
Automatic Generation of Persistent Formations for
Multi-Agent Networks Under Range Constraints

Brian Smith, Magnus Egerstedt, and Ayanna Howard

Abstract—We present graph-based methods for deter-
mining if a mobile robot network with a defined sensor and
communication range can persistently achieve a specified
formation, which implies that the formation, once achieved,
will be preserved by the direct maintenance of a subset
of inter-agent distances. Here, formations are defined by
a set of points whose inter-point distances correspond to
desired inter-agent distances. Further, we provide graph
operations to describe agent interactions that implement
a given formation, as well as an algorithm that, given a
persistent formation, automatically generates a sequence
of such operations.

I. INTRODUCTION

Due to recent developments in mobile sensing, com-
putation, and actuation, formation control for multi-agent
networks has received much attention. For example,
see [1], [2], [3], [4], [5], and [6]. Recent research
suggests the use of graph-theoretic structures to represent
formations, where vertices represent agents, and edges
represent specific inter-agent distances to be maintained
through decentralized control laws [7], [8], [9].

In this paper, we will study such graph-based abstrac-
tions of formations, and we define a target formation as
a set of desired inter-agent distances associated with a
complete graph, i.e., these distances are specified with
respect to all pairs of agents. However, it may not be
the case that all inter-agent distances are needed, which
leads to the study of so-called persistent formations [10].
In a persistent formation, each agent is assigned a set
of constraints, which are specific inter-agent distances
to maintain. These constraints are oriented in the sense
that each constraint is the responsibility of a single
agent rather than two agents. Moreover, since not all
inter-agent distances are explicitly needed in order to
preserve the formation, persistent formations typically
only involve a proper subset of all possible inter-agent
constraints. In [11], graph operations are proposed that,
through successive applications, produce a graph corre-
sponding to a persistent formation.

We want to use such operations in order to build
persistent formations in the presence of constraints on

Brian Smith, Magnus Egerstedt, and Ayanna Howard are with
the School of Electrical and Computer Engineering, Georgia Insti-
tute of Technology, Atlanta, GA, USA. Email: {brian, magnus,
ayanna.howard}@ece.gatech.edu

the effective communication and sensing distances. Un-
fortunately, these types of constraints are not considered
in [11], and the main contribution of this paper is the se-
quential construction of persistent formations that respect
the inter-agent range constraints. As a consequence, we
produce a method for determining if a specific target
formation is persistently feasible with respect to the
range constraints.

II. PRELIMINARIES

In this section, we review some of the basic assump-
tions and terminology needed for the development in
later sections. The main object of interest is that a persis-
tent formation in which individual robots are responsible
for maintaining specific inter-agent distances. Qualita-
tively, we say that a formation is persistent if, provided
that all agents ensure that the distance constraints they
are responsible for are satisfied, then the formation is
preserved [10].

There are two problems addressed in this paper: (1)
determine if a target formation is persistently feasible
given the maximum sensing and communication range
of the agents; and, (2) if the formation is persistently
feasible, generate a graph that represents the target for-
mation. We assume that the desired inter-agent distances
can be represented by a given set of n points P = {pi :
pi ∈ R2}, where the distances between each pair of
points describes the desired distances between each pair
of agents. This set of points defines a target formation.
We are also given a proximity range ∆ ∈ R, defining
the range at which agents can sense and communicate
with each other. Any pair of agents i and j can sense
and communicate with each other if and only if their
distance is less than ∆, and that agents i and j can
directly maintain their current distance only if they are
within ∆.

III. FRAMEWORKS AND RIGIDITY

In this section, we present the concepts of frameworks
and rigidity.

A. Frameworks
Given an initial set of n points P , we define a

framework [12] as G(P) = (P,Gn), where Gn = (V, E)
is a graph such that

• V = {1, . . . , n} is the vertex set with i ∈ V is the
vertex corresponding to pi ∈ P , and

• E ⊂ V ×V is an edge set, where each edge e ∈ E
is a pair of vertices (i, j) such that i 6= j.

We also define a weight function δ : E → R which
assigns to each edge the distance between the points
incident to that edge (i.e., δ(i, j) = ‖pi − pj‖). Frame-
works are used to represent both the target formation
(configuration P) and the inter-agent distances that will
be directly maintained (graph Gn).

