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Abstract. Motivated by realistic sensor network scenarios that have mis-informed nodes and variable network topologies, we propose
an approach to routing that combines the best features of limited-flooding and information-sensitive path-finding protocols into a reliable,
low-power method that can make delivery guarantees independent of parameter values or information noise levels. We introduce Parametric
Probabilistic Sensor Network Routing Protocols, a family of light-weight and robust multi-path routing protocols for sensor networks in
which an intermediate sensor decides to forward a message with a probability that depends on various parameters, such as the distance
of the sensor to the destination, the distance of the source sensor to the destination, or the number of hops a packet has already traveled.
We propose two protocol variants of this family and compare the new methods to other probabilistic and deterministic protocols, namely
constant-probability gossiping, uncontrolled flooding, random wandering, shortest path routing (and a variation), and a load-spreading
shortest-path protocol inspired by (Servetto and Barrenechea, 2002). We consider sensor networks where a sensor’s knowledge of the local
or global information is uncertain (parametrically noised) due to sensor mobility, and investigate the trade-off between robustness of the
protocol as measured by quality of service (in particular, successful delivery rate and delivery lag) and use of resources (total network load).
Our results for networks with randomly placed nodes and realistic urban networks with varying density show that the multi-path protocols
are less sensitive to misinformation, and suggest that in the presence of noisy data, a limited flooding strategy will actually perform better
and use fewer resources than an attempted single-path routing strategy, with the Parametric Probabilistic Sensor Network Routing Protocols
outperforming other protocols. Our results also suggest that protocols using network information perform better than protocols that do not,

even in the presence of strong noise.
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1. Introduction

1.1. Motivation

As the deployment of large-scale sensor networks is immi-
nent, the need for efficient communication protocols that gov-
ern the interaction of the sensors with each other continues to
be of utmost importance. A sensor network consists of a large
number of mobile devices that measure an environmental
variable such as temperature, pressure, radioactivity, or geo-
graphic position. The sensors are equipped with transceivers
that enable them to transmit and receive data to and from
other sensors. In our model, most sensors only have a very
small transmission range, while a single sensor is equipped
with a powerful transmitter device (along with a more pow-
erful battery) that enables it to forward data to a fixed base
station. The need for communication between a regular sen-
sor, called source, and the powerful sensor, called destina-
tion can arise at any time possibly triggered by unexpected
changes in the environment variable or by a timer; we as-
sume that a communication session consists of sending a sin-
gle packet of data to the powerful sensor who then forwards
it to the base station; this assumption is reasonable as the data
of an environmental variable only consist of a few bytes. If a
source sends out its data packet, chances are that the packet
will not reach the destination in a single hop due to the typ-
ically very limited transmission range of the source; in or-
der to obtain a functioning system, other sensors that receive
the packet transmitted by the source need to forward the data

packet themselves until it reaches the destination. This model
of communication results in a multi-hop path from source
to destination with intermediate sensors forwarding the
packet.

The problem of how to route a data packet has been the
subject of active research in wire-line and wireless settings.
The unique requirements of a sensor network setting (e.g.,
limited battery power, high network node density, and fre-
quent network topology changes) have also led to proposed
routing protocols specifically tuned for sensor networks such
as SMECN, Flooding, Gossiping, SPIN, SAR, and LEACH,
see [1] for an overview. Traditionally, if a source and a des-
tination is given, most routing protocols—particularly in ad
hoc networks—first compute a routing path and then route
data packets along the computed path. In our setting, this ap-
proach seems to be somewhat overkill as we only need to
send a single packet to the destination. In fact, a straight-
forward flooding approach (i.e., every sensor who receives
the packet retransmits it to all its neighbors) would solve
our routing problem, but at the cost of involving all sen-
sors in every transmission and thus unnecessarily depleting
their batteries. A wandering approach alleviates this prob-
lem: in the WANDERER protocol, a sensor that receives a
packet forwards the protocol to only one of its neighbors,
which it chooses according to some given probability distri-
bution. Such an approach, however, may severely increase
path lengths. A third approach, PURE GOSSIP tries to com-
bine the advantages of FLOODING and WANDERER by de-
ciding at each node whether to forward the packet to all



530

neighboring nodes with a given probability. A well-known
result from percolation theory (see [6] for details) says such
an approach will result in either almost all nodes receiving
the packet or almost no nodes receiving the packet.

1.2. Our contribution

In this paper, we propose a family of routing protocols called
Parametric Probabilistic Sensor Network Routing protocols,
which substantially improve the performance of controlled
flooding methods like gossiping by making the probabil-
ity of retransmission a function of several parameters. Para-
metric Probabilistic Sensor Network Routing protocols are
completely described by the retransmission probability func-
tion: each node in the network—upon receiving a packet—
retransmits the packet to its neighbors with a certain prob-
ability according to the probability function. While this ba-
sic principle is straight-forward, we must be careful not to
overload the probability function: the retransmission proba-
bility could depend on parameters as diverse as the numbers
of copies of the packet already received by a certain node or
the distance to the destination. In order to keep the routing
protocol as light-weight as possible, we try to keep the re-
transmission probability as simple as possible with respect to
the complexity it takes to compute or estimate the parame-
ters that the function depends on. We propose two variations
of Parametric Probabilistic Sensor Network Routing: The re-
transmission probability function of our first variation DES-
TINATION ATTRACTOR depends on the distance counted in
hops from the source node to the destination node and the
hop-distance from the node currently holding a packet to the
destination; in our second variation DIRECTED TRANSMIS-
SION, the probability depends on the same two factors and
additionally on the number of hops that the packet has al-
ready traveled.

We measure the performance of DESTINATION ATTRAC-
TOR and DIRECTED TRANSMISSION against each other as
well as against a number of other proposed sensor network
routing protocols through simulation in different settings.
These four settings are:

® Random distribution of nodes in a square with uniform
transmission ranges resulting in an average node degree
of 6.7 (i.e., a sensor has 6.7 neighbors on average) and
13.7 respectively,

® Node distribution that reflects possible deployment of
sensors in an urban environment with uniform transmis-
sion ranges resulting in average node degrees of 6.7 and
13.7 respectively.

