
iDSRT: Integrated Dynamic Soft Real-time Architecture for
Critical Infrastructure Data Delivery over WLAN?

Hoang Nguyen, Raoul Rivas and Klara Nahrstedt

University of Illinois at Urbana-Champaign
{hnguyen5, trivas, klara}@uiuc.edu

Abstract. Critical Infrastructures (CIs) such as the Power Grid play an important role in
our lives. Of all important aspects of CIs, real-time data delivery is the most important one
because appropriate decisions cannot be made without having data delivered in a timely
manner. Also, the current trend for the real-time data delivery system, specifically SCADA
(Supervisory Control and Data Acquisition) systems, is to move from a closed system toward
an open system that has an open architecture and uses mature computer and communication
technologies. Specifically, CIs tend to adopt micro-processor-based devices a.k.a. Intelligent
Electronic Devices (IEDs) with commodity multi-threaded operating systems such as Linux-
based OSs and COTS wireless LAN technology such as 802.11 WLAN. However, these trends
pose a question of whether real-time guarantees, using these technologies, are feasible and can
be practically implemented without many modifications of the commodity platform.
In this paper, we present a design and implementation of iDSRT, a system that provides end-
to-end soft real-time data delivery guarantees over 802.11 WLAN with minimal changes of
the operating system and no changes in the MAC layer. iDSRT consists of three important
and integrated schedulers: task scheduler, packet scheduler and node scheduler to achieve
the goal. The integration requires a coordination mechanism among these components. We
formulate this coordination problem as a convex optimization problem that can be solved
using standard convex optimization techniques. We implement iDSRT in Linux and evaluate
it in an experimental testbed. The results are promising and show that iDSRT can successfully
achieve soft real-time guarantees with very low packet loss rate compared to 802.11 best-effort
systems.

1 Introduction

Critical Infrastructures (CIs) such as the Power Grid have gained significant attention recently due
to their crucial roles in our lives. Among all of the important aspects of CIs, the real-time monitoring
& control system, specifically SCADA (Supervisory Control and Data Acquisition) systems, is the
most important one because appropriate decisions cannot be made without having data delivered
in a timely manner. Therefore, previous SCADA systems have been built using proprietary and
closed system components specifically to achieve the real-time requirement. However, due to the
cost effective reasons, the current trend of SCADA is to move from a closed system toward an open
system that has open architecture using wide-range of services provided by mature computer and
communication technologies such as TCP/IP, wireless LAN, Linux operating systems and middle-
ware.

Specifically, there are two interesting trends of SCADA. The first trend is to move from micro-
controller-based devices toward micro-processor-based devices a.k.a. Intelligent Electronic devices
(IEDs). Furthermore, as these devices get more intelligent and responsible for monitoring, control and
management functions, their operating systems will become multi-threaded. The obvious benefits
of this trend are to be able to use available services in modern operating systems such as the
TCP/IP networking stack and standard security features. The second trend is to deploy Wireless

? This material is based upon work supported by the National Science Foundation under Grant CNS-
0524695 and Vietnam Education Foundation. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of those
agencies.

2

LAN (WLAN) in SCADA due to the success of recent wireless technologies such as 802.11 or 802.15.4
[1][3][6]. Furthermore, the wireless solution also has certain advantages over its wire-line counter-part
such as the easy and extended device deployment, low deployment cost, and ease of reconfiguration.
Most importantly, in some environments that are physically dangerous and have geographically
difficult locations (e.g. power substations), those benefits are significantly amplified.

The general use of WLAN is shown in Figure 1. The scenario includes both real-time moni-
toring/control and non real-time management applications. Intelligent Electronic Devices (IEDs)
periodically send sampling measurements (such as voltage, current, temperature) to a gateway. The
gateway collects and processes the measurements, and issues necessary control actions to IEDs. The
time requirement in this scenario may be as fine-grained as in the order of milliseconds [7]. In addi-
tion to the real-time monitor and control functionality, both the gateway and IEDs need to handle
other management tasks. For example, the gateway may upload a configuration file to IEDs via a
secure protocol (e.g. SSL).

Gateway

IED

IED

IED

IED

IED

Fig. 1. Wireless LAN deployment in a Power substation

Despite of many benefits coming from the current trends, it is unclear whether we can build a
soft real-time system 1 on top of such commodity operating systems and wireless MAC. Specifically,
the question is on the feasibility of building a system that can provide control of end-to-end delay
(i.e. OS delay and wireless network delay) guarantees over 802.11 wireless MAC with minimal or no
changes of the operating systems and wireless MAC. Interestingly, this problem, in fact, turns out to
be very challenging because the end-to-end delay guarantee requires the delay control at both the
operating system and the wireless network system. Even if we have the real-time operating system
such as [2][9][24][26][30][22][34] and the real-time network such as real-time MAC [28][16][17], the
end-to-end delay cannot be guaranteed if the OS and the network do not coordinate with each other.
For example, if the operating system keeps finishing the task near the end of task’s period and leaves
no time for the network to transmit then the task will keep missing deadlines.

