler sequential ones.

2 Ashcroft andManna (Stanford 1969/1970)

This section reviews an approach to interference that attempts to establish the correct-
ness of a concurrent program by reasoning about an equivalent program with many
non-deterministic threads.

Zohar Manna (1939–2018)5 obtained his PhD at what is now CMU (Pittsburg)
supervised by Floyd and Al Perlis. Manna’s thesis, Manna (1968), focussed on estab-
lishing termination of (sequential) programs but it—and alsoManna (1969c)—offered
a way of translating a program into logical expressions.6 Although this represents a
distinct idea from Floyd (1967) that required assertions to be added to a flowchart,
Manna’s approach still fits the post facto style and the differences from Floyd’s
approach do not influence Manna’s contribution to concurrency. Manna moved to
Stanford University in 1969. Before he began the collaboration with Ed Ashcroft that

4 Although the distinction is fair of the original publications, it is possible to move closer to a top-down
approach using Floyd’s ideas. The author of the current paper had the good fortune to use, during its
development, the “Effigy” system built by King (1969, 1971). King’s PhD research was under the direction
of Floyd at CMU and the Effigy system aspired to discharge the proof obligations that were implicit in
checking Floyd assertions against code. There was however a way to record the specifications of (PL/I)
procedures that could be developed later. This could effectively support a top-down development style.
5 Dershowitz and Waldinger (2019) is an excellent scientific obituary and contains a full publication list.
6 These first-order predicate calculus (FoPC) formulae contain un-interpreted predicate symbols andmech-
anisation was aimed at finding instantiations. Satisfaction of one set of formulae determines termination; a
different set of equations is satisfiable by assertions about execution which would include the specification
of the program. Satisfaction of FoPC is only semi-decidable so the searchmight not terminate and is anyway
exponentially slow.
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is the main topic of this section, he had written about non-deterministic programs in
Manna (1969a).

Ed Ashcroft did his PhD in London University supervised by John Florentin.
The title of Ashcroft’s thesis, Ashcroft (1970), is Mathematical Logic Applied to the
Semantics of Computer Programs. Whilst being in the formal area (and having some
extremely elaborate formulae), it contains no hint of the concurrency work of interest
in this section. Hemoved to Stanford around 1969 and this might have occurred before
his thesis was finally approved.7

The publication of prime interest here is Ashcroft and Manna (1971) [which was
pre-printed as a 1970 Stanford report Ashcroft and Manna (1970)]. The key insight
is that a concurrent program can be reasoned about by constructing an equivalent
non-deterministic program. Providing the atomic steps are identified properly, it is not
difficult to see that it is possible to generate sequential threads that represent every
possible merging of the original concurrent threads. The specific approach is couched
in terms of flowcharts which follows the spirit of both Floyd’s 1967 paper andManna’s
own publications. In Ashcroft and Manna (1970), a parallel program has “and” forks
in which both branches must be executed (very much in the way fork/join works)
whereas non-determinism employs “or” branches where only one branch is executed.

To illustrate this, consider the example in which two concurrent threads must both
be executed:

[S1; S2] ‖ [S3, S4]

This can be seen to be equivalent to a program that can non-deterministically select
between the following set of six threads:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[S1; S2; S3; S4]
[s1; S3; S2; S4]
[S1; S3; S4; S2]
[S3; S4; S1; S2]
[S3; S1; S4; S2]
[S3; S1; S2; S4]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Manna and Ashcroft concede that the expansion factor is exponential and the pro-
grams used as examples in Ashcroft and Manna (1971) are understandably rather
limited. Tellingly one of two concurrent threads in their Program2 (Ashcroft&Manna,
1971, Fig. 4) contains exactly one (atomic) statement: finding all of the places into
which this has to be merged in the other thread limits the cardinality of the expanded
non-deterministic threads to (roughly) the number of atomic statements in the longer
thread of the concurrent original (this point becomes important below). In fact, for
just two threads containing respectively m and n atomic assignment statements, the
number of merged threads is (m + n)!/(m! + n!); for the trivial example above, this
is not too alarming but with only n = m = 15 there would be more than 150 million

7 This conclusion was suggested by Matthew Hennessy (private communication).
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merges. Where there are branches or loops8 in either concurrent thread, the mapping
to an equivalent non-deterministic program is more difficult. Referring again to their
Program 2 (Ashcroft &Manna, 1971, Fig. 4), the non-trivial thread contains a loop and
it would be incorrect to insert the single statement from the other thread into the arc
going back to the loop test—the mapping given would, in general, have to arrange that
the single statement was only executed in one iteration of the loop.9 Their Program 3
(Ashcroft & Manna, 1971, Fig. 5) is more elaborate10 and its expansion occupies two
figures (7 and 9). As pointed out in Sect. 6.2 below, they do not offer a general mapping
for arbitrary flowcharts.

