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In this paper, we address the question of what current computers are from the point
of view of human-computer interaction. In the early days of computing, the Turing ma-
chine (TM) has been the cornerstone of the understanding of computers. The TM defines
what can be computed and how computation can be carried out. However, in the last
decades, computers have evolved and increasingly become interactive systems, reacting in
real-time to external events in an ongoing loop. We argue that the TM does not provide
a mechanistic explanation for interactive computing. The reason is that the fundamental
phenomena relevant to interactive computing are out of the scope of classical computabil-
ity theory. Part of the explanatory power of the TM relies on what we propose to call an
execution model. An execution model belongs to a level of abstraction where it is possible
to describe both the functional architecture and the execution in mechanistic terms. An
updated execution model is warranted to provide the minimal mechanistic description for
interactive computation as a counterpart of what the TM could explain regarding Church-
Turing computation. It would support an explanation of the ubiquitous computing devices
we know - those interacting with humans, e.g., through digital interfaces. We show that
such a model is not available within interactive models of computation and that relevant
abstractions and concerns are available in computer engineering but need to be identified
and gathered. To fill this void, we propose to reflect on the level of abstractionrequired to
support the mechanistic description of an interactive execution and propose some prelim-
inary requirements.

Keywords : Philosophy of computing · Computers · Turing Machine · Interactive
computing · Model of computation · Mechanism · Human-computer interaction

Introduction

Both computing-minded philosophers (Piccinini, 2008a; Rapaport, 2018) and philosophy-
minded computer scientists (Smith, 2002) have asked what computers are. However,
philosophical answers have paid little or no attention to an important property of current
computers: their interactive nature. Every usable computing device, from the smartwatch
on our wrist to the complex computing systems embedded in the cockpit of an aircraft
relies on a complex entanglement of interactions between incoming external events and
computational processes. From an epistemological point of view, these devices raise new
challenges as they exhibit some properties that seem beyond the scope of the classical
theory of computation.
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Figure 1: Example of an interactive system: a drawing app

To understand what makes interactive computers special, we focus on a subset of in-
teractive devices, namely those designed and studied by the Human-computer Interaction
(HCI) community (Myers and Rosson, 1992; Beaudouin-Lafon, 2006; Myers et al., 2008;
Hornbaek and Oulasvirta, 2017; Basman et al., 2018). Consider this simple example illus-
trated in Figure 1): a drawing application on a smartphone. When one touches the screen
and moves a finger over it, the application draws a line whose thickness depends on the
pressure applied to the screen. If the user releases the pressure, the drawing remains and
becomes an object on the screen to be interacted with. The drawing is erased if the user
does a double tap over the screen.

As simple as it is, this example reveals some interesting phenomena:

1. A physical event triggers the drawing. Thus, there is a causal link between physical
and computational processes.

2. One property of the drawing (the thickness of the line) is entirely dependent on the
pressure of the finger, making the computational process responsive to the structure
of the physical event.

3. During the execution, the drawing becomes a new object on the user interface and
can be interacted with. In other words, the production of outputs is dynamic (there
is no need to wait for the termination of the execution), and outputs can affect future
inputs, in a feedback loop.

4. The double-tap behavior involves measuring the time that has elapsed between two
taps.

None of these phenomena can be explained in the classical epistemic framework, where
a computer is understood on a formal level through the theory of computability, or on
a concrete level through a specific model of computer architecture. On the formal side,
we are left with automata theory and formal language recognition. On the concrete side,
a classical framework such as the Turing Machine describes a specific computer architec-
ture model and its functioning: when one talks about a computing system performing
Turing-Church computations, the model involves a binary alphabet, a memory unit, and
a processing unit whose execution stops when the output has been reached. When trying
to describe current interactive computers, we argue that some relevant phenomena for an
explanation are simply out of the scope of the classical framework.

Faced with this discrepancy between the classical framework and the actual functioning
of computers, some philosophers have encouraged a reevaluation of the epistemic stance to-
ward computers. Philosophical accounts have delineated typologies instead to distinguish
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types of computers in terms of functionalities (Piccinini, 2008a) or have deconstructed the
idea that computability theory is per se a complete story of computing phenomena (Smith,
2002). Others have developed the idea that transcending Turing computability is required
to deepen our understanding of computation for mathematical (Goldin and Wegner, 2008;
Dodig-Crnkovic, 2011) and epistemic (MacLennan, 2003) reasons. In any case, the de-
bate asks whether the classical notion of computation can capture relevant phenomena
to (mathematically) formalize and (epistemically) understand current computing systems.
However, to the best of our knowledge, no mechanistic description of interactive computing
has been proposed in philosophy.

To get a clearer epistemic view of interactive computers, we propose introducing the
concept of an execution model. What we call an execution model explains what a computer
does by describing in mechanistic terms how instruction is carried out on some functional
architecture. It is posited at a level of abstraction between the purely formal model of
computation and the physical-mechanical model of the hardware.

Computing in the early days could find its execution model in the Turing machine
(TM), although the TM was not initially concerned with modeling an actual computer
(computers did not even exist in 1937). But the singularity of the TM and its explanatory
power relied at least upon its ability to be a twofold abstraction. Not only could the TM
support the formalization of the set of computable functions (what can be computed), but
it also provided the intuition of the mechanism (Bozşahin, 2018) that could achieve such a
computation (how it can be executed). This specific feature had already been commented
on by Gödel, when comparing the TM to other equivalent formalism (Shagrir, 2006). To
refer to the twofold nature of the TM, we use in this paper a distinction between a model
of computation and an execution model. On the contrary, other models of computation,
such as the lambda-calculus, do not carry any reference to execution and do not allow any
mechanistic description of a computational behavior.

In this paper, we argue that the execution model provided by the Turing machine in
the early days of computing cannot account for the properties of interactive computing
today, in particular for the computing devices we interact with as users. We add that
there is currently no candidate among interactive models of computation for an updated
execution model. We are therefore left with an explanatory gap: if one wants to have an
explanatory story about the existing computing systems, one needs to provide the right
execution model.

This paper is organized as follows: Section 1 conceptualizes the difference between
models of computation and execution models. Section 2 reminds how the understanding
of digital computers has been initially related to Universal Turing machines. We argue
such a view cannot hold when addressing the issue of interactive systems. The section
then presents an overview of existing accounts of interactive computing and shows why we
do not find the execution model we are looking for among these accounts either. Section
3 proposes requirements regarding an execution model for interactive computing systems
and introduces a first sketch of such a model. Section 4 specifies the explanatory role of
an execution model and the level of abstraction at which it is situated.

1 Execution models vs. models of computation

Computability theory has provided a framework for building models of computation. As
has been proved at length, different formalizations of the concept of computation are equiv-
alent, the most famous being Church’s lambda calculus (Church, 1940) and the TM (Tur-
ing, 1937). If formally equivalent, a distinction can be made between the lambda calculus
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and the TM, as already pointed out in the literature since Gödel (Shagrir, 2006). The
TM does also provide an execution model. At least intuitively, a computation formalized
as the reduction of a function does not suggest an implementing mechanism in the same
sense that the TM does. It would be worth introducing a nuance here, namely that the
lambda-calculus inspired later the Lisp language 1. In any case, the TM and Lisp are
abstractions that are able to describe an execution.