In this work, we show a design and implementation of iDSRT which goal is to provide fine-grained
end-to-end delay guarantees over single-hop wireless networks. The principle design of iDSRT is to
require minimal modification or support from hardware such as network interface card (NIC) and
from the operating system. It is designed to work on top of 802.11-compatible NIC and commod-
ity Linux operating system. iDSRT integrates three schedulers: task scheduler, packet scheduler and
node scheduler to achieve the fine-grainted end-to-end delay guarantees. Specifically, it employs EDF
1 We are interested in soft real-time systems since within the considered CIs the time guarantees are in

millisecond, seconds and minutes with few delivery violations.

3

(Earliest Deadline First) scheduling algorithm for both the task scheduler, called DSRT (Dynamic
Soft real-time CPU scheduler), and the network scheduler, called iEDF (Implicit EDF). The coor-
dination between these two schedulers is executed by a Coordinator entity, called iCoord, sitting at
the middleware layer. The Coordinator coordinates the access to the shared wireless medium, hence
plays the role of the node scheduler. iDSRT decouples the dependency between DSRT and iEDF by
decomposing the real-time task into the CPU task and the network task with appropriate deadline
assignment. The deadline assignment is done in the way that the total stress factor on the system
is minimized.

In summary, our contributions in this paper are:

1. formulating the deadline assignment problem as an convex optimization problem which objective
function is to minimize the total stress factor on the system.

2. a design and implementation of an integrated system providing soft real-time end-to-end delay
guarantees with minimal changes in the commodity Linux operating system and no changes in
MAC layer.

3. a performance study of iDSRT in an experimental test-bed of wireless nodes.

The rest of the paper is organized as follows. Section 2 presents our system model, notations and
assumptions. In Section 3, we show the architecture of iDSRT and an overview of its components.
Section 4 shows our approach to this problem. Section 5, Section 6 and Section 7 give the details of
iCoord, DSRT and iEDF. Section 8 presents necessary details of iDSRT implementation. In Section 9,
we show our evaluation of iDSRT. Section 10 gives the related work and finally, Section 11 concludes
the paper.

2 Models and Definitions

In this section, we show the models, definitions, notations and assumptions used in this work. Table
1 summarizes notations used in this paper.

2.1 Network Model

We consider a single-hop wireless network model where each node can hear all other nodes as shown
in Figure 1. There are n clients (i.e. IEDs) N1, N2, .., Nn in the network and a node S acting as a
server (i.e. gateway). Formally, the network is modeled as an undirected graph G = (V, E) where
V = {N1, .., Nn, S} and E = {(N1, S), ..., (Nn, S)}.

Each client Ni has mi (mi ≥ 0) real-time (RT) applications/streams and may have best-effort
(BE) applications/streams running simultaneously. RT applications stream the data from the client
to the server 2 (see subsection 2.2). A typical example of a RT application/stream is the SCADA
monitoring application, where sampled power-related data (e.g. frequency, amplitude, angle, voltage)
is processed and sent to the server over the wireless network in real-time. Each RT application/stream
has to conform to its QoS specification in terms of end-to-end delay (EED) requirement.

EED is the sum of the delay at the sending side (i.e. at the client side), the propagation delay
and the delay at the receiving side (i.e at the server side). Controlling any of these components
will affect EED. Our system, however, only controls the delay at the sending side. We assume the
propagation delay is negligible compared to other two delay components. Even if the propagation
delay is non-negligible, we cannot control this delay component and thus is not central to our study.
Furthermore, the receiving delay incurred at the gateway, including computation delay and MAC
transmission delay, is small too. The reason is that we assume the gateway is a device with powerful
computation and communication capabilities compared to the clients. Hence, controlling of this small
delay component does not have much effect on the EED and it is also not the focus of our study.

The sending delay consists of the computation delay incurred by the the OS scheduling and the
communication delay incurred by the network scheduling. This delay component can be controlled
2 Even though not specified explicitly in the model, the extension to support communication between two

clients can be done in a similar manner.

4

by assigning deadlines to the computation and communication sub-tasks at each client(see Section
2.2). As long as these sub-tasks are finished on time by the OS scheduler and network scheduler, the
EED requirements can be met.

In our model, the BE applications may or may not stream the data to the server. These BE ap-
plications, if not monitored and enforced properly, can affect the QoS performance of other RT tasks
since they are not aware of real-time aspects of the system. Some typical BE applications in CIs are
FTP application for downloading/uploading devices’ configuration or data encryption/decryption
for secure communication. These network-intensive and computation-intensive applications may con-
sume exhaustively network and CPU resources in the system if not constrained.