Having expanded a concurrent program into non-deterministic sequential threads,
each of these threads can be verified separately (they are sequential programs). This
is accomplished in a style similar to that proposed by Manna’s PhD supervisor Floyd.
More precisely, the actual approach used in Ashcroft and Manna (1971) reflects
Manna’s own approach presented in Manna (1969b).

Despite the acknowledged problem of the huge expansion factor in going from a
concurrent program to an equivalent non-deterministic collection of sequential threads,
the work of Ashcroft and Manna offers a key insight. It is precisely the massive
non-determinism that dogs any attempt—formal or informal—to reason about concur-
rency. Different orders of merging interfering threads can result in changed behaviour.
Making the non-determinism explicit by expansion at least identifies the issue. Even
achieving correctness for sequential programs is difficult; interference makes the cre-
ation of fault-free concurrent programs orders of magnitude more challenging.

There is, however, an additional crucial caveat that the atomic steps of the concur-
rent threads must be identified and assuming that assignment statements are executed
without interference is unrealistic in practice (this topic is explored in more detail in
Sect. 7 below).

In his subsequent research, Manna went on to employ “temporal logic”—see Der-
showitz andWaldinger (2019) for references. There is also an interesting link between
that research and the ideas discussed in Sect. 3.

3 Ashcroft (Waterloo 1971–1975)

The link with the work described in Sect. 2 is obviously Ed Ashcroft himself; he was
appointed to Waterloo in January 1971.11 The starting point for his next step was a
recognition of the unacceptable size of the expanded non-deterministic program from

8 It is important here to remember that the research discussed in this section (and the next) is built upon
flowcharts: loops are constructed by backwards branches.
9 Returning to the number of paths in sequential program, it is clear that a sequential programwith n simple
tests can have 2n paths. For example, imagine a program that tests the 32 bits of a word as a long sequence
of if/then/else constructs. Of course, a shorter and more elegant program might index over the bits in a
while loop but it could still have 232 potential sequential paths.
10 There are no specifications given for the examples whose tests and state changes are shown as uninter-
preted symbols.
11 Don Cowan (founding head of Computing) kindly tracked down the date.
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the previous joint work. In Ashcroft (1975)12 he formalises an approach whose insight
is to employ control states to index the “state assertions” (which latter are the familiar
predicates over states). Ashcroft’s control states can be pictured by thinking of keeping
fingers on all of the statements that could be executed next in the concurrent threads.13

The need to consider all possible combinations of next moves can however be reduced:
where there are transitions in the concurrent program that have no impact on variables
that are shared between the threads, the verifier can reduce the number of distinct state
assertions that have to be written.

There are still potentially exponentially many transitions between control states but
it is much clearer than in the previous joint work how they can be merged. Ashcroft’s
proposal still faces the non-determinism inherent in the execution of concurrent threads
but, rather than starting with a mechanical expansion of a concurrent program into its
nondeterministic equivalent, Ashcroft’s proposal identifies the grouping of sets of
control states which behave in the same way.

Ashcroft’s approach is best illustrated with an example and he tackles a significant
one (a simplified airline reservation system) in Ashcroft (1975). For the purposes
of this paper, the most convenient source of an example is to reuse Susan Owicki’s
Findpos which is covered in Sect. 5; the application of Ashcroft’s approach to that
example is presented in Sect. 6.1.

The introduction of control states certainly offers a more succinct way of reasoning
about non-determinism than expanding all of the potential threads. It can also be seen
as making a more profound change to the way in which reasoning about programs can
be conducted: rather than adding assertions to a flowchart, the state assertions indexed
by control states offer a way of talking about program execution. This points to the
approach pursued with such effect using temporal logic.

Both Ashcroft’s solo approach and the joint work described in Sect. 2 discuss
linguistic extensions that form blocks in flowcharts which reduce the number of merge
points. In both cases, programming languages that offered more structured constructs
(than their flowcharts)14 might have made presentation clearer but this would not have
affected the key insights.