B. Rigidity

As in [7], we define a trajectory of a framework
G(P) as a set of n states X(t) = {xi(t) : xi(0) =
pi(0), t ≥ 0} such that each state is continuous. A
trajectory represents the motion of a multi-agent network
that is initially in the desired target formation, and
we define a edge-consistent trajectory as one such that
‖xi(t)− xj(t)‖ is constant for all (i, j) ∈ E. We define
a rigid trajectory as one such that the distances between
every pair of states xi(t) and xj(t) remain constant.
Thus, a rigid trajectory represents a rigid motion of the
network, starting from the target formation, during which
all inter-agent distances are maintained. A framework is
rigid if and only if all edge-consistent trajectories of
the framework are rigid trajectories. If a framework is
not rigid, we say that it is flexible. Rigid frameworks
represent rigid formations. Their existence for a partic-
ular configuration P implies that the target formation
can be maintained by guaranteeing that the inter-agent
distances corresponding to the edges of the framework
are maintained. Figure 1 gives examples of rigid and
flexible frameworks.

IV. DIRECTED FRAMEWORKS AND PERSISTENCE

A. Directed Frameworks

Here, we assume that, for each pair of agents whose
distance is directly maintained, the responsibility of its
maintenance is delegated to a single agent of the pair.
We represent this by adding a direction to each edge.
We represent a directed framework by ~G(P) = (P, ~Gn),
where ~Gn = (V, ~E) is a directed graph. Here, (i, j) ∈ ~E
indicates a directed edge from i to j. The presence of
such an edge indicates that the control laws of agent i
should maintain the distance of edge (i, j). We call this
a constraint of agent i.

B. Persistence

Persistence is a quality of directed frameworks, and
is very closely related to the concept of constraint
consistence. Informally, we say that constraint consis-
tence means that all constraints are satisfied as long

x

y

x1

x4

x2 x3

(a)

x

y

x1

x4

x2 x3

(b)

x

y

x1

x4

x2 x3

(c)

Fig. 1. Rigid and Flexible Frameworks. 1(a): A flexible framework.
The dotted line represents the direction of circular motion that agent 4
can take and still satisfy its constraint with agent 3. 1(b): Agent 4 can
move in a manner that changes its distance to agents 1 and 2. 1(c): A
rigid framework. If all agents satisfy their constraints, the formation
does not change.

x

y

x1

x4

x2 x3

(a)

x

y

x1

x4

x2 x3

?

(b)

x

y

x1

x4

x2 x3

(c)

x

y

x1

x4

x2

x3

(d)

Fig. 2. Persistence and constraint consistence. 2(a): A framework
that is not persistent. It is rigid, but not constraint consistent. 2(b):
If agent 4 moves, agent 2 cannot move in a way that preserves the
distances between agent 2 and agents 1, 3, and 4. 2(c): A persistent
framework. It is constraint consistent and rigid. Agents 1 and 3 are a
leader-follower pair. 2(d): If agent 3 moves, all agents can still satisfy
their constraints.

2

as all agents satisfy their individual constraints, i.e., no
subset of agents can satisfy their constraints in a manner
which forces another agent to not satisfy a constraint.
Constraint consistence is, to a large degree, determined
by the number and orientation of the framework edges.
Figure 2 shows constraint consistent and inconsistent
frameworks. For a more rigorous definition, see [10].

The following theorem describes persistence:

Theorem 1. [10] A framework is persistent if and only
if it is rigid and constraint consistent.

Persistent frameworks represent persistent formations.
Their existence for a particular configuration P implies
that the target formation can be maintained like a rigid
formation in a constraint consistent manner. Figures 2(c)
and 2(d) shows a persistent framework.

V. PERSISTENT FEASIBILITY AND PERSISTENT
GRAPH GENERATION: THE MODIFIED ”PEBBLE

GAME”

In this section, we present a method for determining
if a target formation is persistently feasible. We define
the concepts of infinitesimal and generic rigidity, as
well as rigid and persistent feasibility. An algorithm
for determining rigid feasibility is presented. We then
demonstrate that rigid feasibility and persistent feasibil-
ity are equivalent. We also show that the same algorithm
generates minimally persistent graphs.