2.2 Task Model

We model the RT streaming applications (e.g. monitoring applications) as RT networked tasks, at
the client side, composed of the computation and communication sub-tasks. The end-to-end delay
requirement of streaming applications is now transformed into the end-to-end deadlines of the RT
networked tasks used for scheduling.

Formally, we denote Aij for the jth RT networked task/application on the client Ni
3 where

i = 1..n, j = 1..mi. We also denote AS as the networked task running on the server S. Each task
Aij has a period Pij . It has two sub-tasks ACPU

ij and ANet
ij that needs to be processed in order (see

Figure 2). That means, within period Pij , the sub-task ACPU
ij needs Cij time unit for sampling and

processing data. After the data gets processed, the sub-task ANet
ij needs Rij time unit to send it to

the server task AS on server S over the wireless network G. The deadline Dij of task Aij is equal
to the period Pij .

Both Cij and Rij are CPU and network resources consumed in time. Cij is calculated by the
number of consumed cycles over the CPU frequency. We assume the frequency of the CPU is fixed.
Similarly, Rij is the time of task Aij and its underlying OS/network protocol stack to transmit a
packet of size PSij bytes over the wireless MAC with measured bandwidth Bij at node Ni, i.e.
Rij = PSij/Bij to the server S.

Period Pij

Task Aij

Sub-Task AijCPU

Sub-Task AijNet

Cij Rij

Cij

Rij

h a p p e n -b e f o re

Fig. 2. Task Model

3 iDSRT Framework

Our first goal is to design/establish a scheduling and coordination framework of three important
schedulers (i.e. the task scheduler, the packet scheduler and the node scheduler) that deliver end-
to-end soft real-time guarantees in system G. The next goal is to increase the compatibility of the
system. Specifically, the system should be able to run on a commodity platform such as commodity
Linux-based operating system and 802.11 MAC layer. Each node Ni will consider time-sensitive

3 The terms “RT application Aij” and “RT task Aij” are used exchangeably.

5

Notation Description

n number of clients

Ni client i

mi number of real-time tasks/applications on client Ni

S the server

Aij(Cij , Rij , Pij) the jth real-time task/application Aij running on client Ni

Pij period of real-time task/application Aij

Dij deadline of real-time application Aij and Dij ≤ Pij .

Cij number of time unit Aij consumes CPU resource to process its data.

PSij packet size of application Aij

Bij bandwidth of the wireless MAC of client Ni

Rij number of time unit Aij sends one packet of size PSij .
Rij = PSij/Bij

AS server application running on gateway S

ACPU
ij (Cij , D

CPU
ij , Pij) CPU sub-task of Aij with computation time Cij ,

deadline DCPU
ij and the period Pij .

ANet
ij (Rij , D

Net
ij , Pij) network sub-task of Aij with transmission time Rij ,

deadline DNet
ij and the period Pij .

Tij a deadline assignment to the partitioned tasks of Aij ,
Tij > 0 & Tij < Dij

T a deadline assignment for the whole task set Aij , i.e. T = {Tij}

Table 1. Table of notations

scheduling of a) RT tasks Aij , i = 1..n, j = 1..mi under competition of best-effort tasks, b) network
packets of connections belonging to the RT networked application Aij and BE tasks at the node Ni

and c) node Ni with respect to other nodes Nk, k = 1..n, k 6= i due to the shared access to wireless
medium.

iEDF MAC DSRTMiddleware

Network

MAC

Kernel

User

RTAppsApplication

iCoord
Data Plane Control Plane

BEApps

Fig. 3. End-to-End Integrated Dynamic Soft Real-time Framework (iDSRT)

The scheduling and coordination framework resides in the middleware, network and OS layers
as shown in Figure 3 and it is called iDSRT . It allows RT applications and BE applications to
run together and share resources in controlled manner. RT applications rely on iCoord (Integrated
Coordination) - a distributed middleware component residing in the control plane of the protocol
stack. It receives QoS specification from RT applications, performs RT application profiling, and does
the QoS negotiation on behalf of the RT applications Aij . Its central role is coordinating resource
management components within each node Ni and among nodes Ni, i = 1..n and S in G to ensure
end-to-end delay guarantees. Section 5 describes the details of iCoord.

Any potential conflicts among RT tasks Aij , j = 1..mi and BE tasks on node Ni are resolved by
the Dynamic Soft-Real-time CPU Scheduler, called DSRT [22]. DSRT guarantees CPU resources

6

for RT applications by using an adaptive EDF scheduling algorithm. It is “soft” because it does not
manage other resources of the hardware and thus does not prevent the preemptions due to non-CPU
hardware interrupts. However, the soft guarantees are within the timing bounds of SCADA tasks.
Section 6 will give more details.