In both approaches considered so far, a significant “blind spot” is that they effec-
tively ignoreHoare’s 1969 paper (briefly sketched here in Sect. 4 becauseHoare (1969)
underlies Owicki’s approach addressed in Sect. 5). Furthermore, they offer only post-
facto verification in the sense that they start with (a flowchart representation of) an
existing program.

Ashcroft’s later research included a collaboration with Bill Wadge that developed
the Lucid language, see Ashcroft and Wadge (1976, 1979).

12 A version is shown as first submitted January 1973. It would be interesting to knowwhat part the referees
played in the development of the final text.
13 There is an interesting echo here of VDL control trees that serve to track available next steps in an
operational semantic description of a programming language (see Lucas & Walk, 1969). Evidence that
Ashcroft could have been aware of the IBM Vienna Lab operational semantics descriptions of PL/I etc. is
that his PhD supervisor was John Florentin (with whom the current author collaborated at that time);
Florentin certainly knew the VDL research well.
14 In Ashcroft and Manna (1971), space has to be given to ruling out “invalid” flowcharts.
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4 Hoare’s “Axiomatic Method” and Its Use in Design

This section picks up from Sect. 1.1 the key background approaches to the verification
of sequential programs. Tony Hoare’s 1969 paper is briefly reviewed and the fact is
emphasised that he followed it two years later with a key transition that showed how
his axioms could be used as the basis for using his axiomatic approach in design.

Floyd (1967) gives conditions for state assertions to be consistent with programs.
Hoare had been searching for a way to give the semantics to programming languages
that made it possible to “leave some things open” and saw that Floyd’s “Assigning
meanings to programs” provided a key to achieving his objective. [More on the evo-
lution of Hoare’s thinking can be found in Jones (2003) and Jones and Misra (2021)
and its impact in Apt and Olderog (2019).] Hoare offers—in Hoare (1969)—a gener-
ous acknowledgement to Floyd’s inspiration and it would be possible to view Hoare’s
axioms as an alternative presentation of Floyd’s conditions for the consistency of
assertions and program text. The end of the current section outlines why this would
be a serious undervaluation of Hoare’s contribution.

A “Hoare-triple” {P} S {Q} asserts that, if the statement S is executed in a
state that satisfies the pre condition P and if S terminates, then the resulting state will
satisfy the predicate Q. Rules of inference are presented for a simple but powerful set
of programming constructs in Hoare (1969). Examples are:

Sequential composition:

sequence

{P} S1 {Q}
{Q} S2 {R}

{P} S1; S2 {R}

Iteration:

while
{P ∧ b} S {P}

{P} while b do S od {P ∧ ¬ b}

The role of P in the above rule is to provide a loop invariant.

Conditional:

if

{P ∧ b} S1 {Q}
{P ∧ ¬ b} S2 {Q}

{P} if b then S1 else S2 fi {Q}
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Assignment:
At the end of a development process, assignment statements bring about the changes

of state from that in the pre condition to one that satisfies the post condition. The axiom
schema for assignment can be given as:

← {Pe
x } x ← e {P}

where Pe
x is the result of systematically substituting the expression e for every free

occurrence of the identifier x throughout P .

Finally a rule facilitates adapting a judgement to stronger pre conditions andweaker
post conditions:

weaken

{P} S {Q}
P ′ ⇒ P
Q ⇒ Q′
{P ′} S {Q′}

Themove fromannotated flowcharts to a systemof inference rules for “judgements”
recorded as Hoare triples opened the door to a crucial development. Furthermore, the
history of Hoare (1971) exposes the key transition: an early draft of this paper did
attempt to present a post facto proof of Hoare’s earlier FIND program. At that time,
there were no readily available theorem proving assistants and it was thus very hard
to achieve confidence in the monolithic proof.15 Hoare rewrote the paper so as to
describe a step-by-step development of the FIND program which was far easier to
check. (Unfortunately, he failed to update the first word of the title of “Proof of a
program FIND”.)