We argue that the kind of distinction made initially between the lambda calculus
and the TM (although the LISP machine could potentially weaken the distinction) is
a distinction between a model of computation and an execution model. We think such
a distinction applies to a model of interactive computation and a model of interactive
execution and is relevant to describe interactive computing systems.

1.1 The current purposes of models of computation

Current models of computation in computer science play today a different role than in
the 1930s mathematical realm. In computer science, what makes a model of computation
valuable is related to the formal properties it expresses. Once those formal properties
are at hand, they allow further procedures to be acted upon them, especially system
verification and certification.

In the end, models of computation serve as tools to support and verify the design of
a system. These models belong to a particular level of abstraction: they intend to model
something other than the system as a whole and the way it works. They focus on verifiable
properties, upon which proofs that guarantee the outputs of the system are built. As an
example, let us consider the design of commands for an airplane. The designer needs to
write a program that describes the behavior of the commands. It is up to the designer
to decide which properties matter the most and must be expressed in the model. Those
properties to be checked can be, e.g., bounded values for the range of inputs the system
can take (to guarantee the “flight envelope”, maintaining the correct speed to avoid stall),
the absence of infinite loops, or that of memory overflows. The rest can be abstracted as
irrelevant to the specific verification task.

1.2 Purpose of execution models

We call an execution model the mechanistic description of a computing execution based
on some functional architecture. Such a model supports an explanation of the behavior of
a computing system in mechanistic terms. In other words, it explains how computation is
carried out by defining the components of the system, their properties, and relationships.

Verifying formal properties is different from investigating why the system behaves the
way it does. There are two different tasks. The former task belongs to applied mathe-
matics. It describes abstract computations through formal models by focusing on specific
properties. The latter is left to the epistemologist and is the question the philosopher

1Steve Russell, a student of McCarthy, showed in 1958 that the eval function of Lisp could serve as a
concrete abstract machine and be directly implemented: “But in late 1958, Steve Russell, one of McCarthy’s
grad students, looked at this definition of eval and realized that if he translated it into machine language,
the result would be a Lisp interpreter. This was a big surprise at the time. Here is what McCarthy said
about it later: Steve Russell said, look, why don’t I program this eval, and I said to him, ho, ho, you’re
confusing theory with practice, this eval is intended for reading, not for computing. But he went ahead
and did it. That is, he compiled the eval in my paper into [IBM] 704 machine code, fixing bugs, and then
advertised this as a Lisp interpreter, which it certainly was. So at that point Lisp had essentially the form
that it has today.”(Graham, 2004), page 185.
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is interested in when asking what a computer is. It requires something other than task-
oriented formalizations of properties abstracted away from any physical mechanism. What
the epistemologist needs to make sense of (the overall behavior) belongs to another level
of abstraction.

Computations and their models belong to a level of abstraction independent of imple-
mentation details. Computations, as already coined, are “medium-independent” (Klein,
2020). On the contrary, to have a model of some execution belongs to a lower level of ab-
straction, where minimal references to the devices that allow the execution are made. Still,
there is no need to dig into fine-grained implementation details to make sense of computing
behavior in mechanistic terms. The TM model for classical computation exemplifies the
required level of abstraction.

1.3 The Turing Machine: the execution model for classical computation

We argue that the TM also provides an execution model. Some would object that the
Turing Machine does not describe a mechanism, in the sense that Turing’s description of
his abstract machine provides no hint about how the tape header works, for example. In
other words, the TM could be considered non-mechanistic, arguing that it does not provide
a complete causal blueprint. Nevertheless, this does not prevent the TM from being a
mechanistic abstraction. In a 1950 paper, Turing defines it as a writing mechanism (Turing,
1950) (more comments on that aspect can be found in (Lassègue and Longo, 2012)). The
TM is not a full-blown description mechanism but a mechanistic sketch.

The way the tape head works is abstracted away. But the TM still presents minimal
components of a functional architecture: the tape, the tape head, and the state register.
Each of the components has some properties. The tape is of infinite length and divided
into cells; the tape head can read three types of symbols (0, 1, “blank”), erase them,
and replace them with another symbol (0 or 1). The state register contains n number of
states. The relationships between the components and how computation can be executed
on such a functional architecture are described following an instruction table. The TM’s
instruction table is a basis for describing in mechanistic terms the transition from one cell
to another. It contains a transition instruction for each state, defining the action to be
executed (reading/writing action), a move to the right or the left of the cell, and a new
state to be entered. Similar concerns are developed by Bozşahin (Bozşahin, 2018):

The best theory to date for computability, that of Turing (1936), is an abstract
mathematical object in the form of an automaton, and even in the abstract
form it is physically realizable because it has primitives which are not reduced
to other operations, and whose terms are quite simple and clear: move left,
move right, change state, read, and write.

As already pointed out, the physical implementation of a Turing Machine is not
straightforward. It requires the addition of physical devices, e.g., a clock, to control the
tape head. The fact that implementing the TM abstraction requires additional care about
implementation details does not make the TM abstraction non-mechanistic. A complete
blueprint is not necessary to build a mechanistic abstraction. Flight mechanics would not
tell how to build an airplane from A to Z, and still be an accurate mechanistic description
of how a plane comes to fly. The point is that just because a physically implemented
TM does not match the TM abstraction, it does not prevent the TM abstraction and its
realization from being mechanistically equivalent. Given the mechanistic description of
the abstract TM, one can make sense of the execution behavior of a physical TM.
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On the contrary, other models of computation, like lambda calculus, do not reference
a functional architecture and a mechanistic description of the execution. The singularity
of the TM, among other formalisms, has already been pointed out:

Showing the step-by-step progress of a function’s concrete state in excruciating
detail was uncommon. We were used to the global views of Frege and the
lambda calculus of Church. It led to an understanding of quite complex tasks,
and crucially, at the same time showing transparently that it happens without
a concomitant increase or complication in the internal mechanism. (Bozşahin,
2018)

2 Understanding interactive computers qua models of com-
putations: to what extent?

For historical and conceptual reasons, the Universal Turing machine (UTM)2 has been the
cornerstone of most work on the epistemology of computers (Mol, 2018). It is not surprising
since the UTM is not only a model of computation but also describes a mechanism and
suggests minimal components for functional architecture. In this section, we briefly remind
readers of the connection between the TM and the epistemology of computers. Then,
we consider the limitations of the Turing machine to explain the essential properties of
interactive computing systems. We add that the minimal mechanistic description provided
by the TM for Church-Turing computation needs a clear-cut and identified counterpart
when explaining interactive computation. That does not mean that no abstraction in
computer science can support such an explanation: it means only that there is still work
left to identify the relevant abstractions and ingredients to build a minimal mechanistic
description of interactive computation. We think such a minimal description dedicated to
interaction is meaningful to the epistemology of computing.