A. Infinitesimal Rigidity

The concept of infinitesimal rigidity is discussed in
[13], [14], and [15]. We assume that xi(t) is a differ-
entiable function for each vertex i in the framework.
Since we have defined an edge-consistent trajectory of
G(P) such that the distance between points xi(t) and
xj(t) remains constant all along the trajectory (i.e.,
‖xi(t) − xj(t)‖2 = constant for all (i, j) ∈ E , this
implies that

(ẋi(t)− ẋj(t)) · (xi(t)− xj(t)) = 0 ∀(i, j) ∈ E. (1)

The assignment of constant instantaneous velocities ẋi =
ui that satisfy Equation 1 at t = 0 is described as an
infinitesimal motion of the framework [15]. Let u̇ be the
point in Rn2 defined by the infinitesimal motion such
that u̇ = (u̇T

1 , u̇T
2 , . . . , u̇T

n)T . Equation 1 can thus be
represented in matrix form as

M(G(P))u̇ = 0,

where M(G(P)) is known as the rigidity matrix [15].
The rigidity matrix has card(E) rows and 2n columns,
where ”card” denotes cardinality. For each edge (i, j),

Each row mij of M(G(P)) represents the equation for
that edge as

mij = (0, . . . , (pi − pj)T , 0, . . . , 0, (pj − pi)T , . . . , 0).

Here, (pi−pj)T in two columns for vertex i, (pj−pi)T in
the columns for j, and zero elsewhere [15]. A framework
with n ≥ 2 points in R2 is infinitesimally rigid if and
only if rank(M(G(P))) = 2n− 3 [14], [15] .

The following theorem establishes the relationship
between infinitesimal rigidity and rigidity:

Theorem 2. [13] Infinitesimal rigidity implies rigidity.

Note, however, that rigidity does not imply infinitesimal
rigidity. For a more detailed description, see [13], [14],
and [15].

B. Generic Rigidity

It is clear that the rigidity of a framework G(P)
depends both on the topology and the configuration.
For a given graph Gn, we can think of a framework
G(P) = (P, Gn) as a realization of Gn, and we define
a generically rigid graph as follows:

Definition 1. A graph is generically rigid if it has an
infinitesimally rigid realization.

Note that generic rigidity is a property of a graph, not
a framework. Therefore, we refer to generically rigid
graphs as rigid graphs without confusion. If Gn is a rigid
graph, and G(P) = (P, Gn) is infinitesimally rigid, we
say that P is a generic configuration for Gn, and that
G(P) is a generic realization.

The configuration P = {p1, . . . , pn} defines a point
in Rn2 as p = (p1, . . . , pn)T . The following lemma de-
scribes the set of generic configurations for a generically
rigid graph:

Lemma 1. [14] If Gn is a generically rigid graph, then
the generic configurations for Gn form a dense, open
subset of Rn2.

This implies that, for any generically rigid graph Gn,
any configuration P ′ = {p′1, . . . , p′n} that defines
a point p′ ∈ Rn2 as p = (p′1, . . . , p

′
n)T can be

well-approximated by a generic configuration P =
{p1, . . . , pn} that defines a point p ∈ Rn2 as p =
(p1, . . . , pn)T such that G(P) = (P,Gn) is infinitesi-
mally rigid and, therefore, rigid by Theorem 2.

C. Rigid Feasibility

Rigid feasibility is defined as follows:

Definition 2. A target formation defined by the configu-
ration P is rigidly feasible for a multi-agent network

3

with proximity range ∆ if and only if there exists a
framework G∆(P) = (P, G∆

n) such that G∆
n = (V, E∆)

is rigid, and δ(e) ≤ ∆ ∀e ∈ E∆.

It is clear that adding edges to a rigid graph cannot
affect its rigidity. We define a minimally rigid graph as
follows:

Definition 3. A graph is minimally rigid if and only if
it is rigid but does not remain rigid after the removal of
a single edge.

The following theorem gives necessary and sufficient
conditions for a graph to be minimally rigid:

Theorem 3. [16] A graph with n ≥ 2 vertices in R2 is
minimally rigid if and only if

1) it has 2n− 3 edges and
2) each induced subgraph of n′ ≤ n vertices has no

more than 2n′ − 3 edges.

To generate minimally rigid graphs, we utilize the
”pebble game” algorithm [17]. It is a proven algorithm
for constructing minimally rigid graphs, with a worst
case performance of O(n2) [17].