The other protocols we consider are FLOODING, PURE GOS-
SIP, and WANDERER as described above. We also compare
against a SHORTEST PATH protocol that always reaches the
destination in a minimum number of hops and a variation
called SHORT PATH. The SHORTEST PATH protocol serves
as a theoretical optimum that no real-life protocol can ever
match: the large number of sensors and their level of mobil-
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ity make the cost of updating routing tables prohibitive. It
is included to investigate the degree to which our Paramet-
ric Probabilistic Sensor Network Routing protocols achieve
this optimum performance. Finally, we compare against a
protocol we call SHORTEST PATH COUNTING, in which a
packet is sent to a neighbor who is closer to the destination
and sits on a shortest path to the destination; the probability
of choosing a specific neighbor depends on the number of
shortest paths on which the neighbor sits. SHORTEST PATH
COUNTING is a generalization of an earlier protocol [14] that
works on general graphs (rather than only on grids as in [14]).
Most of the methods we use' rely on global information that
changes as the sensors change positions. As exact and con-
tinuously updated computation of this information would in-
cur prohibitively high overhead in these protocols, estimator
methods are required. Rather than implementing a particu-
lar estimator method, we model sensor mobility through in-
accurate data: the parameter values that the sensors use are
“noised”.

In our simulations, we investigate the trade-off between
quality of service measures (in particular the fraction of times
that at least one packet reaches the destination and the av-
erage lag before a packet reaches the destination), load in-
curred in the network (measured as the number of times
that a sensor emits a packet summed over all time steps
and nodes) for different levels of noise. The key finding
of our simulations is that between the two protocols from
the Parametric Probabilistic Sensor Network Routing fam-
ily, DIRECTED TRANSMISSION outperforms DESTINATION
ATTRACTOR on all levels of noise achieving better quality of
service results while incurring less load in the network. Both
Parametric Probabilistic Sensor Network Routing protocols
in turn clearly outperform PURE GOSSIP on all noise levels
despite the fact that PURE GOSSIP is not sensitive to noise
at all as it does not rely on global information. These three
multi-path protocols incur more load in the network than
the single-path protocols, but only for low levels of noise;
for high noise levels, single path algorithms such as SHORT
PATH can break leading to excessive lag times and even load,
while delivering only a small fraction. Among the single-
path protocols, SHORT PATH outperforms SHORTEST PATH
COUNTING, while WANDERER and SHORTEST PATH come
in last. Our results thus suggest that multi-path algorithms
are more robust to mis-information, and can actually have a
higher delivery rate, lower lag and lower load under the same
conditions. Surprisingly, these results are largely independent
of the chosen setting (dense vs. sparse network, realistic dis-
tribution vs. random distribution).

1.3. Related work

Routing in wireless and ad hoc networks has been the sub-
ject of active research over the last two decades, see [15] for
the state of the art until 1995 and more recent survey papers

INamely, DESTINATION ATTRACTOR, DIRECTED TRANSMISSION,
SHORTEST PATH, SHORT PATH and SHORTEST PATH COUNTING.
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[3, 12, 13]. The tutorial by N. Vaidya at MobiHoc 2002
also provides an excellent upto date survey of recent proto-
cols. As argued in [10], one possible reason for researchers
proposing a large number of routing protocols is that efficient
routing aims to optimize a variety of measures, including,
path lengths, load balancing, robustness, etc. Here we con-
cern ourselves with the following design constraints that are
particular to sensor networks: (i) low energy requirements,
(i1) simple and local routing methods, (iii) robustness under
node/edge failures. Probabilistic routing is a simple method
that designed correctly satisfies all the above constraints.

Probabilistic routing and gossiping in particular have been
applied in various setting, such as spreading distributed
database updates [4] and multicast techniques (see [11] for
a recent result and an overview). Previous work on gossip
usually assumes a complete graph and random set of uni-
cast or multicast messages. Here, we make no assumptions
on the structure of the underlying network. Here, we are con-
cerned with wireless communication and thus assume omni-
directional transceivers that either forward a message to all
of their neighbors within range or to none of them. This
model has been introduced by Haas et al. [6], where the au-
thors propose to use gossiping as a means to reduce flood-
ing in the route discovery phase of ad hoc routing protocols
such as AODV. Most previous work on gossiping assumes a
constant probability for forwarding messages and tries to ex-
ploit the bimodal behavior of gossiping. Non-constant prob-
ability gossiping has been developed by Kempe et al. [7],
in which the authors use a gossip-based approach to spread
alarm messages, where the probability of forwarding to a par-
ticular neighbor depends on the geographic distance to that
neighbor.> Multiple path routing has been applied in [5] in or-
der to make a network resilient against node failures. While
Parametric Probabilistic Sensor Network Routing protocols
proposed in this paper also make a network resilient against
node failures, we do not explicitly compute alternative paths
(as is done in [5]) but rely on statistical properties of the
retransmission probability function; also, Parametric Prob-
abilistic Sensor Network Routing protocols incur very little
overhead.

The SHORTEST PATH COUNTING protocol is inspired by
the recent work of Servetto, Barrenechea [14]. In that paper,
the authors considered the problem of routing in sensor net-
works, when the sensors are placed on a uniform 2D-grid and
sensors can fail with certain probability. This model is closely
related to the classical work on percolation theory, with the
important distinction that we are now interested in the length
of paths between a given source and destination. The authors
leave open the design of probabilistic local methods for un-
structured networks. Our work is a step in this direction. In
our work, we model network irregularities such as node fail-
ures or mobility through noise.

2The model consists of n sensors positioned at lattice points of a \/n x \/n
region of the plane. An underlying mechanism that supports a point-to-
point comunication is assumed.
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1.4. Organization

The remainder of this paper is organized as follows. Section 2
presents the Parametric Probabilistic Sensor Network Rout-
ing protocols. We briefly present the other protocols that we
consider in Section 3, and present a method for estimating
global information in Section 4. Section 5 presents the exper-
imental design; Section 6 contains a discussion of our simu-
lation results. Concluding remarks and directions for future
research can be found in Section 7.

2. Parametric Probabilistic Sensor Network Routing
protocols

Parametric Probabilistic Sensor Network Routing protocols
apply a limited-flooding strategy. The key idea underlying
our protocols is that the retransmission probability for a
packet at a sensor node is a function of various parame-
ters rather than a constant as used in previous gossiping ap-
proaches such as in [6]. We will show that this allows us
to further limit flooding (and thus further reduce the load
of the network) as compared to constant-probability gossip
solutions.

Let S denote the source sensor (the origin of data), D de-
note the final destination sensor (the one we want to send
the data to); in time step i, all sensors who received a packet
in the previous time step i — 1 decide whether to retrans-
mit the packet and, if affirmative, do so; let R; denote a sen-
sor holding a packet at time step i, and let R;_; denote the
sensor that sent the packet to R; (if R; received the packet
form more than one sensor, R;_; is defined to be any one of
them).