2.1 The Universal Turing Machine as a model for the digital computer

Mechanistic explanations have become the scientific standard to account for phenomena
Machamer et al. (2000); Craver (2001); Glennan (2002). Digital computers are no excep-
tion, and the straightforward way to address what they do is to provide a mechanistic
description of the relevant computing mechanisms at stake. There are many levels of
abstraction to describe what a digital computer is. For example, one could focus on the
description of what is going on in terms of voltage firing from the point of view of an elec-
tronic engineer. Or one could focus on the transformations in memory registers or describe
the program running on the machine. The complexity of every layer makes it difficult to
articulate a comprehensive explanation of how the system works, paying tribute to every
single layer.

Therefore, from an epistemic point of view, understanding computers is challenging:
what is the proper explanatory focus? It is a well-known issue for any mechanistic expla-
nation: “it is sometimes possible to decompose a system at high or too low a level and miss
the level at which interactions transpire that are crucial to account for the phenomenon
in question.”(Bechtel, 1994). Engineers can flesh out the way each layer functions and
how the layers are related to each other (Nisan and Schocken, 2021; Lee, 2018). However,
they admit it is impossible to provide a detailed overview of a computing system within

2A Universal Turing Machine is a special Turing Machine that can simulate any other Turing machine,
hence its name.
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a single abstraction. Nevertheless, this does not mean that epistemologists have to give
up the search for a single explanatory abstraction. It only shows that any explanatory
abstraction for a computing system is necessarily a trade-off: it cannot be exhaustive in
detail and understandable by a human.

Traditionally, philosophers have been describing the computing mechanisms in a com-
puter in terms of the manipulation of digits. According to Piccinini (Piccinini, 2007,
2008b), for example, a computing system is mechanistically described through its capac-
ity to generate output strings of digits from input strings of digits and (possibly) internal
states following a general rule.

Such an approach finds tools and models for a mechanistic explanation within the frame
of computability theory. State automata, and among them the UTM, match the targeted
level of explanation: it is the very job of a state automaton to model the transitions
from one state to another, following rules step by step. Therefore, it is not surprising
that the epistemology of digital computers, computing mechanisms, and computability
theory have become related to each other in the philosophy of computing. That situation
is also a reminder of the peculiar status of the Turing machine in computability theory,
among other models of computation. Therefore, philosophers have tended to focus on the
Turing machine among all models of computation. Today, the UTM is still influential in
philosophy to think of the modern computer (Mol, 2018).

However, computer scientists have already argued that such a view is mistaken (MacLen-
nan, 2003; Lee, 2020): “(. . . ) computers can do things that a universal Turing machine
cannot. Many applications, including Wikipedia and Google search, are designed never
to terminate and are interactive” ((Lee, 2020), chapter 8). Of course, other models have
been introduced since to account for the new properties of digital computers. However, as
we will see in the coming subsections, they are mere models of computation and cannot
serve as execution models.

Since the time that the UTM first served as a model to understand what computers
are, computing practices have evolved. A legitimate question is then whether the UTM
pays justice to current practices and whether new formalisms dedicated to interaction are
able to support an explanation.

2.2 Interactive computing systems properties and the limits of the UTM
model

A review of the literature shows that interactive computing systems have posed several
challenges to computer science researchers. They have led to the introduction of new for-
malisms to model new properties. Among those properties, some have been particularly
commented on in explicit theories of interaction presented in the following subsection: (i)
the arrival of external input data and ongoing execution, (ii) concurrency and synchro-
nization between processes, and (iii) time.

That does not mean these three properties alone embrace what interaction is. In
particular, interaction cannot be reduced to concurrency. In any case, the mentioned
formalisms do not target an account of the mechanisms supporting interactive execution.
Other aspects like dynamicity (the possibility to have components added or deleted during
execution) (Attie and Lynch, 2003; Navarre et al., 2009; Arbach et al., 2015), or the
importance of feedback loops where outputs can affect future inputs as exemplified in
cyber-physical systems (Lee and Varaiya, 2003), have less been commented on within
theories of interaction but should play a role in our account.
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2.2.1 External input data and ongoing execution

As said before, computers are increasingly interactive. They are no longer transformational
systems producing a final output after a finite execution. Instead, they continuously react
in time to external events that modify the course of execution.

In a UTM, all data is given before the execution starts and there is no means neither
to change the course of execution once the machine is launched by providing new symbols
that were not initially provided, nor to have outputs affecting future inputs. Turing had
already thought about formalizing the arrival of external input data provided during an
ongoing execution: he introduced such an abstraction in his Ph.D. dissertation (Turing,
1939) and coined it the “oracle machine”. This concept was expanded later by Post (Post,
1948)3.

When he invented this concept, interaction was not a concern for Turing. The purpose
of the oracle machine was to address the issue of undecidability in computability the-
ory. Nevertheless, Turing’s work has later inspired some derived formalism on “extended”
Turing machines, such as the “Reactive Turing machine” (Andersen et al., 1997; Baeten
et al., 2013; Luttik and Yang, 2016) or the “Persistent Turing machines” (Goldin, 2000).
This later work can be seen as a way to account for interaction in the classical framework.
However, they fail to account for an essential aspect of interaction, namely the inversion of
control. With an oracle machine, the machine drives the execution and takes the initiative
of requesting an answer from an external Oracle. Conversely, truly interactive systems
are systems that react to incoming events: the occurrence of external events drives the
execution.

Moreover, we still need the mechanistic description of how such an external action
on the tape is made possible. The oracle machines cannot explain it, as their job is not
to explain how the oracle interacts with the tape: “they cannot be asked to justify the
causal/physical chain of their steps” (Bozşahin, 2018). For an interactive computing device
to get external data, one needs to account for the capacity of the system to wait, stop,
and resume some processes upon data arrival. Data arrival would be useless if it could
not trigger something within the system.

In addition, the external inputs that arrive during execution are often information
about external physical processes. An additional mechanism is necessary to translate
a physical magnitude into digitalized data. This operation is called transduction. The
importance of transducers has already been mentioned in theories of interactive comput-
ing (MacLennan, 2003; Leeuwen and Wiedermann, 2006). By modeling input as a sequence
of symbols, the TM or any extended version does not give insight into the variety of di-
mensions of physical phenomena that can trigger computational processes, such as their
spatial organization, their duration or frequency. The very goal of the TM is to provide an
answer to a computation, e.g., whether a number is computable or not. Therefore, there
are no dimension of the inputs and outputs.