The fact that the inference rules above can be used to decompose a specification
into specified sub-components requires reading them from the conclusion below the
line to the hypotheses above the line. Once this is done, it is easy to see how the rules
provide the basis of a “posit and prove” development method.16

Hoare and colleagues worked on inference rules for many programming constructs
(seeApt&Olderog, 2019 for details); of particular relevance to the concurrency theme
of the current paper is Hoare (1975). Looking at disjoint parallelism where the threads
have no shared variables, Hoare proposed an “ideal” rule in which constructs like
cobegin · · · coendwould satisfy the conjunction of the post conditions of the separate

15 The current author was a referee for both Hoare (1969, 1971); the initial version of the latter proved to
be uncheckable.
16 One reservation about Hoare’s original inference rules is the use of post conditions that are predicates of
only the final state—a decision followed by many subsequent researchers including Dijkstra’s “weakest pre
conditions” (Dijkstra, 1976). (It is possible that this actually derived from Floyd’s flowchart annotations.)
Formal specification techniques from VDM (Jones, 1980), via Event-B (Abrial, 2010) to Alloy (Jackson,
2012) employ relations which are predicates that relate the final to the initial state.
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threads (providing the cobeginwas executed in an environment where the conjunction
of the pre conditions was satisfied).

disjoint-‖
{P1} S1 {Q1}
{P2} S2 {Q2}

{P1 ∧ P2} S1 ‖ S2 {Q1 ∧ Q2}
A version of this rule makes a first appearance in the appendix of Hoare (1972, p. 244)
and has clear links with the work described in the next section.

5 Owicki (Cornell 1975)

Susan Owicki’s Cornell thesis (Owicki, 1975) is most easily approached17 via a joint
paper (Owicki and Gries, 1976b) with her supervisor David Gries (their Owicki &
Gries, 1976a) covers broadly the same material but with more emphasis on what
were later dubbed liveness properties; it also says more about so-called “auxiliary
variables”18). The thesis itself has a lot of material but the intention here is to focus
on the key approach to the verification of concurrent programs which is commonly
referred to as the “Owicki–Gries method”. Unlike the ideas in Sects. 2 and 3, Owicki’s
approach is explicitly based on Hoare’s 1969 paper. There is, however, a clear link
to the research covered in Sects. 2 and 3: both Owicki (1975) and Owicki and Gries
(1976b) cite Ashcroft and Manna (1971) and a 1973 draft of Ashcroft (1975).

The key insight is that the fact that a set of concurrent threads satisfy given pre/post
conditions can be established in two stages:

• firstly, construct separateHoare-style sequential proofs of each thread (as indicated
below, these proofs must place assertions after every statement);

• these “proof outlines” are then reviewed to see whether statements in other threads
interfere with steps of the sequential proof.

As presented, the approach to verification is still post facto; this point is discussed
further below.

The approach is best presented with an example and Owicki offers one which is
small enough to cover in detail but which contains enough challenge to use in Sect. 6 as
a basis for comparison with the earlier approaches. Owicki’s Findpos example uses
two concurrent threads to search for the lowest array index that points to a positive
element.

It is obvious how to write a sequential program that steps through the indexes of
array x from 1 to the maximum (M). A decision has to be made about how to handle

17 Some of the material in this section benefited from a 2021 interview (over Zoom) with Susan Owicki.
18 I am grateful to Leslie Lamport for reminding me both of this ACM paper and his own (Lamport, 1977)
(see Acknowledgements). Lamport’s paper outlines an independently invented approach that has similar
scope to Owicki’s contribution; his paper is most cited for the import discussion of “liveness versus safety”.
Lamport and the current author differ as to the desirability of employing control state predicates but it is
important to record that he considers this to be a distinguishing factor between the Ashcroft and Owicki
approaches.
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the possibility that there is no positive element in x : this could, of course, be ruled
out by a pre condition, or a dummy value could be placed at x(M + 1). To simplify
comparison with Owicki’s text, the working below adheres to her decision to initialise
top counters to M + 1.

It is not difficult to see that the set of index values ({1..M}) can be partitioned and
given to parallel threads that search their subset and record the minimum value (if any)
where a positive array value is located. The simplest partition to present is to employ
two threads, one searching the even index values (indexing the counter ec up to et)
and the other the odd (oc, ot). After execution of both searches the final result t can
be set to the minimum of the two minima (et, ot).

Such disjoint parallel threads could actually executemore comparisons than a single
sequential loop in cases where a low index satisfies the test in one thread and there
is no positive value associated with the index values of the other thread. What makes
Findpos interesting is to allow each thread to read the counter of the other thread so
that either thread can cease searching beyond a satisfying index found by the other
thread. It is this interference that exhibits the key idea in Owicki’s approach.