The same sensor can hold a packet on different time steps,
and the same packet can be on multiple sensors at the same
time. Source S emits its packet in time step 0, thus S = Ry.
We denote the hop-distance between two sensors, say S and
D, by d(S, D).

The retransmission probability of a protocol from the
Parametric Probabilistic Sensor Network Routing family
could depend on various parameters, such as d(S, D),
d(S, R)), d(S, R;_1), d(R;, D), d(R;_1, D), the number of
neighbors of R; or R;_;, or the number of received copies
of the same packet. Using subsets of these parameters, we
choose two forms that yield qualitatively different proto-
cols that we call DESTINATION ATTRACTOR and DIRECTED
TRANSMISSION.

2.1. Destination attractor

The DESTINATION ATTRACTOR evolves from a very sim-
ple and sensible concept: If the packet is getting closer to the
destination, then its retransmission probability is increased;
if it is getting further away from the destination, then the re-
transmission probability is reduced. For a packet at the ith
node R; in its path from the source, this probability Pg, can
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Figure 1. Retransmission Probability contours for DESTINATION ATTRACTOR and DIRECTED TRANSMISSION, where the source is located at coordinates
(0,0) and the destination at (1,0).

be represented in a recursive manner as

(1 + k) Pg,_, closer to destination
Pg, = (1 — k) Pg,, further from destination (1)
Pr, same or indeterminate

where k is the relative amount by which the probability
should be increased or decreased. The three cases of equa-
tion (1) can be combined if we use the change in the dis-
tance to destination d(R;_;, D) — d(R;, D) in the last time
step as an additional factor. In the case of accurate informa-
tion, d(R;_1, D)—d(R;, D) always has a value of %1 or zero,
as in Equation (1). Thus,

Pg, = {1 +k[d(R;_1, D) — d(R;, D)]} Px,_,
exp{k[d(Ri—1, D) — d(R;, D)1} Pg,_, 2

X

The second line of Equation (2) is derived from the similar-
ity to the low order terms of a Taylor series expansion of the
exponential function (exp(x) ~ 1 4+ x). We arrive at a non-
recursive form that is more amenable to analysis by evalu-
ating the recursive terms back to the source S = Rj and by
using the fact that the sum of a contracting sequence is the
difference of its end-points:

Py, =exp ik Y [d(R;_1, D) — d(R;, D)]
j=1

= exp{k[d(S, D) — d(R;, D)1} 3)

Obviously, Pg, > 1 is possible (in which case the probabil-
ity is one) if the packet moves closer to the destination over
several time steps; this is intended to allow a packet to build
up “positive energy”, which can only be lost over a series of
time steps moving farther away from the destination.

Thus, the retransmission probability for DESTINATION
ATTRACTOR depends on the hop-distance of the source to the
destination as well as the distance of the node currently hold-
ing a packet to the destination. The local values of the retrans-
mission probability function for a graph obtained by placing
infinitely many points uniformly at random in a 1 x 1 region
of the plane? are illustrated in figure 1 (left panel). In the fig-

3We will call this an infinitely dense geometric graph.

ure the destination is located in the center of the butte and the
source node is located at any place on the rim of the butte.
This explains the name DESTINATION ATTRACTOR. Param-
eter kK models the exponential decay constant whose increase
will cause the contour to more closely resemble a pedestal
with vertical sides; decreasing k will spread the tails of the
contour. In both cases, the probability within the circle of
distance d(S, D) around the destination will always be unity.
However, this is all done in the presence of perfect informa-
tion. In the presence of noisy data, the contour in figure 1 (left
panel) would acquire mesas extending out from the main
pedestal in the areas of missing information. It would also
naturally change in the presence of mis-information. Param-
eter k can be used to help alleviate problems caused by mis-
information: decreasing k¥ makes DESTINATION ATTRAC-
TOR behave more like flooding. Thus, for a particular sensor
network setting (for example sensor with excessive mobility
in a tornado) we can tune parameter k so as to still guarantee
a required QoS-measure.

2.2. Directed transmission

The retransmission probability function that we use for the
DIRECTED TRANSMISSION protocol is based on the idea
that the nodes that lie on a shortest path from the source to
the destination should forward packets with a very high prob-
ability and the farther away a node is from the shortest path,
the smaller its retransmission probability should be. Let R}
denote any node that holds a packet at time i. The node min-
imizing ming; d (R!, D) is the node closest to the destination.
Thus, the retransmission probability Pg, of node R; holding
a packet at time i is defined as:

Pg, = exp {k [n}ei{nd(R;, D) —d(R;, D)]}

We have chosen an exponential form in order to remain
amenable to analysis. Since we assume that the network
topology does not change dramatically during a transmission
(and if it does, we model it through noise), there is at least
one packet that travels along a shortest path from source to
destination; moreover, we know that such a packet will take
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d(S, D) time steps to reach destination as it advances one hop
in each time step. Thus:

n}ei,nd(R;, D)=d(S,D)—i

This allows us to write the retransmission probability in a
simpler form:

Pg, = exp{k[d(S, D) — d(R;, D) —i]}

Even though their motivation is very different, DIRECTED
TRANSMISSION and DESTINATION ATTRACTOR use the
same two parameters (i.e., d(S, D) and d(R;, D)); in addi-
tion, the DIRECTED TRANSMISSION protocol uses the num-
ber of time steps i that the packet has traveled so far.

With an infinitely dense geometric graph, the local val-
ues of the retransmission probability function for DIRECTED
TRANSMISSION is illustrated in figure 1 (right panel), where
the destination is located on one end of the ridge and the
source node is located at the other end of the ridge. Since the
protocol aims to forward packets in the direction of the desti-
nation, we call it DIRECTED TRANSMISSION. Decreasing k
will cause the shape to have less steep walls. Parameter k can
be tuned by a system designer to achieve a certain QoS-level.

3. Other protocols and overview

This section describes the other routing protocols used in our
simulations.

Wanderer

The simplest routing protocol that we use is called WAN-
DERER, which is simply a random walk on the network of
possible radio connections starting from the source. When
transmitting a packet, the sender chooses only one of its
neighbors to be the receiver. All neighbors receive the packet
(since we assumed omni-directional radios), but only the
neighbor specified as the receiver will retransmit. WAN-
DERER does not use global information, but each node must
maintain a list of its neighbors in order to choose one ran-
domly. As a node may receive the same packet multiple
times, the node keeps a record of how many times it has for-
warded a particular packet. It may make sense to only for-
ward the same packet a certain number of times; this number,
called duplicate-forwarding parameter, can be set by a system
designer.