In the pebble game, each vertex is represented as
having two pebbles, each pebble representing a degree of
freedom for that vertex. A pebble covering exists if each
edges can be covered by a pebble from a vertex incident
to that edge so that no subgraph has more than 2n − 3
edges. To keep track of pebbles, the pebble game works
with a directed graph ~Gn, where a directed edge (i, j)
indicates that edge (i, j) is covered by a pebble from
vertex i. The pebble game starts with a directed graph
~Gn with no edges and attempts to add each potential
edge one at a time to the pebble covering, verifying
that part 2 of Theorem 3 is satisfied. Since the pebbles
of each vertex limit the number of edges directed out
of each vertex, this is accomplished by modifying the
directions of both the edge to be added and the other
edges already in ~Gn. If 2n− 3 such edges are added to
the graph, then this implies that part 1 of Theorem 3 is
satisfied, implying that ~Gn is minimally rigid. For more
detail on the implementation of this algorithm, see [17].

To test for a minimally rigid graph that satisfies
Definition 2, we modify the pebble game algorithm so
that it only considers edges that are less than or equal to
∆. The modified pebble game is described in Algorithm
1.

The following theorem states the effectiveness of the
modified pebble game to test for rigid feasibility:

Theorem 4. A target formation defined by configura-
tion P is rigidly feasible for a multi-agent network

Algorithm 1 ModifiedPebbleGame(P, ∆)
Require: P is a configuration of n points

Initialize ~G∆
n = (V, ~E∆) such that V =

{1, . . . , n}, ~E = ∅
for all possible edges e = (i, j) such that δ(e) ≤ ∆
and while ‖ ~E∆‖ < 2n− 3 do

Add edge e to ~E∆ and rearrange existing edge
directions to find a pebble covering;
if a valid pebble covering is not found then

Remove edge e from ~E∆;
else

Keep edge e in ~E∆;
end if

end for
if ‖ ~E∆‖ = 2n− 3 then

rigid =true;
else

rigid =false;
end if
return [rigid, ~G∆

n];

with proximity range ∆ if and only if the algorithm
ModifiedPebbleGame(P, ∆) returns a minimally rigid
graph.

Proof: Definition 2 is satisfied for configuration
P only if there exists a rigid graph G∆

n such that
all edges of the framework G∆(P) = (P, G∆

n) have
edges of less than or equal to ∆. By Definition 3,
this implies the existence of a minimally rigid graph
with the same properties. Assume that G∆(P) exists,
but that ModifiedPebbleGame(P, ∆) fails to return
a minimally rigid graph. Note from [17] that the un-
modified pebble game generates a rigid graph by con-
sidering each edge and adding it to a flexible graph
until it becomes minimally rigid. Therefore, the failure
of ModifiedPebbleGame(P, ∆) implies that no such
graph can be generated considering only edges such
that their weight in a framework would be less than or
equal to ∆. Since the unmodified pebble game always
returns a minimally rigid graph, this implies that all rigid
graphs result in a framework with an edge greater than
∆. However, this violates our assumption that G∆(P)
exists. Therefore, by Definition 2, the formation is rigidly
feasible only if ModfiedPebbleGame(P, ∆) returns a
minimally rigid graph.

If the modified pebble game does produce such a min-
imally rigid graph such that all edges of the framework
G∆(P) have lengths less than or equal to ∆, then the
conditions of Definition 2 are satisfied.

4

D. Persistent Feasibility

Similar to generic rigidity, we say that a graph is
generically persistent if it has an infinitesimally rigid re-
alization that is persistent. Like generic rigidity, generic
persistence applies to graphs, not frameworks. Therefore,
we refer to generically persistent graphs as persistent
graphs without confusion. A persistent graph is mini-
mally persistent if it is persistent and if no edge can be
removed without losing persistence [10].

Persistent feasibility is defined as follows:

Definition 4. A target formation defined by configuration
P is persistently feasible for a multi-agent network with
proximity range ∆ if and only if a exists a framework
~G∆(P) = (P, ~G∆

n) such that ~G∆
n = (V, ~E∆) is persis-

tent, and δ(e) ≤ ∆∀e ∈ ~E∆.

The following theorem states a minimally persistent
graph can be obtained from any minimally rigid graph:

Theorem 5. [11] For any minimally rigid graph, it is
possible to assign directions to the edges such that the
obtained directed graph is minimally persistent.