2.2.2 Concurrency and synchronization

During the 1960s, the technological evolution of computers brought about some impor-
tant new features, notably the interaction of numerous computing processes running in
parallel and communicating. But, in a classical UTM, it is the step-by-step execution
of a given procedure that is described, and not the synchronization of message passing.
Consequently, a concurrency theory emerged from Dick Karp’s early work in the 1960s,
grew with Petri’s work (Petri, 1980) and has now developed into a mature theory of

3See, e.g., Soare’s work (Soare, 2009, 2013)
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reactive systems with diverse network models (for an overview, see (Lee and Sangiovanni-
Vincentelli, 1998; Lee and Neuendorffer, 2006)). In the context of modeling concurrency
(Milner, 1975, 1982, 1983), the conceptualization of interactive systems, as opposed to
computational systems, emerged in computer science, as formulated by Milner (Milner,
1993, 1999, 2006). “Interaction” here refers to concurrent message passing between agents
in distributed systems.

First, it installed the notion of a transition system as the prime mathematical model
to represent discrete behavior (Nielsen et al., 1981; Baldan et al., 2001; Glabbeek and
Plotkin, 2004; Arbach et al., 2015). Second, it showed that language equivalence was not
the correct notion when comparing automata for interactive systems. Instead, it should
be replaced by a notion of behavioral equivalence or bisimilarity (Milner, 1999). Third, it
yielded many algebraic process calculi facilitating the formal specification and verification
of reactive systems.

2.2.3 Time

Time is not a concern in classical automata theory. The Turing machine or any derived
abstract machine specifies how to go from the input to the output in a finite number of
steps. However, the time it takes to move from one step to another is of no concern. At
most, one may be interested in the number of steps from the input to the output. When
specifying interactive behavior, a richer notion of time is required: time as duration or
physical time, measured in a physical unit. Duration is essential for several reasons.

Many interactive systems interact with humans, and human perception is also sensitive
to duration. For example, a written message must be displayed for a minimum duration
to be readable by a human.

Similarly, for some interactions between a computer system and a physical environ-
ment, time is a crucial element. An autonomous vehicle, for example, must react to
changes in its environment in a correct and timely manner, i.e. not too slowly but not too
quickly either.

The problem with duration is that it cannot be specified by a reference to steps since
we do not know the duration of a single step. The only way to specify a duration is
by a reference to a physical process whose duration is known, such as the period of a
crystal oscillator. Some reference to a physical clock is thus needed to explain how a
timing constraint can occur in a computer. Timing constraints on real-time systems
have notoriously posed a challenge, which has been addressed and solved. Diverse timed
automata have served as formalization tools (Reisig, 1988; Alur and Henzinger, 1993; Alur
and Dill, 1994; Lynch et al., 1996; Segala et al., 1994). Once again, a timed automaton
is not an execution model: it does not carry an abstract reference to the mechanism that
ensures the timed transition between states.

2.3 Explicit theories of interaction discussing the TM

Faced with the need for new properties to model interactive systems, some explicit theo-
ries of interaction discussing the scope of the Turing machine have emerged. Questioning
the theoretical bounds of the Turing machine in computer science when faced with the
existence of interactive devices has been explored at least since Milner’s work on commu-
nicating and mobile systems (Milner, 1993, 1999). To our knowledge, there are three areas
in which interaction models have been developed. In all of them, the comparison between
TMs, oracle machines, and interactive system models is systematically at stake. These

9



areas are works on concurrency by Milner and his followers, on Reactive Turing machines,
and on interaction as a new computing paradigm.

We argue that these formal approaches cannot provide an answer to the epistemolo-
gist for two reasons. On the one hand, these models of computation have focused their
attention on whether interactive models are reducible to models of classical computation -
par excellence, the Turing machine. Proving (or not) that an interactive property can be
formalized as a computational property in the classical Turing sense does not answer the
question of how an interactive property can exist and be the object of execution. On the
other hand, and this is a correlate, these models do not propose a basis for a mechanistic
explanation of the very possibility of an interactive computer system.

Milner introduced a distinction between interactive behavior and computational be-
havior in computer science. His Turing Award speech (Milner, 1993) summarizes his
motivations. Milner was concerned with the logical foundations of computing inherited
from Turing. He was preoccupied with the idea that computing practices had evolved since
the birth of computing, notably in terms of architecture. Milner’s work does not provide
us here with what we are looking for. The way he understands interaction is delimited by
concerns about concurrency, and a mechanistic account is out of scope.

A more recent literature domain proposes extending the Turing machine to account
for interactive computing systems. It may be traced back at least to seminal works on a
“Universal reactive machine” (Andersen et al., 1997). In that respect, although pointing
at the specificity of interactional behavior, the main framework still relates to Turing’s.
Baeten (Baeten et al., 2013) is looking for a computational model of interaction, extend-
ing the classical TM with a process-theoretical notion of interaction related to Milner’s
previous work. The aim is to formalize the arrival of input data during execution by ex-
tending the original TM with an oracle. Such theory of interaction frames the questions
in terms of relationships between models of interactive computation and implications for
the Church-Turing thesis (Leeuwen and Wiedermann, 2001). As we explained previously,
these formal issues cannot provide us with the level of abstraction we need to build a
mechanistic explanation.

Wegner introduced interaction as a new paradigm (Wegner, 1997), based on an empiri-
cist approach (Wegner, 1995), to broaden algorithmic problem-solving (Eberbach et al.,
2004; Goldin et al., 2006). The main objection made by other researchers to Wegner’s
work is that interaction machines can be proven equivalent to TMs. The objections are
focused on the defense of the Church-Turing thesis (Prasse and Rittgen, 1998; Cockshott
and Michaelson, 2007), assuming that interactive modeling is a way of denying the re-
sults of Church’s and Turing’s work. But focusing the definition of interactive computing
around reducibility to the Turing machine’s expressiveness is a formal debate. It does
not support an explanation of the relevant phenomena that make interactive computing
possible.

2.4 The engineering of interactive systems

Interaction has also been addressed outside explicit theories of interactive computation
and has been a major concern for engineers and programmers, with the programming of a
broad class of “reactive systems”. A classical definition can be found in Boussinot’s work
4:

4In addition to that definition, a further distinction is introduced in the reactive programming com-
munity: reactive systems are sometimes distinguished from interactive systems (Harel and Pnueli, 1985;
Mandel and Pouzet, 2005). A distinction is made around the real-time dimension of these systems. An
interactive system reacts to events in the environment without time constraints, whereas reactive systems
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Reactive systems have been defined by Harel and Pnueli as systems that are
supposed to maintain an ongoing relationship with their environment. Such
systems do not lend themselves naturally to the description of functions and
transformations: they cannot be described adequately as computing a func-
tion from an initial state to a terminal state. On the contrary, behaviors of
reactive systems are better seen as reactions to external stimuli. The role of
reactive systems is to react continuously to external inputs by producing out-
puts. For example, man-machine interface handlers or computer games fall
into the category of reactive systems. (Boussinot, 1991).

It has led to a whole new sets of programming languages (Hewitt and Baker, 1978;
Caspi et al., 1987; Berry and Gonthier, 1992; Elliott and Hudak, 1997; Agha and Hewitt,
1988; Czaplicki and Chong, 2013; Vonder et al., 2017; Berry and Gonthier, 1992; Berry and
Serrano, 2020), and proposals for a new “reactive” programming paradigm (Bainomugisha
et al., 2013; Salvaneschi et al., 2015; Bonér et al., 2014).