Short and shortest path

In the presence of perfect, static global information, noth-
ing will out-perform a SHORTEST PATH algorithm, which
keeps only one copy of the packet alive at any given time
and chooses the next node in the path uniformly among those
that are closest to the destination. Since this method breaks
down in the presence of noise, we introduce a method we call
SHORT PATH: instead of choosing the next node exclusively
from those that are closest to the destination, a sensor node
R; chooses the next sensor node uniformly at random among
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all the sensor nodes who claim to be closer to the destina-
tion than the present node R;. For these methods, a system
designer can set the duplicate-forwarding parameter, which
makes sense for SHORTEST PATH only if we have noise.*

Shortest path counting

The SHORTEST PATH COUNTING protocol is an extension of
SHORT PATH: sensor R; currently holding the packet chooses
to forward to one of its neighbors, where the probability of
forwarding to neighbor R;; (with liberal use of notation) is
a function of the number of shortest paths from the source or
to the destination on which R;y; lies. This was inspired by
the work of Servetto and Barranechea [14]. Our modification
is in the edge weighting, which is generalized to arbitrary
graphs. The probability P(R;, R;+1) that sensor R; chooses
to forward to sensor R, is

Xi+1
DX
RALTY
> 1/y;
where x; is the number of shortest paths to the destination
from sensor R;;; and y; is the number of shortest paths from
the source to sensor R;;;, and the sum is over all neighbors
of sensor R;. The design goals from [14] are different from
ours: [14] designs a protocol that spreads the load across all
equivalent paths (over many packet transmissions) on a grid
topology; we want a protocol to be robust to arbitrary net-
work topology and misinformation. In the absence of noise,
this protocol performs as well as the shortest-path with the
added feature of load-spreading-on-average, but having only
one packet on the network at any time makes it inherently
sensitive to misinformation. SHORTEST PATH COUNTING
has again the duplicate-forwarding parameter, which can be
set by a system designer.

ifd(R;, D) < d(R;, S)

P(R;, Ri11) = C))

ifd(R;, D) > d(R;, S)

Flooding

FLOODING is a protocol that requires no network knowledge
and has no parameters: every node that receives a packet re-
transmits it once to all of its neighbors. Subsequent copies
will be dropped, and the result is that every node on the net-
work in the same component as the source will transmit the
packet one time.

Gossiping

A simple parametric extension of FLOODING is PURE GOS-
SIP, which assigns a retransmission probability to a packet at
the source, and every sensor to receive the packet will choose
to retransmit with that probability. It tends to have a percola-
tion behavior, in that for a given retransmission probability it
is most likely that either very few devices on the network will

4Setting the duplicate-forwarding parameter prevents a packet from looping
in the network infinitely long, which may happen in the presence of noise;
if a node does no longer forwards a packet because of the parameter, the
destination is not reached but on hte positive side the network load incurred
is limited.
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Table 1
Protocol overview.

Uses network information ~ Multipath
WANDERER o o
SHORTEST PATH . o
SHORT PATH ° o
FLOODING o .
PURE GossIp o .
DESTINATION ATTRACTOR . .
DIRECTED TRANSMISSION . .

receive the packet, or most devices will receive the packet.
The retransmission probability p is a parameter that can be
set by a system designer.

All protocols that we consider can be classified as to
whether they use network information and whether they
are single-path or multi-path protocols. Table 1 gives an
overview.

4. Estimating global information

The retransmission probability functions for DESTINATION
ATTRACTOR and DIRECTED TRANSMISSION depend on
knowing the hop-distance d(R;, D) from the node R; to the
destination D, distance d(S, D) from source to destination,
and time step i. The time step information is very simple to
compute: we add a field into the header of the packet that
contains the number of hops that it has already taken; this
value is initialized to zero by the source and is incremented
by every node that retransmits the packet. Computing hop-
distances is harder: as the nodes are mobile, the distance val-
ues may change over time, but we assume that these changes
will not be very substantial during the delivery of a single
packet to the destination. Nevertheless, we cannot assume
perfect knowledge as computing this distance takes several
time steps such that the computed information might be out-
dated once it reaches the nodes. No matter what method we
choose to estimate these distances, we may have wrong val-
ues. In our simulations, we model this issue by introducing
noise such that a node will be likely to either underestimate
or overestimate its current distance to the destination. Hav-
ing global information and thus the tedious task to find esti-
mates adds algorithmic complexity to our protocol, which is
the price we pay for obtaining improved performance. Sev-
eral methods could be developed to estimate d(R;, D). We
outline only one of them that we believe to be one of the most
light-weight methods possible. Other estimators may yield
better results; in fact, finding improved estimator methods is
a promising direction for future research.

A light-weight method of estimating the distance to the
destination requires each sensor to include its current esti-
mate of its distance to the destination in each packet that it
retransmits; the destination “acknowledges” each packet it re-
ceives by sending out a packet containing the value zero in the
distance-to-destination field (this acknowledgement packet is
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only received by the destination’s direct neighbors; they do
not forward the acknowledgement). Whenever a sensor R re-
ceives a packet from one of its neighbors R’, sensor R checks
whether its current distance estimate for d(R, D) is more
than one unit larger than the distance estimate d(R’, D) of
its neighbor R’; if this is the case, sensor R updates its esti-
mate by setting d(R, D) = d(R’, D) + 1. In order to allow a
sensor to increase its distance estimate, we assign each infor-
mation a time-to-live 7 after which the sensor will assume
it to be invalid and reset its estimate to the minimum of the
most recently obtained: thus, the distance estimate of a sen-
sor is one unit larger than the minimum of the estimates of
its neighbors that the sensor received in most recent 7' time
steps. Using this method, correct distance information propa-
gates from the destination to the other nodes, where the wave
front advances by one hop for each packet that the destina-
tion acknowledges: a sensor at (correct) distance d from the
destination will be able to update its estimate to the correct
value after retransmitting (or sending) d packets, if the net-
work topology does not change during this time. Changes in
the network topology get propagated equally slowly, how-
ever, if network traffic is not too infrequent, the update speed
is still sufficient. Initially, the nodes set their distance estimate
to some constant.