The following theorem describes the necessary and
sufficient conditions for a target formation to be persis-
tently feasible:

Theorem 6. For a multi-agent network with proximity
range ∆, a configuration P defines a persistently feasible
target formation if and only if it is rigidly feasible.

Proof: If P is rigidly feasible, then, by Definitions
2 and 3, there exists a minimally rigid graph G∆

n such
that G∆(P) = (P,G∆

n) is rigid and, for all edges e,
δ(e) ≤ ∆. By Theorem 5, this implies the existence of
a persistent graph ~Gn, and thus a persistent framework
~G∆(P) = (P, ~Gn) that satisfies Definition 4. If P is not
rigidly feasible, then Theorem 1 implies that P is not
persistently feasible.

Therefore, the modified pebble game tests for both
rigid and persistent feasibility.

E. Persistent Graph Generation

Here, we show that the pebble game algorithm also
generates minimally persistent graphs, and thus a persis-
tent framework to represent a persistent formation.

The following theorem gives necessary and sufficient
conditions for minimum persistence:

Theorem 7. [10] A graph is minimally persistent if and
only if it is minimally rigid and no vertex has an out-
degree larger than 2.

We denote the out-degree of vertex i by d−(i). Note
that the pebble game produces a directed graph ~Gn,

where each edge (i, j) is covered by one of two pebbles
from vertex i. Thus, we have the following theorem:

Theorem 8. The pebble game algorithm generates min-
imally persistent graphs.

Proof: Assume that ~Gn is a rigid graph successfully
generated by the pebble game. [17] already shows that
the pebble game generates a minimally rigid graph.
Since each directed edge (i, j) represents the edge being
covered by a pebble from vertex i, this implies that each
vertex i, d−(i) ≤ 2. Therefore, Theorem 7 implies that
~Gn is minimally persistent.

VI. GRAPH OPERATIONS

In this section, we describe methods for represent-
ing and choosing leader-follower pairs of a persistent
formation. We present graph operations that represent
agent interactions that execute a persistent formation. We
also present an algorithm for generating a sequence of
graph operations, which represents a sequence of agent
interactions to execute a persistent formation.

We define a leader-follower pair [7] as a pair of
adjacent vertices i, j ∈ V such that vertex i has an
out-degree of 0 and vertex j has an out-degree of 1,
and ∃(j, i) ∈ E. We say that vertex i is the leader
vertex, and vertex j is the follower vertex. The leader
agent has no constraints, and thus has two degrees
of freedom, implying that the persistent formation will
follow the leader agent in R2. Similarly, the follower
agent has one constraint, and thus one degree of freedom,
implying that the persistent formation will rotate around
the leader agent as the follower agent performs circular
motion around the leader. For a persistent formation,
edge-reversing operations can make any pair of adjacent
agents a leader-follower pair [11]. A leader-follower pair
is demonstrated in Figures 2(c) and 2(d).

A. Persistent Graph Operations

In an actual multi-agent network, achieving a persis-
tent formation requires agents with no constraints to in-
teract and establish constraints. Such a sequence of agent
interactions, if successful, would result in a persistent
formation, with inter-agent distances corresponding to
the target formation.

Graph operations can be used to represent such a
sequence of agent interactions. [11] presents graph op-
erations for assembling and modifying persistent graphs.
These operations consist of directed vertex addition and
edge-splitting operations. Graph operation sequences are
typically generated by performing inverse graph opera-
tions on the graph to be assembled, along with edge
reversing operations.

5

[11] shows that any persistent graph can be decon-
structed by a combination of these inverse operations,
and then reconstructed by a reverse sequence of non-
inverse operations. Additionally, [11] guarantees that
each intermediate graph is persistent. However, these
methods are completely graph based, and do not take
into account a proximity range for a multi-agent net-
work. Consider Figure 4(d). This framework has a min-
imally rigid graph. An inverse vertex addition cannot
be performed. Also, note that any inverse edge-splitting
operation will introduce a new edge into the framework
which has a length longer than any other edge. If ∆
had been defined to be equal to the maximum edge
length of the longest original edge, this new edge would
violate the proximity range of the mobile agent network.
Therefore, given a proximity range limit on the edge
lengths of a framework, certain configurations cannot
be deconstructed by these traditional operations without
introducing an edge that violates the proximity range.