The literature presents requirements to program and understand interactive systems
(Suchman, 1987; Myers, 1994; Ko and Myers, 2004; Victor, 2012; Schmidt and Bansler,
2016; Hornbaek and Oulasvirta, 2017; Basman et al., 2018), studies the specific chal-
lenges encountered by programmers (Hill, 1986; Myers, 1991; Myers et al., 1994; Myers,
1994; Myers et al., 2000; Casiez and Roussel, 2011; Bainomugisha et al., 2013; Salvaneschi
et al., 2015) and introduces diverse models to help programmers reason about their pro-
grams (Dearden and Harrison, 1997; Campos and Harrison, 1997; Navarre et al., 2006,
2009; Canny et al., 2019). However, some HCI researchers note that the appropriate level
of abstraction to account for interactive systems is still missing:

We argue that these models tend to be either: so abstract as to limit their abil-
ity to express important interaction concerns for specific systems, and limited
in the degree to which they support the construction of software that conforms
to the designer’s intention; or so specific to an individual system that they pro-
vide only limited re-use across development projects and are, therefore, likely
to be too expensive to develop except in a few special applications, such as crit-
ical safety systems. We argue that it is possible to construct a generic model of
a class of interactive systems at an intermediate level of abstraction. (Dearden
and Harrison, 1997)

The literature in computability theory shows that researchers have addressed the
specifics of interactive computing systems. It is now stated that interactive systems differ
from “transformational systems”. On the one hand, in order to tackle this issue, new
models of computation are proposed to account, e.g., for incoming data during ongoing
execution, concurrency, and time. It leaves aside interesting properties that define inter-
activity, such as the dynamicity of the execution mentioned in our preliminary example.
Furthermore, these models are purely formal and say nothing about the mechanisms al-
lowing the realization of these properties. On the other hand, programmers have tools to
build interactive systems, but they need the right level of abstraction to fully understand
them.
react within a time limit set by the environment. For example, the kernel of a general-purpose operating
system (OS) is interactive (its response time to events depends on its load and hardware capabilities).
In contrast, the autopilot of an aircraft is a reactive system (its response time to events is specified and
must be respected). When we talk about interaction from the perspective of HCI, we refer to “interactive
system” following that distinction.
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Thus, while the TM provided both a model of computation and a mechanistic de-
scription serving as a theoretical basis, there is nothing equivalent dedicated to interactive
computing systems. We are missing what we propose to call an execution model for inter-
action.

3 Proposal
We argue that a general mechanistic explanation of interaction should account for the
following:

• how the internal computing processes can be triggered, paused, and relaunched by
external events; in other words, how causal relationships between processes as
specified by the programmers can hold;

• what allows physical phenomena to interact with computing processes; in other
words, what role transduction plays;

• how the internal computing processes can be organized in time and respond to delay
instructions, which supposes a reference to physical time.

3.1 Minimal requirements

3.1.1 Expressing causal relationships

Specifying an interactive behavior of a programmable machine relies on the description of
relations between the occurrence of events and the triggering of various processes, possibly
computational, within the machine. The causal requirement for interactive devices is
notably described by Myers in the following term (Myers et al., 1995):

Any large, complex application contains thousands of interdependent relation-
ships. For example, a graphical application must deal with the relationships
arising from laying out objects, displaying feedback for input operations, and
keeping the view consistent with the underlying data they represent. (...)
Constraints provide a convenient way to specify relationships and have them
automatically maintained at runtime by a constraint solver.

The causal vocabulary is pervasive in the literature when describing an interactive
system: (Myers et al., 1994; Jacob et al., 1999; Ko and Myers, 2004; Myers, 2013; Leveson,
2020). The possibility of such causal relationships between processes is the mechanism
to explain. The need for such an explanation has been pointed out in the literature, for
example, in the “Anatomy of Interaction”: “We believe that the major fault of current
approaches to programming interactions is that they do not account for how interactions
come to be” (Basman et al., 2018), or in the Reactive TM community: “In order to
mimic site machines, a Turing machine must have a mechanism that will enable it
to model the change of hardware or software by an operating agent” (Leeuwen
and Wiedermann, 2001) (see Subsection 2.3).

The programmer often needs to specify when to stop or restart processes. This is
why an interactive abstract machine should have basic mechanisms that allow controlling
the life of a process from the occurrence of triggering events. The concept of “event” is
understood here in the general sense of something that happens. This can be an event
internal to the computer system (such as the end of a computation process) or external
(such as a mouse click).

12



This dimension is absent from the Turing machine: there is no way to describe the
launching of the execution in reaction to events. It makes no sense to ask when the tape
head starts reading and rewriting a box. For the Turing machine, everything is assumed
to be given before the start of the execution; the inputs are already specified. It is the
succession of computation steps and the final result on the tape that matter. Similarly,
the classical model does not allow to express the pausing or restarting of the automaton.
This does not make sense for a computational algorithm. One could object that the Turing
machine with oracle models the pausing and the continuation of the calculations. There is,
however, a major difficulty with this extension. Indeed, when we talk about interaction,
we do not describe an automaton that, at a stage of its execution, would ask an oracle (or
any other abstract representation of an external agent) for a new symbol. What we want
to specify is that an external process can interrupt or launch a machine process. In other
words, interaction presupposes an inversion of control: it is no longer a Turing machine
that controls the course of its execution but rather the external environment that controls
the flow of execution. This requirement has been discussed in the literature. In the
Reactive Turing machine community (Leeuwen and Wiedermann, 2001) (See Subsection
2.3), that aspect is also put at the forefront, but without an account of the mechanism
allowing the system to take the arrival of new data into account. Remember that in the
formal account proposed by the Reactive Turing Community, the oracle is the abstract
concept supposed to ensure the arrival of new data. But an oracle is not a mechanism.
An oracle machine is an infinite table lookup that formalizes the solving of undecidable
problems.

High-level mechanisms, such as event loops, wait continuously for new inputs. In
current computer architectures, there are mechanisms for acknowledging the arrival of
new data during execution. In many processors, they are interrupt mechanisms, launching,
pausing and resuming processes upon arrival of new data — but they can take other forms.
When an interrupt is requested, the running process is suspended, some information is
saved, and a pre-defined code called a routine is executed. For example, moving the mouse
or pressing a key on the keyboard causes an interrupt, which in turn calls a routine. These
interrupt handlers allow the reading of the mouse position or the value of the pressed
key. What has been read is then copied into memory. At a low-level in memory, the
connection between the external input arrivals and the computing system may correspond
to changes in specific memory registers. Memory-mapped I/O (MMIO) and port-mapped
I/O (PMIO) are two complementary methods of performing input/output (I/O) between
the central processing unit (CPU) and peripheral devices in a computer.

These mechanisms can take other forms than those found in current architectures. An
alternative to interrupts is polling: with polling, the CPU steadily checks whether an I/O
device requires something to be processed.