The last component in the iDSRT framework is the iEDF (Implicit Earlier Deadline First) packet
scheduler. Essentially, iEDF is a network packet scheduler residing on-top of the MAC layer. It takes
the implicit contention approach to schedule transmission slots according to the EDF policy. It
manages the packet queue of each node and makes sure all nodes agree on the same packet to
transmit over the shared medium within a specific time slot. Section 7 will discuss more details.

4 Deadline Assignment Problem and Solution

4.1 Deadline Assignment Problem

In this section, we formulate the “deadline assignment” problem. As described in the previous
section, we employ the EDF algorithm for CPU scheduler (DSRT), taking care of the task scheduling.
Similarly, the EDF algorithm is also used in the network scheduler (iEDF), taking care of the packet
scheduling (i.e., intra-node scheduling), and the node scheduling (i.e., inter-node scheduling). These
two schedulers (DSRT and iEDF) must coordinate with each other so that the end-to-end deadline
of RT applications Aij can be met. The approach we take is partitioning the end-to-end deadline into
sub-deadlines for the CPU scheduler and network scheduler. Thus, as long as the CPU scheduler
and the network scheduler can schedule the sub-tasks correctly, the end-to-end deadlines will be
guaranteed.

To illustrate the deadline assignment problem and the basic idea of how it is used to solve the end-
to-end delay guarantee, let us consider scenarios in Figure 4. The original RT task Aij(Cij , Rij , Pij)
on node Ni can be thought as being split into two sub-tasks: the CPU task ACPU

ij (Cij , D
CPU
ij , Pij)

and the network task ANet
ij (Rij , D

Net
ij , Pij), where DCPU

ij and DNet
ij are the relative deadlines for

CPU task and network task and DCPU
ij + DNet

ij = Dij(≤ Pij). Furthermore, if the phase of the
network task ANet

ij is equal to DCPU
ij (i.e. the relative deadline for the CPU task), then the end-to-

end delay of Aij can be met as long as the CPU task and the network task meet their deadlines
within the node Ni.

A deadline assignment T = {Tij |Tij > 0 & Tij < Dij , i = 1..n, j = 1..mi} is a set of deadlines
Tij assigned to each corresponding RT task Aij i.e. DCPU

ij = Tij and DNet
ij = Dij − Tij . T is valid

if it yields a feasible scheduling for the CPU task set at each node and the network task set in the
system. Furthermore, in addition to the validity constraint, T can also be optimized according to an
objective function. Different objective functions may lead to different ways to assign deadlines and
thus, different solutions [18][19][31][29]. In other words, a solution of the deadline assignment problem
T specifies a set of {Tij}, u = 1..n, j = 1..mi where 1) assigning DCPU

ij = Tij and DNet
ij = Dij − Tij

will yield a feasible scheduling for all CPU tasks and network tasks and 2) T is optimized according
to an objection function. In the next section, we describe our approach to this problem.

4.2 Solution to Deadline Assignment Problem

Intuitively, for any deadline assignment T = {Tij |Tij > 0 & Tij < Dij , i = 1..n, j = 1..mi},
decreasing Tij will put more stress on the CPU of node Ni and less stress on the network and vice
versa. Thus, it is desired to put the stress fairly on both resources. Formally, let us define the stress
factor on CPU resource of a deadline assignment Tij as

FCPU
ij (Tij) =

Cij

Tij

and similarly for the network resource as 4

4 Note that DNet
ij = Dij − Tij

7

Period Pij

Task Aij
Cij Rij

Cij

Rij

Sub-Task AijCPU

Sub-Task AijNet

happen-before

DijCPU

DijNet

Fig. 4. Illustration of deadline assignment problem for the task Aij

FNet
ij (Tij) =

Rij

Dij − Tij

and the total stress of a deadline assignment Tij

Fij(Tij) = FCPU
ij (Tij) + FNet

ij (Tij).

To give an intuition of why this stress factor is important, let us compare the assignment T with
the the optimal case where CPU sub-task and network sub-task have no dependencies and thus can
be executed in any order. Without any dependencies between CPU sub-task and network sub-task,
the stress factor of a task Aij is

F ∗ij =
Cij

Dij
+

Rij

Dij
.

It is easy to see that

Fij(Tij) =
Cij

Tij
+

Rij

Dij − Tij
>

Cij

Dij
+

Rij

Dij
= F ∗ij . (1)

.
The above equation means that due to the dependency among sub-tasks, the resource partitioning

always puts more stress on both resources. Thus, it is preferable to minimize the total stress of all
tasks on the system over all possible deadline assignment T

minimize F (T) =
∑n

i=1

∑mi

j=1 Fij(Tij), ∀T

.
F (T) is used as the objective function to the deadline assignment problem. We now formulate

the constraints from the CPU scheduling and network scheduling.
The CPU scheduler and the network scheduler need an EDF admission control, where tasks have

deadlines less than periods. This can be done by using the processor demand criteria [14][10] (cf.
Sections 6 and 7). Essentially, the basic idea is to test whether within every possible time interval
L, the processor demand of all tasks having deadline less than L is less than the time length L.