Rather than implementing this particular estimator
method, we have opted to model the mobility and the in-
evitably resulting imperfectness of the distance information
with noise in our simulations. The SHORTEST PATH COUNT-
ING protocol uses number of shortest paths as parameter,
which would require a different estimator but can be mod-
eled through noise as well.

5. Experimental design

In order to assess the performance of the routing protocols
described above, we analyze the results of simulations that
we conducted under various levels of mis-information (noise)
and through the entire reasonable parameter range. The value
of the tunable parameter k are given as follows:

® for DESTINATION ATTRACTOR and DIRECTED
TRANSMISSION k € {.001, .01, .022, .046, .1, .22, .46,
1.0, 10.0, 100.0},

e for PURE GOSSIP probabilities of retransmission are:
20%, 25%, 30%, 35%, 40%, 42.5%, 45%, 47.5%, 50%,
55%, 60%, 710%, 80%, 90% and

e for the duplicate-forwarding parameter for the single-
path methods we used values of 0 (no retransmission of
the same packet), 3, 10, 30, 100, 300, and infinity (no
duplicate-dropping).

5.1. Setup

We use the following setup in our experiments for the differ-
ent settings: In the random-distribution settings, we spread



PARAMETRIC PROBABILISTIC ROUTING IN SENSOR NETWORKS

535

[
]\{i
EN

Figure 3. Area of Portland where sensors were placed. (a) Portland road network with the area of interest marked by a square. (b) A zoomed-in view of the
area of interest.

5000 sensors uniformly at random in a square field, where all
sensors have equal range of transmission.

In order to generate spatial distributions in an urban set-
ting, we used a section of downtown Portland, OR, measuring
2900 m x 2950 m. The particular area of Portland chosen for
our study is shown in figure 3(a); an enlarged view of the area
is shown in figure 3(b). Spatial distributions of sensors are ob-
tained by placing them along a roadway system. The specific
distance between consecutive sensors was simply obtained
by running a traffic simulation program (TRANSIMS) devel-
oped at the Los Alamos National Laboratory and measuring
the average distance between cars at different time instants
[2]. (More uniform distributions can also be used and are cur-
rently being investigated.) A total of 1750 sensors were used
to construct the sensor network.

We set the transmission range such that a communication
graph with average node degree of approximately 6.7 or ap-
proximately 13.7 is induced. The lower average connectivity
(i.e., 6.7) is chosen so that there is a huge connected com-
ponent in the random-distribution settings, while there is still
an interesting non-uniform structure in the network [8]. The
longer transmission range (and thus higher average connec-
tivity) makes the realistic downtown network almost fully
connected, and results in a network that is about twice as
dense.

Figure 4 illustrates the connectivity graph of an instance
of a realistic (non-uniform) urban sensor network where
each vehicle with a driver and all pedestrians on the streets
carry a sensor device [2]. The figure depicts the communica-
tion graph that results from choosing transmission radii such
that an average degree of 6.7 (left panel) respectively 13.7
(right panel) results. Choosing these two average degrees al-
lows us to keep the experiments comparable to the random
placement setting. Figure 5 shows the degree distribution for
both average degrees for networks resulting from randomly
placed nodes and networks resulting from the realistic set-
ting. Clearly, very different degree distributions result.

For each simulation run, we place the destination in the
middle of the sensor field, and we randomly choose a source
sensor among all remaining sensors connected to the destina-
tion. We generate one packet at the source that needs to get
to the destination (using the tested protocol) with no com-
peting traffic on the network. In the random-distribution set-
tings, each network and source-destination pair are used for
only one simulation run, and 1000 runs are made for each
scenario to obtain statistically sound results. In the realistic
settings, the network stays the same for all runs, and 400 runs
are made for each scenario using different source-destination
pairs. A scenario consists of a protocol, a parameter value,
a noise level, and a transmission range. We let each simula-
tion run as long as there are packets on the network, or up
to 5000 time steps (resp. 1750 for the realistic settings)—this
only happens with single-path algorithms. It turns out to be
necessary to impose this limit because the packet may travel
in loops in the network when the information is inaccurate.
In the simulations, we ignore the specifics of all layers in the
protocol stack other than the network layer, where the routing
takes place.

All multiple-packet protocols (i.e., FLOODING, PURE
GOSSIP, DESTINATION ATTRACTOR, DIRECTED TRANS-
MISSION) use a duplicate-dropping functionality in our sim-
ulations: if a packet is received a second time, it is discarded
unconditionally.> For the single-path methods (i.e., SHORT
PATH, SHORTEST PATH, SHORTEST PATH COUNTING, and
WANDERER), the value of the duplicate-fowarding parameter
determines this behavior.

5.2. Inaccuracy of information

An important aspect of our study is the dependence of the
performance of a protocol on the accuracy of information it

SThis requires that the sensors keep a list of packets already forwarded; in
reality, such a list can be of limited constant length.
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Figure 4. Realistic urban sensor network: communication graph of 1750 mobile devices in 8.5 km? of downtown Portland with an average degree of 6.7
(left panel) and 13.7 (right panel)
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Figure 5. Degree distributions for random node placement and realistic placement for average degree 6.7 (left panel) and average degree 13.7 (right panel).

has available (for algorithms that use information about the
network). We therefore test the protocols for several levels of
“noise values”. The network information (distance to destina-
tion, etc.) is computed off-line in our simulations. The model
used to add noise is such that each value representing a piece
of information is replaced by an (integer) number randomly
chosen from a uniform distribution with mean equal to the
original (accurate) value and width of the interval equal to
certain percentage of the original value. We use the width of
the interval as parameter to model different noise-levels. The
noise-levels we choose for each protocol are 0%, 3%, 10%,
30%, 100%, and 300% (values are bounded at 0, so that 300%
noise is actually +300%/—100%). The noise is persistent in
the sense that the information available to a sensor does not
change with time. This is equivalent to the sensors not updat-
ing their information about the network in the course of one
source-to-destination transmission. Higher noise-levels could
also infer higher mobility levels: the faster nodes move, the
faster and the more severely distance estimators become out-
dated, for all sensible (that is, reasonably light-weight) esti-
mator methods.