B. Persistent-∆ Operations

In this section we present two new graph operations
to construct persistent graphs. These, combined with
traditional vertex addition, allow any persistent graph
with a leader-follower pair to be constructed without
using any edges that are not contained in the final graph.
We call this set of three graph operations persistent-∆
operations.

Each operation is represented by a double op =
(V, E), where V is a set of vertices to add to the graph,
and E is a set of edges to add to the graph.

Consider a directed graph ~Gn = (V, ~E) such that
j, k ∈ V . Vertex addition consists of adding a vertex
i to V and adding edges (i, j), (i, k) to ~E. A vertex
addition is represented as vertexAddition(i, j, k) =
({i}, {(i, j), (i, k)}).

Consider a directed graph ~Gn = (V, ~E) such that j ∈
V . Single-vertex addition consists of adding a vertex i to
V and adding edge (i, j) to ~E. A single-vertex addition
is represented as singleV ertex(i, j) = ({i}, {(i, j)}).
Note that this operation does not preserve persistence.
In fact, it guarantees a loss of persistence, since this
new vertex has one degree of freedom.

Consider a directed graph ~Gn = (V, ~E) such that
i, j ∈ V and (i, j) /∈ ~E. Edge insertion consists of
adding edge (i, j) to ~E. An edge insertion is represented
as edgeInsertion(i, j) = (∅, {(i, j)}). Figure 3 shows
these operations.

C. Persistent-∆ Sequence Generation

This section describes how persistent-∆ operations
can be used to construct any persistent graph with a

i

j

k

(a)

i

j

k

(b)

i

j

(c)

i

j

(d)

j

k

(e)

j

k

(f)

Fig. 3. Persistent-∆ graph operations. 3(a), 3(b): a vertex addition.
3(c), 3(d): a single-vertex addition. 3(e), 3(f): an edge insertion
operation.

leader-follower pair.
The following lemma is used to design an effective

sequence of persistent-∆ operations and for proving its
effectiveness:

Lemma 2. [11] Let ~Gn be a minimally persistent graph
such that vertex d−(i) ≥ 1 and vertex d−(j) ≤ 1. Then,
there is a directed path from i to j.

We also use the following theorem:

Theorem 9. [10] Let ~Gn be a minimally persistent
graph such that i, j ∈ V are a leader-follower pair. This
implies that, for all vertices k ∈ V \ {i, j}, d−(k) = 2.

This leads to the following lemma:

Lemma 3. Let ~Gn = (V, ~E) be a minimally persistent
graph such that vertex i is the leader and vertex j is
the follower of a leader-follower pair. This implies the
existence of a directed path from all vertices k ∈ V \ i
to i.

Proof: Assume that ~Gn exists as in Lemma 3. Since
i and j are a leader-follower pair, this implies a directed
path from j to i and that d−(i) < d−(j) ≤ 1. By
Theorem 9, all vertices k ∈ V \ {i, j}, d−(k) = 2. By
Lemma 2, there exists path from all vertices in V \ i to
i.

This leads us to an algorithm for constructing a
sequence of graph operations to construct a minimally
persistent graph. We define a leader-follower seed as
a graph ~G0 = (V0, ~E0) such that V0 = {i, j} and
~E0 = {(j, i)}. Here, vertex i is the leader vertex, and
vertex j is the follower vertex.

Any minimally persistent graph can be constructed
from a leader-follower seed by a sequence of persistent-
∆ graph operations. First, given a minimally persistent

6

x

y

p1

p2 p3 p5p4

p6 p7

(a)

x

y

p1

p2 p3 p5p4

p6 p7

(b)

x

y

p1

p2 p3 p5p4

p6 p7

(c)

x

y

p1

p2 p3 p5p4

p6 p7

(d)

Fig. 4. A sequence of Persistent-∆ operations constructing a frame-
work. 4(a): The initial leader-follower seed. 4(b): Two vertex additions
are performed. 4(c): No more vertex additions are possible. Three
single-vertex additions are performed. 4(d): Three edge insertions are
performed, one for each single-vertex addition.

graph ~Gn, a leader-follower seed ~G0 is initialized using
the leader and follower vertices in ~Gn. Until all vertices
and edges of ~Gn are present in ~G0, the following process
is performed:

1) Generate each possible edge insertion.
2) Generate each possible vertex addition.
3) If no vertex additions were performed, generate

each possible single-vertex addition.