The first step in the Owicki approach is to annotate the separate threads with Hoare-
like assertions. Following Owicki (1975, Fig. 3.4), the assertions are shown here
in Fig. 1 (coloured blue).19 The consistency of these assertions with respect to the
program can be justified using the Hoare rules of Sect. 4. For what has to be done
at the next stage, it is essential that there is an assertion at every point in the two
programs. Looking at Fig. 1, this appears to be a substantial commitment but most of
the assertions can be generated mechanically using Hoare’s rules.

Thus far, interference is ignored: the reasoning about threads is done as though they
were sequential programs with no danger of changes to the values of variables other
than in the code of the thread.

As made clear in Sect. 1.2 above, the essence of shared-variable concurrency is that
threads interfere by changing shared variables. Clearly, changing the value of variables
can invalidate proofs (such as those in Fig. 1) conducted on the assumption that there
is no interference. Owicki’s proof rule for concurrent processes comes disarmingly
close to Hoare’s disjoint− ‖ rule:

par
{P1} T1 {Q1}, · · · , {Pn} Tn {Qn} are interference free

{P1 ∧ · · · ∧ Pn} cobegin T1 ‖ · · · ‖ Tn coend {Q1 ∧ · · · ∧ Qn}

The crucial side condition is that the proofs of the threads must be “interference free”.
Owicki’s key proposal is that the impact of the interference of executing the statements
in one thread Ti can be judged by seeingwhether executable statements in other threads
Tj can impact steps in the justification of Ti . Potentially, the number of such checks
is proportional to the product of the number of steps in each thread. Fortunately, it is
rather easy to cut down on the scale of this task as can be illustrated on the Findpos
example.

19 The overall post condition does not actually prohibit changes to x—see the discussion on relational post
conditions in Sect. 4.
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Fig. 1 Fully decorated sequential proofs of the two threads of Findpos

Owicki focusses the “interference freedom” proof (Owicki, 1975, Definition 3.12,
p. 39) on any statements in one thread that affect the values shared with the other
thread. In Findpos, the actual interference is limited: the only dangerous statement
in Oddsearch is the assignment ot ← oc which can interfere with the loop test at
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Fig. 2 Combining the results from Fig. 1 using Owicki’s parallel rule

Evensearch. In fact, the positive test of the loop predicate is not affected because:

ec < min(ot, et) ⇒ ec < et

even if ot changes. The case that needs checking is where the loop terminates because
its test is false (see Hoare’s while rule in Sect. 4) since:

ec ≥ min(ot, et)

can be invalidated by an increase to ot . Fortunately, the assertion at Oddyes has a
pre condition of oc < ot on the assignment so ot ← oc cannot increase the value of
ot .20 The argument about interference in Oddsearch is symmetrical. In conclusion,
the two proof outlines of Fig. 1 can be combined in Fig. 2 with Owicki’s par rule and
a concluding use of the assignment rule.

Owicki’s approach is clearly post facto in the sense that program construction
precedes verification. This is aggravated by the two stage verification strategy in which
the standard sequential proofs are constructed prior to application of the “interference
freedom” test. A failure to clear that final hurdle presents the developer with no choice
but to go back to the starting line. Of course, an experienced developer might be able to
think ahead and keep the subsequent proof obligation in mind but the fact remains that

20 This argument ismade slightly difficult to follow because ofminor slips in the publications. It is therefore
worth recording some technical details for future readers of the primary material. In Owicki (1975) (using
her identifiers), the essential conjunct i < eventop is omitted in pre condition of Evenyes; similarly
j < oddtop in the pre condition for Oddyes; the choice of the bound identifier (i) in the overall post
condition was unhelpful since the program has a variable of this name (l is used in Owicki & Gries, 1976b).
In Owicki and Gries (1976b), the loop invariant of Oddsearch has a copy-and-paste error: the i should be
j .
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there is nothing in Owicki’s approach that facilitates recording and reasoning about
interference during design.