Therefore, the problem can be formulated as an optimization problem as follows.

minimize F (T)
variables T = {Tij , i = 1..n, j = 1..mi}

constraints Cij < Tij < Dij , i = 1..n, j = 1..mi

schedulability tests for CPU and network tasks

The above optimization problem is a non-linear optimization problem because the objective
function is non-linear. However, it is easy to see that the objective function is a convex function
because it is the sum of convex functions Fij(Tij) [11]. Furthermore, except the schedulability tests

8

for CPU and network tasks, all other constraints are indeed linear (and hence, convex). We now are
interested to see whether the schedulability tests are actually convex.

In [12], the authors analyze the processor demand criterion and come up with the concept of
“space of EDF feasible deadlines”. Furthermore, they give a method to compute the exact EDF
feasible region. Even though this exact region is nice and interesting, it is still complicated and thus
not quite useful for applications. Therefore, they provide a simpler method to find an approximation
of this space and interestingly, it turns out this approximation is convex! Thus, the schedulability
tests can be approximated and become convex.

Now, because the objective function and all constraints are convex, the optimization problem
becomes a convex optimization problem. Therefore, by using standard convex optimization solving
techniques such as Lagrange multipliers method [11], the problem can be solved theoretically and
numerically. It is important to note that solving convex optimization is tractable, i.e. it has polynomial
complexity. We omit the details because they can be found in convex optimization [13] or non-linear
programming literature[11]. Once solved, the result of this optimization problem is the deadline
assignment T = {Tij , i = 1..n, j = 1..mi} assigned to each corresponding task Aij (i.e. DCPU

ij = Tij

and Dnet
ij = Dij − Tij).

5 Integrated Middleware Coordination (iCoord)

iCoord is a distributed middleware component which coordinates all system scheduling components
to ensure RT applications meet their deadlines. It operates in the control plane of the node’s protocol
stack to provide the node registration service, task profiling and coordination services. Its services
are a set of middleware libraries whose computation overhead is charged to the calling tasks’s
computation.

Figure 5 shows the middleware control architecture of iCoord. iCoord consists of two modules:
Local iCoord residing on each client Ni and Global iCoord residing on the gateway S. Local iCoord
is in charge of coordinating system components at each node Ni and communicates with Global
iCoord to assist in inter-node scheduling with other nodes’ Local iCoord(s). Global iCoord executes
global services on server S, where Local iCoord executes local services on each client Ni. Together,
they ensure distributed utility services, such as the coordination service, registration service and the
profiling service.

Local RegistratorCPU Profiler Network Profiler
Local CoordinatorLocal iCoord Global CoordinationGlobal iCoord Global Registrator

iEDFDSRT
GatewayIED

Network Profiler
Fig. 5. Middleware control plane architecture iCoord

Figure 6 summarizes the protocol within iCoord.
Registration Service is a service that takes care of the registration of real-time applications.

Essentially, every RT application has to register with iDSRT because un-registered applications are

9

Re g i s t e r Ai j wi t h G l o b a l i Co o r d

S e n d d e a d l i n e a s s i g n m e n t s

Local
iCoordApplication Aij Global

iCoordRe g i s te r wi th th e L o c a l i Co o r d

E x ec ut e C P U & N et
P r of i l i ng

R e t u r n A p p I D

S Y N C

Send to
DSRT &
iEDF

Re a d y t o SYNC

System READY to
run

Execute
Deadline

Assignment
Algorithm

App. READY to run
SYNC

Fig. 6. iCoord protocol

treated as BE applications. First, the registration is done via the Local iCoord Registrator. The
registration request from an RT application Aij includes

– Tuple of (pid, saddr, sport, daddr, dport)
where parameter pid, saddr, sport, daddr, dport are the process identifier, the source address,
the source port, the destination address, the destination port respectively. These parameters are
used to uniquely identify each real-time communication application Aij .

– Period Pij(µs)
– Requirements Cij(µs) on CPU resource and network resource Rij(µs), which are measured by

the profiling services.

The Local iCoord Registrator sends the registration information of this application to the Global
iCoord Registrator. After the Global iCoord Registrator acknowledges the successful registration of
the application Aij , the Local iCoord Registrator returns a unique ID calculated from the tuple of
registration information to the application. Finally, the Local iCoord Registrator invokes the CPU
and network profiling services to approximate the CPU and network usage of the application (i.e.
Cij and Rij). Finally, it sends the profiles of this task to the Global iCoord Registrator so that the
node admission control, inter-node scheduling and coordination can be performed.