The condition for single-vertex addition is due to the
fact that single-vertex addition does not preserve persis-
tence. Directed vertex addition does. Therefore, these are
preferred. Edge insertions are necessary to complete the
graph after single-vertex additions are performed. After
this process, each of the generated graph operations is
executed on the graph ~G0. This process is repeated until
all vertices and edges have been added to the graph.
Algorithm 2 describes this process. In Algorithm 2, we
represent concatenating element s to the end of sequence
S by S · s.

Figure 4 shows a resulting sequence of this algorithm.
We have the following theorem for the effectiveness of
this method:

Theorem 10. For a minimally persistent graph ~Gn

with a leader-follower pair, the persistent-∆ generation
algorithm will generate a sequence of graph operations
that construct ~Gn from a leader-follower seed.

Algorithm 2 Persistent∆Generation(~Gn)

Require: Graph ~Gn = (V, ~E) exists such that ~Gn is
minimally persistent.
Initialize leader-follower seed ~G0 = (V0, ~E0) such that
V0 = {l, f} and ~E0 = {(f, l)};
Initialize sequence of graph operations S = ∅;
while card(V0) < card(V) or card(~E0) < card(~E)
do

Initialize sequence of graph operations Si = ∅;
for all distinct i, j ∈ V0 do
{Generate all possible edge insertions}
if (i, j) ∈ ~E and (i, j) /∈ ~E0 then

ei = edgeInsertion(i, j);
Si = Si · ei;

end if
end for
vertexAdded = false;
for all i ∈ V such that i /∈ V0 do
{Generate all possible vertex additions}
if ∃j, k ∈ V0 such that (i, j), (i, k) ∈ ~E then

va = vertexAddition(i, j, k)
Si = Si · va;
vertexAdded = true;

end if
end for
if vertexAdded = false then

for all i ∈ V such that i /∈ V0 do
{Generate all possible single-vertex additions}
if ∃j ∈ V0 such that (i, j) ∈ ~E then

sva = singleV ertex(i, j);
Si = Si · sva;

end if
end for

end if
for all operations op ∈ Si do
{Perform all determined graph operations}
for all vertices i ∈ op do

Add i to V0;;
end for
for all edges (i, j) ∈ op do

Add (i, j) to ~E0;
end for

end for
S = S · Si;

end while
return S;

7

Proof: Assume that ~Gn = (V, ~E) exists, with l, f as
the leader and follower of a leader-follower pair, and that
~G0 = (V0, ~E0) is the initialized leader-follower seed. If
the graph has only two vertices, the graph is constructed.

If there are more than two vertices, then, by Lemma 3,
there exists a path from all vertices in V \{l} to vertex l.
This implies that there exists a pair of vertices i, j such
that i ∈ V, i /∈ V0, j ∈ V0, (i, j) ∈ ~E. This implies that
a single-vertex addition is possible (there may also be
vertex additions possible, but this is unnecessary for the
proof).

Assume that a single-vertex operation is performed,
increasing the size of V0, ~E0 ∈ ~G0. Note that ~G0

always has the leader-follower pair. Therefore, if there
are remaining vertices i ∈ V such that i /∈ V0, then
Lemma 3 also shows that more single-vertex additions
are possible. In fact, more single-vertex additions will
always be possible until there does not exist a i ∈ V
such that i /∈ V0.

Since we have not added any vertices i /∈ V to V0,
this implies that, at this point, V = V0.

For all edges (i, j) ∈ ~E, either (i, j) = (l, f),the
leader-follower edge, or (i, j) is not the leader-follower
edge. If (i, j) is the leader-follower edge, then it was
added to ~E0 when the leader-follower seed was initial-
ized. If it is not the leader-follower edge, note that we
have already proven that all vertices V are added to V0

such that V = V0. This implies that, for any remaining
edges not added by vertex or single-vertex additions,
there exists a pair of vertices (i, j) ∈ V0 such that
(i, j) ∈ ~E and (i, j) /∈ ~E0. These edges can be added
by edge insertions.

Since the algorithm uses these conditions to search
for single-vertex additions and edge-insertions, all such
operations will be performed, guaranteeing that V = V0

and ~E = ~E0.