It is interesting to look at both stimuli from IFIP’sWG2.3 (“ProgrammingMethod-
ology”) and that group’s role in amplifying the influence of the research. The Owicki
and Gries (1976b) paper contains a specific acknowledgement to this collection of
important players in the world of Programming Methodology—both Hoare and Eds-
ger Dijkstra were founder members of WG2.3. Gries first observed21 at the meeting
(Munich) in December 1974 and he was elected a member in September 1975 (Baden
bei Wien); Owicki was an observer at the July 1976 meeting (Cazenova). These con-
tacts might have increased the incentive to relate the Owicki–Gries approach to Hoare
(1969) [the Owicki–Gries approach could be described in terms of the flowcharts of
Floyd (1967)]. Owicki’s thesis (Owicki, 1975) provides soundness proofs for the proof
obligations and cites Peter Lauer’s research with Hoare and Lauer (1974).

Looking in the other direction at the scientific impact of theOwicki–Gries approach,
it is again plausible that WG 2.3 helped to amplify and disseminate the message. For
example, Dijkstra’s EWD554 provides a “personal summary” of the approach.22 The
use of the Hoare framework, Gries’ reputation and the fact that Owicki had put foward
a good—and well presented—idea are certainly all factors.

6 Attempting Owicki’s Example with the Earlier Approaches

As this section illustrates, attempting to verify Owicki’s Findpos example using the
historically earlier approaches described above in Sects. 2 and 3 is revealing. At the
risk of further offence to historians, the steps back from Owicki’s 1975 example are
taken in reverse chronological order with Sect. 6.1 using Ashcroft’s solo approach and
Sect. 6.2 considering the earlier joint Ashcroft/Manna work.

6.1 Revisiting Ashcroft’s (Solo) Approach

The approach published in Ashcroft (1975) works on flowchart presentations of pro-
grams but there is no difference in technical details if the starting point represents the
arcs of such a chart as goto statements. (The idea of placing fingers on the statement
to be executed next in each thread still works.) Retaining the (long) identifiers from

21 IFIP working groups have a process of inviting observers (sometimes several times) before considering
people for membership.
22 Much could be said about this note [original manuscript dated 14th of March 1976 available from
the Austin archive and reprinted as Dijkstra (1982)]. To give a flavour it begins: “This is a very personal
summary of the theory developed by Susan Speer Owicki under the supervision of David Gries. I had a
flu, and on its first day I just slept and shivered; later I passed the time in bed with trying to reconstruct
what I had learned from reading Susan Owicki’s doctoral thesis. If the following fails to do justice to their
work—someone has borrowed my copy of her thesis!—-I am the only one to blame.” (Perhaps the loan of
the key document accounts for the distance between what is identified here as Owicki’s key contribution
and Dijkstra’s description of what he insists on referring to as the “Gries–Owicki Theory”.) Interestingly,
the text of EWD554 reflects the fact that programs achieve relations but uses predicates of single states in
the formulae.
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the program in Sect. 5, the flowchart equivalent would be:

Findpos : ec ← 2; oc ← 1; et ← ot ← M + 1;
Search : fork go to(Evensearch, Oddsearch);
Evensearch : if ec < min(ot, et) then go to Eventest else go to J ;
Eventest : if x(ec) > 0 then go to Evenyes else go to Evenno;
Evenyes : et ← ec; go to Evensearch;
Evenno : ec ← ec + 2; go to Evensearch;

Oddsearch : if oc < min(ot, et) then go to Oddtest else go to J ;
Oddtest : if x(oc) > 0 then go to Oddyes else go to Oddno;
Oddyes : ot ← oc; go to Oddsearch;
Oddno : oc ← oc + 2; go to Oddsearch;

J : t ← min(ot, et);
F : HALT

Recall that Ashcroft indexes state assertions (that relate the values of variables) by
“control states” (C) that record where execution is in the threads. The initial step to
label Search (from Findpos) is sequential so the control state C is a unit set and the
corresponding state assertion is:

C = {Search} : ec = 2 ∧ oc = 1 ∧ et = ot = M + 1

As Ashcroft observes, singleton control states yield to standard Floyd reasoning so
this step is trivial.

Once the concurrency is initiated, C has pointers into both threads so the indexing
is expressed as p ∈ C. Using the same definitions of ES as in Fig. 1, it is sufficient
to consider groups of control states for the even thread as follows (with their attached
state assertions):

Evensearch ∈ C : ES

Eventest ∈ C : ES ∧ ec < et ∧ ec < M + 1

Evenyes ∈ C : ES ∧ ec < et ∧ ec < M + 1 ∧ x(ec) > 0

Evenno ∈ C : ES ∧ ec < et ∧ x(ec) ≤ 0

Each of these steps can also follow by standard Floyd-like reasoning because there is
no interference that could change the truth of the state assertions.