Whether it is polling or interrupts, the fact is that in their absence, any form of
interaction with arriving data is impossible. Without such a mechanism, it would leave
unsaid how the change of symbols on the cell of the tape can involve any change in the
system. Thus, at the level of the abstract model, this type of mechanism appears as a
necessity.

3.1.2 Referring to transduced data

Interrupt management mechanisms or any mechanism that would ensure causality man-
agement between external and internal processes are insufficient to ensure the link between
the physical world and the computational processes of the machine. An additional mech-
anism is required to convert physical quantities into digital data: transduction. The
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importance of transduction for interaction computing has already been commented on
in theoretical computer science (Leeuwen and Wiedermann, 2006), the epistemology of
computing (MacLennan, 2003), and HCI (Chatty, 1994; Accot et al., 1997; Navarre et al.,
2009; Basman et al., 2018; Canny et al., 2019): “For computers and software to become
mediators of human action, they need to be able to respond to the outside world. This is
broadly the purpose of interactions as implemented in code: to transduce changes at some
locations to changes at other locations” (Basman et al., 2018).

It has also been argued that a low-level model for transduction is crucial for designing
fine-grained interactive systems (Chatty, 1994; Accot et al., 1997). Some inputs can be
described by a simple Boolean value, indicating the presence or absence of a signal (such
as a mouse click). Others can have a more complex structure, such as the continuous
evolution of a physical magnitude (light or temperature, for example). A fine-grained
interactive system involves the programmer can easily connect and disconnect transduction
sources (Basman et al., 2018).

The objective of a Turing machine was to give a result to a calculation. The size and
shape of the inputs were of no importance, and the tape presented information in 2D.
The Turing machine does not allow accounting for the variety for the variety of physical
phenomena that can cause computational processes. However, when the objective is to
specify causal relationships between physical and computational processes, it is important
to express the structural and temporal properties of physical processes. This means that
a transducer is not only the digitization of an analog signal; it must also preserve and
transmit the causal structure of the physical phenomenon (Accot et al., 1997). We talk
about “causal” structure to refer to many transduced physical phenomena, where the
programmer needs to consider the periodicity of phenomena. For example, refreshing a
frame or adjusting video frame rates requires that the programmer calibrate the reception
of data.

In HCI, the challenge of transmitting information is increased with the growing number
of input devices and multimodal interaction (Navarre et al., 2006) between users and com-
puters : e.g.,“hands-discrete inputs”, “hands-continuous inputs” (Jacob, 1996), other body
movements (like head position or direction of gaze), voice, virtual reality inputs (Jacob,
1996).

3.1.3 Expressing measurement of physical time

In the classical theory of automata, physical time is ignored. There is only a notion of
logical time reduced to order. Thus, the Turing machine or any derived abstract machine
allows specifying a sequence from an input to an output step by step. It is not the physical
time but the number of computational steps that is relevant. The physical time it takes
to execute a step (i.e., a step in the computation) does not exist for the model (Longo,
1999). In the field of distributed systems, this lack of a physical notion of time has proven
to be problematic. The solution has been to reduce the notion of time to a notion of order
by using logical clocks or timestamps (Lamport, 1978). However, programming interac-
tive behaviors requires a richer notion of time: a notion of physical time, i.e. duration,
measured by a physical unit. A gesture-based (post-WIMP) drawing tool or any interac-
tion technique cannot be implemented without describing timing aspects to represent the
quantitative temporal evolution of the interaction technique (Navarre et al., 2009; Canny
et al., 2019).

Furthermore, the systems we are talking about interact with humans and involve hu-
man perception, which is sensitive to duration. The display of a message, for example,
cannot be too brief and must appear long enough to be readable by a human agent. Hence
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the need for the programmer to be able to express a duration, here to specify the time
after which the process can be interrupted.

The problem with duration is that it cannot be reduced to a number of steps or stages
in a computation: we need to know how long a stage takes, and we cannot assume that
each computation stage can be executed in an equal time. The only way to specify the
duration is to refer to a physical process that can quantify a duration: this is the case of
the frequency of an oscillator. At the level of an abstract machine dedicated to interaction,
this implies including a reference to a physical clock, which allows specifying a duration.
It is true, however, that there are interactive devices that do not require clocks (there are
clockless architectures), but we argue that there are rather a subset of interactive devices
rather than the general case. Most embedded systems interact with humans and require
some notion of delay.

3.2 Components-candidates for a mechanistic sketch

To build a mechanistic interactive execution model, we need to identify the necessary
components of the mechanism, their relationships, and their properties. In the following,
we define three minimal components derived from the previous requirements to account
for the previously mentioned relevant phenomena. We describe, for each component, its
properties and relationships with other components.

1. A source component. It is enough to say that an execution model must have a set
of sources at a higher level (sources referring here both to inputs and outputs). Each
causal source is modeled as a set of causal relationships. Sources can be of four dif-
ferent natures: (i) generated by internal software processes (e.g., the assignment of a
result in a property), (ii) generated by transduction phenomena (Analog-to-Digital
and Digital-to-Analog conversions), (iii) external agents (e.g., user’s log-in request)
and (iv) generated by the internal expirations of timers. Such a component is made
explicit in some views of interaction, supported by toolkits for programmers (Drag-
icevic and Fekete, 2004; Huot et al., 2004).

Properties. Causal sources have a structure in time and space that they can
transmit to the causality engine. A formal description of a causal source should
provide a model for the organization of its parts and characterization of its associated
magnitudes. A mouse, for example, can be described as the composition of a 2D
signal continuously sending displacement quantities, with a set of occasional valued
signals for the buttons.
A fine-grained theory of interactive devices should provide an ontology of the varieties
of causal sources (Chatty, 1994; Jacob, 1996; Accot et al., 1997).

Relationships. Sources are connected directly to the causality orchestrator (the
second component, presented below), which ensures the right reactions are triggered
by the input arrival. Signals sent by the expiration of timers are among the possible
causal sources, which makes it possible to express duration in interactive computing
systems.

2. A causality orchestrator component. When programming interactive behav-
iors, a requirement is that the entire system responds in a deterministic way to the
unpredictable arrival of events. That is, the interactive machine must ensure that
the order of execution complies with the causal relationships specified by the pro-
gram. This component is reminiscent of what is labeled as “constraint solver” in
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Garnet (Myers et al., 1995). We argue that the role of such a component is hardly
modeled by the behavior of the tape head of the TM. In a classic Von Neumann archi-
tecture, it is the role of the program counter to ensure the right ordering of a specified
sequence of instructions. For an interactive machine, the abstract component that
warrants the right causal ordering should be conceptualized as such, and we suggest
labeling it as the “causality orchestrator”. An instantiation of a causality orchestra-
tor is present in some software toolkits to support the implementation of interactive
applications. For example, the Qt toolkit stores signal/slot dependencies between
interacting components and implements the cascade of triggers resulting from the
occurrence of events. Older, seminal toolkits Williams (1984), such as MacApp Wil-
son et al. (1990), also implement the distribution of events among object-oriented
components. NewtonScript went as far as implementing an event dispatch mecha-
nism according to both the prototype relationships and the containment relation-
ships between graphical components Smith (1995). The operating system (OS) can
also be considered a causal orchestrator. The Portable Operating System Interface
(POSIX) exemplifies a way to make available to the programmer the managing of
the causal engine. POSIX is a family of standards defining both the system- and
user-level application programming interfaces (API), along with command line shells
and utility interfaces, for software compatibility (portability) with variants of Unix
and other operating systems. The core services provided by POSIX could serve
as detailed examples of the kind of instructions required for a causal engine: e.g.,
process creation and control, signals (that send messages to a running program to
trigger specific behavior, such as quitting or error handling), I/O Port Interface and
Control, semaphores, thread creation, control, cleanup, scheduling, synchronization.