VII. CONCLUSIONS

We have presented a method for determining if target
formations for multi-agent networks are persistently fea-
sible, given their maximum sensing and communication
range. We introduced an algorithm for generating mini-
mally persistent graphs under proximity constraints. We
have also presented new graph operations to construct a
persistent graph that represents a formation under range
constraints, as well as a method for automatically gen-
erating a sequence of these operations for any formation
in question. These graphs and operations describe the
control and coordination strategies necessary to allow the
desired formation to emerge in a multi-agent network.

VIII. ACKNOWLEDGEMENTS

This work was partially supported under a contract with the
National Aeronautics and Space Administration. We also thank
Julien Hendrickx for his assistance.

REFERENCES

[1] G. A. Kaminka and R. Glick, “Towards robust multi-robot forma-
tions,” in Conference on International Robotics and Automation,
2006, pp. 582–8.

[2] K. D. Do and J. Pan, “Nonlinear formation control of unicycle-
type mobile robots,” Robotics and Autonomous Systems, vol. 55,
no. 3, pp. 191–204, March 2007.

[3] L. Vig and J. A. Adams, “Multi-robot coalition formation,” IEEE
Transactions on Robotics, vol. 22, no. 4, pp. 637–49, August
2006.

[4] S. Kalantar and U. R. Zimmer, “Distributed shape control of
homogeneous swarms of autonomous underwater vehicles,” Au-
tonomous Robots, vol. 22, no. 1, pp. 37–53, January 2007.

[5] T. Zhijun and U. Ozguner, “On non-escape search for a moving
target by multiple mobile sensor agents,” in American Control
Conference, American Automatic Control Council. Minneapolis,
MN, USA: IEEE, June 2006, p. 6 pp.

[6] L. Yuan, C. Weidong, and X. Yugeng, “Energy-efficient ag-
gregation control for mobile sensor networks,” in International
Conference on Intelligent Computing, vol. 344. Kunming, China:
Intelligent Control and Automation, August 2006, pp. 188–93.

[7] T. Eren, W. Whiteley, B. D. O. Anderson, A. S. Morse, and P. N.
Belhumeur, “Information structures to secure control of rigid
formations with leader-follower architecture,” in Proceedings of
the American Control Conference, Portland, Oregon, June 2005,
pp. 2966–2971.

[8] R. Olfati-Saber and R. Murray, “Graph rigidity and distributed
formation stabilization of multi-vehicle systems,” 41st IEEE
Conference on Decision and Control. Proceedings, vol. 3, pp.
2965 – 71, 2002.

[9] J. L. A. Jadbabaie and A. S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001,
June 2003.

[10] J. M. Hendrickx, B. D. O. Anderson, J.-C. Delvenne, and
V. D. Blondel, “Directed graphs for the analysis of rigidity and
persistence in autonomous agent systems,” International Journal
of Robust and Nonlinear Control, 2000.

[11] J. M. Hendrickx, B. Fidan, C. Yu, B. D. O. Anderson, and V. D.
Blondel, “Elementary operations for the reorganization of mini-
mally persistent formations,” in Proceedings of the Mathematical
Theory of Networks and Systems (MTNS) Conference, no. 17,
Kyoto, Japan, July 2006, pp. 859–873.

[12] H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited. Wash-
ington, DC: Math. Assoc. Amer, 1967, p. 56.

[13] H. Gluck, “Almost all simply connected closed surfaces are
rigid,” in Geometric topology, Lecture Notes in Math, vol. 438.
Berlin: Springer, 1975, pp. 225–239.

[14] B. Roth, “Rigid and flexible frameworks,” The American Math-
ematical Monthly, vol. 88, no. 1, pp. 6–21, 1981.

[15] T. Tay and W. Whiteley, “Generating isostatic frameworks,”
Structural Topology, no. 11, pp. 21–69, 1985.

[16] G. Laman, “On graphs and rigidity of plane skeletal structures,”
Journal of Engineering Mathematics, vol. 4, no. 4, pp. 331–340,
October 1970.

[17] D. J. Jacobs and B. Hendrickson, “An algorithm for two-
dimensional rigidity percolation: The pebble game,” Journal of
Computational Physics, vol. 137, no. 2, pp. 346–365, June 1997.

8