5.3. Performance measures

We assess the performance of a protocol with a given param-
eter and a specified noise level by looking at the following
measures:

Load: number of times any sensor transmits a packet (sum
across all time steps and all sensors)

Lag: number of time steps it takes to deliver the (first) packet
to the destination

Fraction delivered: fraction of runs where the destination
receives the data (at least one packet copy reaches the
destination)

5.4. Plot explanation

We present most of our results in plots of the type given in the
illustrative figure 2. The x-axis depicts the measure fraction
delivered and the y-axis stands for the average load, where
averages are taken over all runs. A data point in this plot rep-
resents the average load and fraction delivered for a specific
protocol with parameters set to specific values. The parameter
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Figure 2. Trade-offs between performance measures.

settings result in a specific value of fraction delivered. For
protocols with a tunable parameter, we usually obtain a curve
in this plot, where we connect data points corresponding to
adjacent parameter values. The optimal point in figure 2 is
the lower right corner with very low load and 100% delivery;
the worst point is the upper left corner with very high load
and zero delivery; the points on the diagonal from lower right
corner to upper right corner represent trade-offs between the
two measures of load and fraction delivered. The closer a pro-
tocol lies to the lower right corner, the better it performs.

6. Comparative simulation results

We present our simulation results for the different settings in
this section. We choose to present the results for random node
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placement with average degree 6.7 in most detail. We restrict
ourselves to pointing out the differences in behavior for the
other settings.

6.1. Random node placement with average degree 6.7

In order to illustrate how the multi-path protocols DIRECTED
TRANSMISSION, DESTINATION ATTRACTOR, and PURE
GossIP work, we show snapshots of a run of these proto-
cols on the same network in figures 6-8, respectively. The
network is picked from the ones we used for the simulations
and no noise is present in the information available to the
sensors. The source is marked by S and destination by D.
Time progresses from left to right, time steps 10, 20 and 30
are shown. Black nodes are sensors that have a packet at that
time step, grey nodes are sensors without packets. In the cho-
sen run, DIRECTED TRANSMISSION imposes less load to the
network than DESTINATION ATTRACTOR, which in turn is
lighter than PURE GOSSIP. As we shall see below, this rank-
ing is actually representative for the three multi-path proto-
cols. For animations showing all time steps of the simulation,
see [9].

Protocol comparison

We now compare the algorithms’ performance with respect
to lag, fraction delivered, and load. For this comparison, we
fix the value of noise to 30% (we will discuss the influence
of noise on the protocols later). Figure 9 shows how the
algorithms compare, where the x-axis depicts the measure
fraction delivered and the y-axis stands for the average load

Figure 6. Sample snapshot of DIRECTED TRANSMISSION: This method does not leave any packets on the network by time step 20. It issues a cloud of
packets and moves it towards the destination, keeping its spread roughly constant.

Figure 7. Sample snapshot of DESTINATION ATTRACTOR: Limited flooding is performed within a circle of radius roughly equal to the original distance of
S and D (no flooding is done in the opposite direction to D). The wave front passes through D and slowly disappears as it gets further from D.
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Figure 8. Sample snapshot of PURE GOSSIP: Its wave front propagates in all directions, eventually reaching all the sensors. It uses no information about
the network to control the spread, although the extent of spreading is controlled by a parameter.

Noise 30%

Load

Shortest Path i

o

o_|

o

T3]

o

S|

o

h - Destmatlon Attractor
- Directed Transmission

=4 - Gossiping ;

g Wangering s
-~ Short Path

o

o

o

[\

o

o

9

0
1

T T T
0.0 0.2 0.4 0.6 0.8 1.0
Fraction delivered

Noise 30%

Destmatlon Attractor

- Directed: Transm|ssnon
Gossiping
Wandeting
- Short Path

;.é*v

Lag/(Shortest path length)

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Fraction delivered

Figure 9. Load and Lag vs. Fraction Delivered for each algorithm (and various values of its parameter, if applicable) for noisiness of 30% on random
networks with average degree 6.7. Note the logarithmic scale on the lag axis. The lag is divided by length of the shortest path from source to destination for
each run to make the runs comparable.

(left panel) and average lag divided by the length of the short-
est path (right panel), where averages are taken over the 1000
runs.

For all tunable methods, the tunable parameter determines
the measure fraction delivered and these protocols are thus
shown as a line going through points which correspond to the
values of the parameter used in the simulations. The param-
eter values increase from left to right for PURE GOSSIP and
decrease from left to right for DIRECTED TRANSMISSION
and DESTINATION ATTRACTOR. For the single-path meth-
ods, which all have the duplicate forwarding parameter, the
values increase from O (for no duplicate-fowarding) to infin-
ity (for forwarding the same packet as often as it is received)
from left to right. In order to keep figure 9 readable, we only
show the value for infinity for WANDERER and SHORTEST
PATH.

Recall that the optimal point in figure 9 (left panel) is the
lower right corner, with very low load and 100% delivery and
that the upper left corner represents the worst performance
in both delivery and load. For the single-path methods, not
surprisingly, WANDERER is in the poor performance region
(it usually does not reach the destination, and wanders for the
5000 time steps until the simulation is stopped®) and FLOOD-

OIf the duplicate-forwarding parameter is set to a small constant rather than
infinity, the load decreases (not shown in the figure).

ING is in the upper right corner (delivery is guaranteed be-
cause all sensors receive the packet, but that imposes max-
imum load). The poor performance of SHORTEST PATH is
somewhat surprising but indicates that this method is highly
sensitive to noise in information (with perfect information,
it is at the optimal point). For small values of the duplicate-
forwarding parameter, SHORTEST PATH drops down to the
origin very quickly (not shown in the figure).

SHORTEST PATH COUNTING performs adequately for
this noise level and actually beats PURE GOSSIP; interest-
ingly, the curve for SHORTEST PATH COUNTING seems to
end where the curve for DESTINATION ATTRACTOR starts.
SHORT PATH performs very well on this noise level; how-
ever, the highest fraction delivered achievable is at roughly
80%.

The fact that all lines lead from the upper right corner
to the bottom left corner represents the trade-off between
average delivery and average load as the value of the param-
eter is changed. If we restrict ourselves to the high-delivery
part of the graph (75% delivery and higher), we can conclude
that with 30% noise, DIRECTED TRANSMISSION is better
than DESTINATION ATTRACTOR which is in turn better than
PURE GOSSIP in the sense that for any given parameter to
a method, there exists a value of a parameter for the other
method such that it outperforms the first in both load and de-
livery. In the same sense, it can also be concluded that for
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this level of noise, all single-path methods perform worse
than DIRECTED TRANSMISSION. For the low-delivery part
of the graph, DIRECTED TRANSMISSION and SHORT PATH
perform almost equally well.