The only difficult step in the even thread is when it completes. Consider the situation
when the even finger is on Evensearch with ec ≥ min(ot, et): this could be because
ot has the lower value; the next move of the even finger will replace Evensearch
by J in the control state. The state assertion at J still requires that ec ≥ min(ot, et)
which begs the question whether ot could increase. Fortunately, the only change to
ot can come about when the odd finger is on Oddyes at which point the relevant
control-state-indexed assertion establishes that oc < ot .
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The reasoning for the Odd thread is completely symmetric. The two results ensure
that:

J ∈ C : ES ∧ OS ∧ ec ≥ min(ot, et) ∧ oc ≥ min(ot, et)

The final step from J to F is again sequential reasoning (singleton control states):

C = {F} : t ≤ M + 1 ∧ (t ≤ M ⇒ x(t) > 0)∧
∀n · 0 < n < t ⇒ x(n) ≤ 0

Tackling Owicki’s Findpos example using Ashcroft’s approach shows stronger
similarities than superficial examination of their rather different texts might suggest.
It is not surprising that, in both cases, the key interference step is the same: that comes
from the algorithm chosen. (And the similarities are emphasised here by employing
Owicki’s ES/OS predicates in this section.) But theway inwhichAshcroft’s approach
groups control states provides a surprisingly accurate prediction of where Owicki’s
approach has to identify potential proof interference.

The distinction that remains between Ashcroft’s and Owicki’s approaches is both
more interesting and, in a sense, historically surprising. Owicki’s method is presented
in the style of Hoare’s way of annotating programs (although the complete sets of
assertions are in fact Floyd-like). Ashcroft’s indexing by control states separates out
the state assertions from the program text to record facts about the program. It could
be argued that this is a hint of later verification approaches using temporal logics (a
research area to which Manna made significant contributions).

6.2 Revisiting the Ashcroft/Manna Approach

Attempting to verify Findpos using the approach in Ashcroft and Manna (1971) (see
Sect. 2 above) is challenging. Although the authors exhibit a moderately complicated
example (Ashcroft&Manna, 1971, Fig. 5) of how to expand a concurrent program into
an equivalent non-deterministic program, they do not provide a general mapping algo-
rithm. In particular, they do not describe how to handle the mapping of two concurrent
threads that both contain loops. This is, of course, exactly the structure of Findpos.

Looking at the version of the Findpos program in Sect. 6.1, there are four control
points in each thread and a straightforward mapping would yield 16 non-deterministic
threads. When preparing the talk from which this paper derives, the current author
baulked at trying to construct such a large flowchart. The decision to mechanically
generate the non-deterministic equivalent to a concurrent program—before even con-
sidering its content—is certainly themost obvious shortcoming of theAshcroft/Manna
approach.

Subsequent to giving the talk at HaPoC, an intriguing ahistorical idea has come
to the rescue. The current author noticed that Dijkstra’s “guarded commands” offer a
way of describing the selection between the large number of non-deterministic threads
required by the Ashcroft/Manna approach. By a happy coincidence, communicating
this thought to Krzysztof Apt uncovered the fact that, not only had he and Ernst–
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Rüdiger Olderog explored such a use of guarded commands in Apt andOlderog (1991,
Chap. 10)—see also Flon and Suzuki (1978) where idea of using guarded commands
to express non-deterministic programs is explored, but that—in their current writing
(Apt &Hoare, 2022, Chap. 8)—they tackle exactly the same program and have a fairly
compact mapping to guarded commands.

Of course, guarded commands were invented several years after Ashcroft and
Manna (1971) was written23 but their ability to express succinctly the massive non-
determinism in the Ashcroft/Manna expansions is impressive. Interested readers are
invited to study the guarded command version of Findpos in Apt and Hoare (2022,
Sect. 8.6) and note the similarity between the guards on control points and Ashcroft’s
“keeping fingers on the potential next statements”. (They do not go on to provide
proofs.)