Profiling Service consists of the CPU profiler and network profiler on each client Ni. These
two profilers are invoked after the registration phase. The CPU usage is measured by having DSRT
run several instances of the RT task Aij . Similarly, the network profiling is done by measuring the
packet round-trip-time between the networked application at the client Ni and the server S.

Coordination service is a distributed middleware component. Similar to the Registration ser-
vice, Coordination service has a Global Coordinator at the gateway S and a Local Coordinator
at each node Ni. The Global Coordinator at the gateway gathers profiles of all RT applications
from the Global Registrator and performs the deadline assignment algorithm discussed in Section 4.
Then, it sends this information to all Local iCoord Coordinators. The information includes deadline
assignments for the inter-node (i.e. DNet

ij) and intra-node (i.e. DCPU
ij) scheduling of all the tasks in

the system G.
Upon receiving the deadline assignment of all tasks, the Local Coordinator confirms with DSRT

and iEDF about the acceptance of these local tasks. At the end of this phase, each Local iCoord
Coordinator notifies the Global iCoord Coordinator that node Ni is ready, and all local components
DSRT, iEDF and Local iCoord wait for the SYNC message from the Global iCoord Coordinator.

In the last phase, the Global Coordinator waits for all acknowledgments from Local Coordinators
and broadcasts the SYNC message. The SYNC message start the run-time of the whole system G.

10

6 DSRT (Dynamic Soft Real-time Scheduler)

Real-time Task
Admission Control

Overrun ProtectionSRT SchedulerCycle Demand Adaptor
Best-effort Scheduler

Best-Effort Task

DSRT

Fig. 7. DSRT Architecture

DSRT is responsible for CPU task scheduling according to their deadlines. Specifically, on client
Ni, it manages real-time CPU tasks ACPU

ij , j = 1..mi as modeled in section 2.2. To achieve this ob-
jective, DSRT is composed of three basic components, the Admission Control, the Earliest-Deadline-
First (EDF) Scheduler and the Cycle Demand Adaptor.

On a node Ni, before using the realtime capabilities of the system, a new RT task ACPU
ij must

register itself with iCoord as a RT task in the DSRT. Specifically, it must specify its period, its worst
case execution time and its relative deadline 5. The admission control for DSRT on a node Ni is the
EDF schedulability test. It means,

∀L ∈ DLset, L ≥
mi∑

j=1

(bL−DCPU
ij

Pij
c+ 1)Cij (2)

where DLset = {dkl|dkl = lPik + DCPU
ik , 1 ≤ k ≤ mi, l ≥ 0} is the set including all tasks’

deadlines less then the hyper-period of all periods (i.e. least common multiplier of Pi1, .., Pimi).
If the condition is met, the task ACPU

ij is added to the running queue of the EDF Scheduler and
is scheduled to run in the next period. If the task cannot complete its job in the allotted time, due to
demand cycle variations, the Overrun Timer will preempt the task to best-effort mode. In this case,
the task ACPU

ij will only be allowed to run after all other real-time tasks have used their allotted
CPU time. The Overrun Timer removes the task from the running queue and adds it to the overrun
queue. Tasks in best-effort mode compete against each other and use the standard OS non-realtime
scheduler (Linux in the case of our implementation). Therefore, they cannot get a guaranteed CPU
allocation.

If the deadline DCPU
ij is not met, the Cycle Demand Adaptor will keep track of this event. If it

detects that the change in the cycle demand is persistent and that assigned deadlines are not met, it
will try to increase the allotted cycle demand for this particular task ACPU

ij . In that case the Cycle
Demand Adaptor will query the DSRT admission control to verify whether there are enough CPU
resource to increase the allotted resource for the task ACPU

ij .

5 The information Cij and DCPU
ij is provided by iCoord as explained in Section 5.

11

7 iEDF (Implicit Earliest Deadline First packet scheduler)

iEDF is a distributed network scheduler that takes “implicit contention” approach to perform the
EDF packet scheduling algorithm [15][16]. Each client uses iEDF as its network scheduler. Concep-
tually, this network scheduler is actually an outgoing-packet scheduler working on top of the MAC
layer. It manages how packets are prioritized to ensure they will meet the deadlines. Technically, it
is a kernel-loadable queue-management module hooking into basic network operations of a partic-
ular NIC device. More technical information will be given in Section 8.2. Also, it is important to
emphasize that we are focusing on the network sub-task ANet

ij processing network packet of the RT
application Aij and thus in this section “real-time task” refers to the “network sub-task”.