The right panel of figure 9 allows us to extend the same
observations about the relative performance ordering of DI-
RECTED TRANSMISSION, DESTINATION ATTRACTOR and
PURE GOSSIP to the lag measurements. Again, DIRECTED
TRANSMISSION and DESTINATION ATTRACTOR outper-
form PURE GoOsSSIP. The single-path protocols are clearly
inferior even if the duplicate-forwarding parameter is set to
infinity as shown in the figure.

Dependence on noise level

No algorithm in our comparison in figure 9 reaches the op-
timal point, which is due to the noise in information avail-
able to the sensors. As we will see in the next plots, per-
fect information allows some methods to reach this point,
but as the noise level increases, it is not possible to remain
there. Methods that do not use any information about the net-
work (WANDERER, FLOODING and PURE GOSSIP) are to-
tally insensitive to noise, and their positions in the plot do not
change with noise. Thus, when studying how the algorithms
perform for different levels of noise levels, we can restrict
ourselves to methods that actually make use of information:
DIRECTED TRANSMISSION, DESTINATION ATTRACTOR,
SHORTEST PATH COUNTING, SHORTEST PATH and SHORT
PATH. Figure 10 illustrates this dependence: the x-axis again
stands for fraction delivered and the y-axis stands for the av-
erage load, but the results are shown for different noise lev-
els for DIRECTED TRANSMISSION (left panel), DESTINA-
TION ATTRACTOR (middle panel), and SHORT PATH (right
panel). The single-path methods SHORTEST PATH COUNT-
ING, SHORTEST PATH and SHORT PATH all perform sim-
ilarly with respect to changing noise: they move from the
lower right to the upper left corner as noise increases. The
speed of this transition (i.e., the sensitivity to noise) is dif-
ferent: SHORTEST PATH is most sensitive to noise, fol-
lowed by SHORTEST PATH COUNTING, followed by SHORT
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PATH, which is the only method shown in the right panel of
figure 10.

Figure 10 shows that as the noise level increases, all meth-
ods shift in the direction from the optimal point towards the
worst region. Both Parametric Probabilistic Sensor Network
Routing methods move closer to the graph of PURE GOS-
SIP (which remains stationary), but retain their relative per-
formance ordering. The speed at which particular protocols
move away from the optimal point depends critically on how
much and how efficiently they use the information available.
The more efficiently information is used, the better the al-
gorithm performs when the information is accurate, but the
more rapidly it deteriorates when the information becomes
inaccurate. This effect is most pronounced when comparing
single-path to multiple-path methods. Single-path methods
only rely on a single packet traveling in the network, which
can easily get lost or take a long time to reach the destination
if the routing decisions are based on unreliable information.
In this way, they can impose a larger average load than multi-
path methods, which illustrates the trade-off between sensi-
tivity to noise and the other measures, fraction delivered and
load.

Tunable parameter dependence

As a final study, we investigate in more detail how the tun-
able parameter determines the QoS measure fraction deliv-
ered. Figure 11 shows this depence for DIRECTED TRANS-
MISSION, DESTINATION ATTRACTOR, and PURE GOSSIP,
where the y-axis is the concrete parameter value. The depen-
dence is monotonic in all three cases, making it easy for a
system designer to search for the parameter value resulting in
the desired QoS level. The curves for all three methods have a
flat region around a certain parameter value. This shows that
close to that value, the probability of delivery is quite sensi-
tive to the value of the parameter, which corresponds to the
behavior of PURE GOSSIP as reported in [6]: for these critical
values, either almost all of the sensors receive the packet or
hardly any of the sensors receive the packet. As can be seen
from the figure, this effect is less pronounced for DIRECTED
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with average degree 6.7. Note the logarithmic scale on the parameter axis for DIRECTED TRANSMISSION and DESTINATION ATTRACTOR.

TRANSMISSION and DESTINATION ATTRACTOR than it is
for PURE GOSSIP.

Figure 11 also shows that for any given level of noise,
DIRECTED TRANSMISSION and DESTINATION ATTRAC-
TOR guarantee non-zero fraction delivered no matter what
the parameter value is. This is very important, especially
in situations when it is difficult to set the correct value of
the parameter. Such a claim cannot be made for the case of
PURE GOSSIP. We believe that the reason the curve for 300%
crosses the other curves in the case of DIRECTED TRANS-
MISSION is that this level of noise causes the average distance
to be overestimated (as explained in Section 5) and thus the
method generates more packets (resulting in better fraction of
packets delivered, but also higher load). A similar tendency
can be observed for DESTINATION ATTRACTOR, but not as
strong.

In summary, our results show that DIRECTED TRANSMIS-
SION and DESTINATION ATTRACTOR outperform all other
protocols for a given quality of service level and network
load incurred if a certain noise level is exceeded (30%). In
fact, if we look at three characteristics of a protocol, namely
load, fraction delivered, and sensitivity to noise, we see that
to optimize any two is simple: FLOODING optimizes fraction
delivered and is insensitive to noise, SHORTEST PATH op-
timizes fraction delivered and minimizes load, time-limited
WANDERER achieves low load and is insensitive to noise.
Optimizing all three goals is a balancing act, and we suspect
that no algorithm fully achieving all three goals simultane-
ously can exist. A great advantage of the tunable methods
is that they allow a system designer to set the parameter so
that the resulting performance meets the need of the applica-
tion. As long as such a need lies on the curve plotted in the
graph, the trade-off between performance in load and fraction
delivered can be controlled. Among the tunable methods, D1-
RECTED TRANSMISSION achieves the best balance for these
three goals.

6.2. Random node placement with average degree 13.7

Figure 12 shows how the different protocols perform with
30% noise level on randomly generated networks of aver-
age degree 13.7. When compared to figure 9 (left panel) for
the low density network, figure 12 shows that DIRECTED
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Figure 12. Load vs. Fraction Delivered for random node placement with
average degree 13.7 for each algorithm for noise level 30%.

TRANSMISSION and DESTINATION ATTRACTOR essentially
remain at the same level of performance with slight improve-
ments for both protocols. The curves for PURE GOSSIP also
look similar in both figures, however in the denser network a
gossiping probability of about 30% already suffices to reach
a delivery fraction of almost one. WANDERER and SHORT-
EST PATH slightly improve their position in a dense network,
but remain uncompetitive. SHORTEST PATH COUNTING and
SHORT PATH on the other hand highly profit from the in-
creased density of the network delivering 100% of the mes-
sages without incurring any significant network load, and
thus they both beat the Parametric Probabilistic Sensor Net-
work Routing protocols. The reason for this is that in a dense
network there are many paths leading to the destination, and
it is therefore more difficult for the packet to get lost. Also,
the paths are shorter which again results in a smaller chance
of misforwarding the packet.