7 Atomicity

An issue that presents difficulties for many approaches to reasoning about concurrent
programs is that of the atomicity of statement execution.All three approaches described
above assume that assignment statements are atomic in the sense that the state does
not change during their execution. In general, this is unrealistic: executing x ← x + 1
concurrently with x ← x + 2 does not necessarily increase the value of x by 3. The
problem is, of course, that a compiler has to map assignments into sequences of atomic
machine instructions. Assuming that single (word length) variables are accessed and
changed atomically, the above pair of concurrent statements might amount to:

{t1 ← x; t1 ← t1 + 1; x ← t1} ‖ {t2 ← x; t2 ← t2 + 2; x ← t2}

Merging the steps of these two sequences could increase the value of x by either one
or two.

It has been observed that if each assignment statement only refers to one shared
variable, then it is safe to regard assignment statements as being executed “atomi-
cally”.24 Unfortunately, as the above example shows, this only exposes—rather than
solves—the problem.

Although the Findpos example has no offending assignments, it does suffer from
the closely related issue of assuming that expressions in tests are executed “atomi-
cally”.

23 The dates of drafts of the guarded command paper are interesting: the published paper (Dijkstra, 1975)
was printed in August 1975 but had been submitted in July 1974; The CACM paper shows a revision date
of January 1975 which is the same month as Dijkstra’s privately circulated EWD472. It would appear that
in this case his “EWD” did not represent his first thoughts on the topic.
24 This is sometimes referred to as “Reynolds rule”. But John Reynolds claimed to the current author that
he had nothing to do with its invention.
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8 Conclusions

Identifying contributions made by researchers 50 years ago runs the risk of them being
classed as “obvious” to a modern reader. Notwithstanding the benefit of hindsight, the
following insights are important:

• Ashcroft/Manna build their approach around non-deterministic programs that are
expanded equivalents of concurrent programs; the (many) threads of the expansion
can then be verified using techniques for sequential programs.

• Ashcroft retains the idea of reasoning explicitly about the non-deterministic
behaviour of concurrency but uses control states to keep track of the potential
transitions in the original concurrent program.

• Owicki splits verification of concurrent programs into two phases: her approach
first considers each thread as a sequential program in isolation from its environ-
ment; this is followed by a check that no interference can invalidate the separate
proofs.

All three approaches are post facto (or “bottom up”) in the sense that the starting
point in each case is described as having a program. It is, of course, true that developers
might learn to watch—during initial design—for symptoms that they would have
learned can be problematic in the verification phase. But the fact remains that there is
no way offered to record and reason about interference.25

The first two approaches are clearly Floyd-like (and barely mention Hoare’s 1969
paper) in that programs are presented as graphs or flowcharts. Although Owicki uses
Hoare-like rules in the first phase of her verification strategy, the use of “proof outlines”
which require complete annotations could have been conducted using Floyd reasoning.
In fact, a more “top-down” flavour could have been added to the first phase of Owicki’s
approach by following Hoare (1971). A stronger reflection of Hoare’s approach can be
detected in the way Owicki’s interference freedom rule for concurrency is presented.

Another considerationmight be the feasibility ofmechanising the three approaches.
In principle, the Ashcroft–Manna approach could be programmed and combined with
Manna’s verification proposal26 but for non-trivial programs the expansion factor in
getting to the non-deterministic equivalent of a concurrent program would make this
unworkable. Ashcroft’s solo approach shows how human judgement can reduce the
expansion but it is difficult to see how this required step could bemechanised. Owicki’s
approach is clearly mechanisable: there are tools that could assist the separate Hoare-
style proofs of the individual threads and the interference freedom test could be readily
programmed.

Turning to the issue of the apparent “linearity” of the three approaches. First it must
be clear that their strong linkswere the reason for selecting these specific contributions.
There was certainly other research being conducted on concurrency during the 1970s.
It must also be remembered that the number of researchers involved in concurrency
50 years ago was far less than today.

25 This deficiency was the insight behind later work on “Rely-Guarantee” approaches (see Jones, 1981;
Jones & Hayes, 2016; Hayes & Jones, 2018).
26 See Footnote 6.
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Much work on concurrency in that decade was on devising programming language
constructs that constrained the interference and made it safe to synchronise threads:
Chap. 7 of Hoare (1985) gives a useful technical summary; Troy Astarte’s paper in this
volume enlarges on the contributions of Per Brinch-Hansen. Much the most developed
formal approach to concurrency was the work of Carl Adam Petri and this topic is
discussed in Wolfgang Reisig’s books (Reisig, 1985, 2013). The end of the decade
saw the use of Temporal Logics and a move to communication-based concurrency as
in CCS and CSP. Each of these topics would justify separate historical papers.
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