The basic idea of implicit contention scheduling is to have each client run the same task scheduling
algorithm on the same set of RT tasks. At any time slot where all clients need to agree on who can
access the shared wireless resource according to the Deadline Assignment solution (Section 4.2), each
client executes the same scheduling algorithm on the current set of RT tasks 6. Because all nodes
run the same scheduling algorithm on the same input, the selected RT task is identical. Once a RT
task is selected, only the client having the selected RT tasks can access the shared wireless resource.
Once the RT task finishes its access to the shared resource, all clients update the current set of
real-time tasks. In this manner, clients “implicitly” agree on the one to exclusively access the shared
resource without exchanging any information during their network operation. All the information
about RT tasks are exchanged during the bootstrapping.

iEDF is an implicit contention scheduling which uses EDF as the packet scheduling algorithm. At
any time slot, all clients agree on a RT task ANet

ij to access the shared wireless medium according to
the EDF policy. Specifically, for a client Ni, RT tasks ANet

ij , j = 1..mi running on Ni are called local
RT network applications and other RT applications running on other clients are called remote RT
network applications. iEDF at each client Ni maintains the deadline assignment and task information
of remote RT network tasks in addition to its local RT network tasks disseminated via iCoord (see
Section 5).

Once iEDF has all network task deadline information, it creates a “shadow network task” for each
remote network task. The shadow network task has the same period, deadline and transmission time
as the network task being shadowed. When the shadow network task ANet

kj , j = 1..mk “executes” on
Ni, i 6= k, it does nothing but sets up a timer to wake up after the transmission of ANet

kj . On waking
up, the shadow network task again notifies iEDF that the remote network task is supposed to finish
now. On this event, iEDF schedules another RT network task, either local or remote (shadow) for the
next transmission. In this way, iEDF is doing the EDF scheduling algorithm in a distributed manner.
Furthermore, packet collisions will rarely happen because iEDF at each client aims to ensure and
comply to the global deadline assignment. Figure 8 shows an illustration of this implicit contention.

Even though the principle of iEDF is very simple, there are couple of issues that we need to
address. The first issue is the correct estimation of the transmission time of the shadow network
task. For any particular transmission, the remote network task ANet

kj may finish earlier than expected
due to worst case profiling and estimation of Rkj . It may also finish later than expected due to the
noisy and unreliable channel. In the former case, iEDF ignores the early transmission and accepts
the waste of idle network resource. In the latter case, iEDF actually has to avoid starting another
transmission to minimize the packet collisions. To resolve this issue, iEDF only needs to over-hear
the wireless network to know when the remote network task finishes. This is a very simple solution
yet good enough to resolve the scheduling issues.

The second issue is that even though iEDF is a network scheduler, it still needs non-negligible
CPU resource for network tasks (local and remote). To resolve this issue, we let the network task’s
CPU consumption to be charged to the computation time of the corresponding RT applications.

Last but not least, a very important issue is the admission control. It is obvious that iEDF is
a non-preemptive EDF scheduling because a network transmission cannot be preempted. Unfortu-
nately, it has been known that non-preemptive EDF is not optimal and in fact, no known optimal

6 Note that this is perfectly reasonable assumption for the application domain that we are considering. The
SCADA IED sensing devices are running the same software and the same set of RT tasks

12

EDF

Ai1

Node Ni Node Nk

Ai2

EDF

Ai1
Setup a timer

...

Real-time Tasks

Ak1

Ak2Ak2

Ak1

Ai1

Ai2
Shadow Tasks

Fig. 8. Illustration of implicit contention scheduling

solution to the non-preemptive scheduling problem is computationally tractable anyway [14]. How-
ever, non-preemptive EDF still remains universal for periodic tasks (and sporadic tasks) [14][23]. In
[23], Jeffay et al. showed a necessary condition of non-preemptive EDF scheduling done in pseudo-
polynomial time and can be used for the admission control purpose. In iDSRT architecture, the
network admission control is performed at iCoord.

8 Implementation

We have implemented iDSRT in nodes running Linux with kernel version 2.6.16 and it is compatible
for later kernel versions. The overall objective of our implementation is to minimize the changes in
the kernel. In this section, we describe details of the implementation of each component in iDSRT.

8.1 DSRT Implementation

DSRT was originally implemented by Chu et al. [22] in Linux Kernel 2.4. However, due to in-
compatibilities to Linux Kernel 2.6, DSRT is implemented from scratch in Linux Kernel 2.6. Our
implementation has a series of kernel modules and patches taking advantage of the new features
provided by the Linux Kernel 2.6.

DSRT implements nine new system calls allowing RT tasks to communicate with DSRT. These
system calls provide DSRT with the information required to reserve CPU resource and prioritize a
task according to its QoS requirements. In these system calls the task ACPU

ij specifies the average
cycle demand, which is used to calculate Cij , (dividing by the CPU frequency), the deadline DCPU

ij

and the period Pij . DSRT provides information about the performance and the status of the RT
task, including the number of times a task tried to overrun and the statistical CPU utilization. The
list of system calls is shown in the Table 2.