Properties. The causality orchestrator can start, stop, or resume processes,
following causal instructions and establishing the right connections between causal
sources and connected processes. It should also provide flexibility to allow the com-
position of new connections, e.g., between new input devices and new interaction
techniques.

Relationships. The causality orchestrator receives the structure of the sources.
Among sources are time values transmitted by the clock component. The causality
engine makes sure a source triggers the wanted processes, which may be computa-
tional (e.g., re-calculation of a value) or physical (e.g., launching a new timer).

3. A clock component. When one designs an interactive computing system, one
needs to specify timing instructions. By “time”, we refer to the physical time or an
elapse of time, not to order. Therefore, a specific representation of time is required
in the model.

Properties. The clock component should provide both a timer facility, i.e., a
component that fires an event when a scheduled duration is expired, and a clock
facility, i.e., a component that sends a periodic signal. It is difficult to determine
which component is the most fundamental. On the one hand, one can build a clock
by establishing a causal relationship between the end of a timer and its restarting.
On the other hand, one can build a timer from a clock by establishing a causal
relationship between a specified number of clock ticks and the stopping of the timer.
However, at the hardware level, the most basic component enabling the measurement
of time is an oscillator.

Relationships. The clock component feeds the source component (the expiration
of a timer becomes a source).
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Figure 2: Representing a general interactive execution model

In Figure 2, we propose a representation of our execution model. We add extra com-
ments to detail the links between each element.

First of all, to avoid confusion, the arrows in the figure specify causal links, not
dataflows. As such, they specify meta-causal relationships: they are not the causal re-
lationships managed by the causal orchestrator but rather the causal relationships that
implement the mechanisms of the machine.

(a) Transducers are physical causal links that ensure the translation of physical pro-
cesses into digital inputs. (b) The arrival of new transduced data changes the state of
the machine. (c) As commented previously, the machine may react to the reception of
new data and trigger the causal orchestrator. The causal orchestrator then ensures that
the causal relationships specified by the programmer hold. The causal orchestrator keeps
count of the causal relationships specified by the programmer and guarantees their or-
dered, unique execution (f). In turn, the software processes may trigger other causal
links through the causal orchestrator (g). Since some relationships depend on timing
constraints, the causal orchestrator activates clocks and timers (d) and responds to their
ticking (e). As an interactive execution is a feedback loop involving a user, transfor-
mational processes are, in turn, transformed (b) into physical outputs available to the
user through transduction (a). Inputs (h, orange) may trigger changes of outputs (h,
blue), and outputs possibly affect inputs during the ongoing execution (h, orange-blue),
implementing the interaction between the user and the machine.

A few additional comments can be made:

• (c): In some concrete implementations, the machine mechanisms may rely here on
interrupts.

• (c)(e): Alternatively to interrupts, another mechanism like polling may ensure the
causal link between the reception of data and the causal orchestrator: a clock steadily
makes the causal orchestrator poll the state and trigger an execution cycle.

• (h): Outputs and inputs are blended within a single block along a colored spectrum,
to represent the fact that inputs are the source of outputs but that outputs in turn
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can affect future inputs. Examples include the apparition or deletion of invisible
picking zones implementing a transient spatial mode or movement constraints for a
phantom haptic device.

3.3 Refining the causality orchestrator with dynamicity concerns

A typology refinement could describe further the dynamicity of causal relationships. Three
levels can be identified:

• Level 0. Causal relationships are static. Causality is expressed in the following
general fashion: “any update of the value of x, updates the value of any entity
connected to x”. Static here means that the network of connections between entities
does not change during execution; thus, the causal path is immutable.

• Level 1. Causal relationships can be modified at runtime. This type of
dynamicity basically refers to the possibility of switching from one causal path to
another one during execution (some are activated, others are deactivated). In the
context of a set of causally connected processes, this means that the execution of
one process will result in a change in the causal connection between some processes.
Some causal links are (de-)activated during execution. For this class of dynamicity,
the processes and the topology of their causal links are defined at the beginning of
the execution, and the dynamicity comes with the possibility to (de-)activate causal
paths during execution.

• Level 2. Causal relationships can be created or deleted during execution.

The third and most powerful type of dynamicity allows a dynamic change in the
causal structure, that is, adding or deleting components and causal paths during
the execution of the program. Such an evolutive causal structure appears necessary
in many applications where one wants to react to the appearance/disappearance of
external processes. A sublevel could be introduced within level 2; let us call it level
2+. This would allow taking into account a type of dynamicity required when a
programmer wants a defined causal relationship to apply to newly created objects.
In that case, it is not the causal relationship per se that changes, but only the relata
that are modified. In other words, it is not the meaning of the arrow in A → B
that changes (activation, deactivation, adding, deleting) but A and B that change,
replaced by a dynamic reference to newly created processes C and D.

4 Positing the concept of execution model among kinds of
computational explanations

Thinking about and proposing relevant levels of description for a computational phe-
nomenon and its implementation is far from being a novelty, especially among accounts
of concrete computation in cognitive science (Fresco, 2010; Shagrir, 2012). In this section,
we position our level of analysis among others that have been classically proposed in the
literature to describe computers or computational systems in the broad sense (natural or
artificial systems that are assumed to process information like a computer). The question
we want to answer (what is a computer today?) implies a well-known epistemological
questioning: given that a computational system is both a physical system describable in
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physical terms, and the implementation of a given abstraction, to which level(s) of de-
scription must we refer to produce a satisfactory explanation of the phenomenon? The
difficulty is to agree on a set of criterion of satisfiability of the explanation.

We believe that at least three criteria are proposed in the literature and define at least
three types of approaches for a computational explanation, motivating the choice of the
relevant level(s) of description: (i) algorithmic satisfiability, (ii) functional satisfiability,
(iii) causal satisfiability. Our execution model aims to satisfy both functional and causal
satisfiability.

4.1 What an execution model does not satisfy: an algorithmically-focused
explanation

Algorithmic satisfiability is typically represented by Marr’s framework of analysis 5 (Marr,
2010) where the explanation is broken down into three levels of analysis. In the middle
is the level of algorithmic description, the intermediate between the description of the
computational level (the computation that one wants to explain) and its physical imple-
mentation. In this framework, a good explanation is essentially based on the description
of the algorithm, which is given a crucial place to operate the junction between the com-
putational level and the implementation.