We do not show figures illustrating parameter values re-
quired to achieve a certain QoS-level for dense networks
(corresponding to figure 11), as figure 12 already illustrates
the main point: the parameter values to achieve the same
QoS-level remain almost constant for DESTINATION AT-
TRACTOR and DIRECTED TRANSMISSION; however, they
change dramatically for PURE GOSSIP, which suggests that
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Figure 13. Load vs. Fraction delivered for noise levels of 0%, 3%, 10%, 30%, 100% and 300%, for three different algorithms on random networks with
average degree 13.7.

the Parametric Probabilistic Sensor Network Routing proto-
cols are more stable in this sense as well.

The plots depicting the dependence of protocol perfor-
mance on noise level are shown in figure 13 for DIRECTED
TRANSMISSION, DESTINATION ATTRACTOR, and SHORT
PATH. When compared to their counterparts in sparser net-
works of figure 10, it is again remarkable how little DI-
RECTED TRANSMISSION and DESTINATION ATTRACTOR
seem to be affected by the density of the network. SHORT
PATH on the other hand clearly improves as density increases.

6.3. Realistic node placement

Figure 14 shows the performance of the different protocols
for realistic networks with average degree 6.7 (left panel) and
13.7 (right panel). When compared to their corresponding
plots for random placement (i.e., figure 9 left panel and fig-
ure 12), the relative ranking of the different protocols remains
roughly the same for both average degrees. The Paramet-
ric Probabilistic Sensor Network Routing protocols are very
strong for small average degree, but are beaten by SHORT
PATH and SHORTEST PATH COUNTING for large degree.
In fact, DIRECTED TRANSMISSION and DESTINATION AT-
TRACTOR seem to improve their performance relative to ran-
domly placed nodes, thus suggesting that they efficiently ex-
ploit the network structure. The opposite is true for their
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strongest contenders: SHORT PATH and SHORTEST PATH
COUNTING both seem to perform weaker in the realistic set-
ting than in the random setting.

Overall, the results are qualitatively similar to the random
placement results. The principal difference lies in the ability
of the freeway to guide packets through the network, partly
because most nodes are along the freeways.

Figure 15 shows how DIRECTED TRANSMISSION, DES-
TINATION ATTRACTOR, and SHORT PATH depend on dif-
ferent noise levels in these realistic networks with average
degree 6.7. The plots look very similar to their counterparts
in random networks in figure 10. All protocols seem to have
a slightly worse performance in realistic networks, but the
Parametric Probabilistic Sensor Network Routingprotocols
are still a lot less dependent on the noise level compared to
SHORT PATH.

Figure 16 shows how the two best protocols, SHORT PATH
(two top panels) and DIRECTED TRANSMISSION (two bot-
tom panels) depend on the average degree in the random
node placement setting (left two panels) and in the realis-
tic setting (right two panels). DIRECTED TRANSMISSION is
clearly less affected by different average degrees in both the
realistic and the random setting. The stability of DIRECTED
TRANSMISSION with respect to changes in average degree,
network topology (random vs. realistic) and noise level is re-
markable. SHORT PATH on the other hand does not cope well
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Figure 14. Load vs. Fraction Delivered for noise level 30% on realistic networks with average degree 6.7 (left panel) and average degree 13.7 (right panel).
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Figure 16. Average degree dependence for SHORT PATH (top half) and DIRECTED TRANSMISSION (bottom half) in random distribution (left half) and
realistic distribution (right half).

with smaller average degrees, which is due to the fact that the
single path, on which the packet gets routed, is more likely to
be the only path that exists in a sparse network: if the packet
moves off this path due to mis-information it is more likely
to run into a dead-end. In dense networks, many paths exist
from a source to a destination and thus misinformation is not
as fatal.

7. Conclusion

We have proposed the routing protocol family Parametric
Probabilistic Sensor Network Routing, whose members are
characterized by a description of their retransmission prob-
ability function that a sensor uses to decide whether it for-
wards a received packet. Our simulations have shown that the
two Parametric Probabilistic Sensor Network Routing pro-
tocols DESTINATION ATTRACTOR and DIRECTED TRANS-

MISSION can guarantee any quality of service level (mea-
sured as fraction delivered) even in the presence of highly
noised network information. Our results also suggest that
multi-path methods outperform single-path methods in the
presence of noise. Our results serve as a proof-of-concept
for the basic idea of Parametric Probabilistic Sensor Network
Routing: making the retransmission probability depend on
network information parameters is a promising step towards
more robust routing protocols in sensor networks.

Figure 17 illustrates how the performance measures load,
fraction-delivered, and sensitivity to noise of misinformation
form a three-dimensional optimization space with the opti-
mum point at the origin. It is straight-forward to find a pro-
tocol that optimizes two of the three measures (and these
are shown in the figure). The Parametric Probabilistic Sensor
Network Routingprotocols allow us to trade-off these mea-
sures against each other and thus move around on or even
underneath the triangle depicted in the figure.
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Figure 17. Trade-offs among load, fraction-delivered and sensitivity to mis-
information.

There is no reason to believe that DIRECTED TRANSMIS-
SION is the best protocol from the Parametric Probabilistic
Sensor Network Routing family. In fact, various points re-
main open for future research in the area of parametric sen-
sor network routing protocols. Designing a protocol vari-
ant that outperforms DIRECTED TRANSMISSION is the most
prominent challenge. Changing model assumptions to make
the scenarios even more realistic is another research direc-
tion that has several aspects. For instance, there are many
different noise models that can be tested, especially abso-
lute bounds instead of relative bounds, or an information
propagation model, in which noise on individual nodes is
correlated to noise on its neighboring nodes. Although mo-
bility can be considered to be a type of mis-information,
this should be investigated separately. While we assume that
these results apply to arbitrary geometric random graphs,
there are some peculiarities of grids that may warrant special
attention.

We are currently building a full-fledged simulator for
large-scale networks; we plan to implement Parametric Prob-
abilistic Sensor Network Routing protols in this tool, which
will allow us to take into account interactions among differ-
ent protocol stack layers as well as provide a more realistic
framework for comparing methods to estimate global infor-
mation.
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