An execution model articulates the computational level with an intermediary level be-
tween Marr’s algorithmic and implementation levels. That intermediary level is twofold: it
adds a layer of mechanistic description to a functional architecture. It is less abstract than
the algorithmic level in that it tells something about how computation can be executed.
But it is more abstract than the implementation level because a functional architecture
is not a complete specification of the hardware that implements it. It identifies functions
than can be carried out by different hardware pieces depending on processor types or
technology maturity.

4.2 What an execution model satisfies

4.2.1 Functional satisfiability through a functional architecture

Another approach consists in looking for a satisfying functional explanation. It focuses on
identifying the functionalities of the component parts of the computational phenomenon
analyzed as a mechanism, such as Piccinini’s computational account (Piccinini, 2007).
In that case, the focus switches from an algorithmic analysis to identifying the relevant
component parts and the assignment of functions to them. Our execution model satisfies
such a functional approach. The components of our execution model are singled out by
their function and serve to identify a functional architecture à la Pylyshyn (Pylyshyn,
1986). Regarding the level of analysis, the functional architecture, which is the basis for
an execution model, is the description of the blueprint but without reference to concrete
pieces of hardware. Functional architecture is distinct from the more concrete notion of
“architecture” that can be found in the philosophy of computing (Bozşahin, 2018), in
which case “architecture” refers to some real hardware pieces. A transmission system in
a car, for example, is a function that we can define as the transmission of energy from
the engine to the wheels, but which can be realized by different kinds of hardware. An
execution is supported by a functional architecture but not reducible to it. As the label

5Marr’s work on visual perception, e.g., presented in his book, Vision: A Computational Approach, has
been influential in analyzing complex information processing systems. See McClamrock’s paper (McClam-
rock, 1990) for a synthesis of Marr’s framework and criticisms.
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coins it, an execution model is about the description of execution, not merely architecture.
With only a functional architecture at hand, one cannot describe the very mechanism by
which computation is carried out. It requires an additional description of the interaction
between components identified as part of the functional architecture.

4.2.2 Causal satisfiability through a mechanistic description

A third criterion, not incompatible with the functional one, has motivated other types of
analysis of computational phenomena and the search for complementary levels of descrip-
tion. This criterion is that of a satisfactory causal explanation. The idea common to these
approaches is distinguishing between formal computational models and computational
mechanistic explanations, arguing that only the latter can provide a causal description
of the explanandum. In several papers, Miłkowski defends such a view about the non-
mapping between a model of computation and a mechanistically adequate model (Miłkowski,
2014, 2016). The point is that causal organization at the implementation level cannot be
told by a formal model of computation. As he explains through an illuminating example:
“to repair an old broken laptop, it is not enough to know that it was (idealizing somewhat)
formally equivalent to a universal Turing machine.” (Miłkowski, 2016). Thus, it is neces-
sary to define abstract levels of description closer to the implementation level to account
for non-calculative phenomena which are also relevant to the production of computational
behavior. Similarly, with our execution model, we intend to provide a level of description
that accounts for the very possibility of interactive programs.

It is noticeable that the number of layers from the very low-level (e.g. voltage firing,
logic gates) to the high level are so numerous and complex (e.g. high level-programming
languages, libraries), that it is very much a challenge even for an engineer to build a
complete and detailed account of what an execution involves in a system, across all layers
(see chapters 3 and 4 in (Lee, 2018), for a detailed view of all these layers of abstractions,
their relationships, and what actually matters to an engineer). Each layer requires a
high degree of expertise to be understood, to the point where one can wonder whether a
complete mechanistic view of a computing system is understandable for a human:

Once upon a time, every computer specialist had a gestalt understanding of
how computers worked. The overall interactions among hardware, software,
compilers, and the operating system were simple and transparent enough to
produce a coherent picture of the computer’s operations. As modern com-
puter technologies have become increasingly more complex, this clarity is all
but lost: the most fundamental ideas and techniques in computer science—the
very essence of the field—are now hidden under many layers of obscure in-
terfaces and proprietary implementations. An inevitable consequence of this
complexity has been specialization, leading to computer science curricula of
many courses, each covering a single aspect of the field. (Nisan and Schocken
(2021), Preface)

Thus, we do not intend to provide a complete causal explanation of the reaction of
the computer system and leave a few black boxes, just as the Turing machine is a form of
mechanistic description, but without explaining how the mechanism of activation of the
tape head works. As such, we will say that the execution model is a mechanistic schema,
as it is defined for example by Machamer, Darden, and Craver (Machamer et al., 2000):

A mechanism schema is a truncated abstract description of a mechanism that
can be filled with descriptions of known component parts and activities. (...)
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Schemata exhibit varying degrees of abstraction, depending on how much detail
is included. (...) Degrees of abstraction should not be confused with degrees
of generality or scope.

What we call an execution model abstracts away from some details but is still legitimate
as a mechanistic abstraction, following Boone and Piccinini (Boone and Piccinini, 2016), if
it identifies the components, their properties, and relationships producing the phenomena.
And what makes it specific compared to other mechanistic abstractions is that it focuses
on what makes interactive behavior possible. We are not interested, for example, in the
cooling system that may exist in a real computer, even if it is a component that would
appear in a complete causal story.

Conclusion

The paper claims that new computing practices, as exemplified in Human-computer in-
teraction, cannot be explained within the frame of computability theory and require a
mechanistic description. We propose our concept of an execution model as a candidate for
such a mechanistic description. We argue that a twofold model for computers (carrying
both a model of computation and a mechanistic description) has ceased to exist. Therefore,
there is no support for a mechanistic explanation of current interactive computers. Histor-
ically, the TM was such a twofold model at the time for Church-Turing computation and
provided philosophers with a hint about computing behavior during execution. Nowadays,
formal accounts of computing properties address increasingly specialized tasks, focusing
on formalizing and verifying specific mathematical properties. Formalisms are not looking
for an explanatory account of computers qua an abstraction describing the execution in
mechanistic terms. It is now an open challenge to flesh out the updated minimal mechanis-
tic description of interactive computation, gathering relevant abstraction from computing
engineering and achieving a trade-off to be sufficiently general and understandable. In
other words, the challenge is finding the minimal counterpart of the execution model that
the TM was for Church-Turing computations. We have proposed and conceptualized a
candidate for the kind of abstraction that could support the epistemology of interactive
systems. Our notion of “execution model” is on board with the concept of functional
architecture à la Pylyshyn but adds two dimensions to it. First, we extend it to describe
the architecture of an interactive computer. Second, we sketch the underlying mecha-
nism supporting the function of each component, concerned with execution — not merely
architecture. An execution model can provide a mechanistic schema of an interactive ex-
ecution. Such an abstraction is a trade-off and cannot consist of a complete mechanistic
description: a computing system is too multi-layered to fit into a simple abstraction. Such
trade-offs between completeness and explanatory power are familiar to programmers who
build incomplete but explanatory views of the system they program.
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