Our DSRT implementation needs only one kernel patch. That is the patch on the file sched.c
in order to provide CPU accounting for each task. Linux currently provides such mechanism in the
kernel but only with maximum resolution of 1 jiffy (number of iterations of the kernel per second)7

while we need high precision task accounting to the microsecond resolution. Simply increasing the
jiffy resolution will cause enormous kernel overhead. In our implementation, we measure CPU usage
of real-time tasks in cycles instead of jiffy. This is achieved by adding a hook in schedule() function.
This hook is called every time that a context switch is about to occur. It allows us to measure the
elapsed cycles between the current and the previous context switch and therefore precisely account
for the CPU time of each task. Once done, the number of cycles is converted to time unit by dividing
the number of cycles by CPU frequency.

7 Within Linux 2.6.10, a jiffy is by default 4ms.

13

System Call Description

cpu request profile(period) Requests online cpu profiling to the DSRT.

cpu begin profile() Signals the DSRT that the task is ready to begin the
profiling of a new job.

cpu finish profile() Signals the DSRT that the task completed the job for
that period.

exit srt(usage statistics) Unregister the task as realtime. The DSRT provides
task accounting statistics.

enter srt(period, deadline, avgcycles) Requests soft realtime guarantees for the task.

begin job() Signals the DSRT that the task is ready to process a
new job.

finish job() Signals the DSRT that the task completed the job for
that period and yields the CPU.

exit srt(usage statistics) Unregister the task as realtime. The DSRT provides
task accounting statistics.

synchronize period() This function sets the beginning of the period. It sets
the next deadline of the job to the current time plus
the length of the period.

Table 2. List of system calls implemented in DSRT

We implement the rest of the DSRT as a kernel module. We use high-resolution timers provided
in the kernel to ensure that tasks can wake-up at the precise time and to prevent overruns from
greedy BE and RT tasks.

DSRT has a new data structure to store the QoS parameters Cij , D
CPU
ij , Pij of the task containing

information about the state of the RT task used by both the EDF scheduler and the Cycle Demand
Adaptor. When a new RT task makes a request for QoS guarantess to DSRT, DSRT creates a new
instance of this data structure (called srt task struct) containing information about the state of the
particular RT task. This task is also cross-referenced with the task struct structure defined by the
Linux scheduler to ensure proper communication between the Linux scheduler and DSRT. More
precisely, the data structure contains a pointer to the associated task struct structure, necessary
information about the state of the RT task in the DSRT scheduler (running, sleeping, best-effort
mode)8, the period, the cycle demand requested, the number of deadlines missed, the number of
periods in which the task tried to overrun and the statistical CPU usage in cycles.

Conceptually, DSRT implements 3 runqueues that allow the EDF scheduler and the overrun
timer to schedule the tasks. The first runqueue is for the RT task process currently ready to run.
The second one is for the RT task processes that are running in best effort mode because they
overrun. The last one is for the RT task processes that are awaiting for the beginning of the next
period. We implement these runqueues as a single list of processes sorted by the EDF policy. We
use the information stored in the srt task struct about the state of the task to differentiate among
different runqueues. We avoid implementing more runqueues due to unnecessary kernel overhead.
Also, even though the current DSRT implementation takes O(n) complexity (n is the number of
RT tasks) due to the linked list operations, the computation complexity can be brought down to
O(log(n)) by using a heap data structure.

To further minimize the number of changes required to the Linux scheduler, the DSRT scheduler
does not load or schedule the RT tasks directly, instead it relies on the Linux scheduler. The DSRT
simply rises the priority of the running RT tasks to the highest RT priority available on the system,
and requests a reschedule to the Linux kernel. This triggers a context switch and forces the Linux
scheduler to pick the task that DSRT wants to be scheduled next. To preempt a running RT task
to best effort mode when the overrun timer expires, it simply suffices to lower RT task’s priority
in the Linux scheduler to normal and rise the priority of another RT task. When all the RT tasks
have completed the running job, they yield the CPU by invoking the sched() function. Upon the

8 Note that a RT task ACPU
ij can also become BE task if it violates its assigned deadline DCPU

ij (see
discussion in Section 6)

14

call, the Linux scheduler will take care of scheduling all the BE tasks including iDSRT aware and
non-iDSRT aware tasks. The DSRT scheduler remains idle until one of the RT tasks begins a new
period. This approach makes the implementation simple and ensure maximal compatibility with
non-iDSRT aware tasks.

8.2 iEDF Implementation

Essentially, iEDF is a queuing discipline in Linux. It communicates with the Local Coordinator via
the /proc/ file system. This interface includes create/modify/delete a local (shadow) task ANet

ij and
a SYNC signal with the Local Coordinator. iEDF maintains the information of those tasks ANet

ij

by a double linked list data structure. Each shadow task in iEDF is implemented as a kernel timer
that simulates the same behavior as the corresponding task. It is important that even though iEDF
may have many timers for shadow tasks, Linux Kernel 2.6 implements these timers as a single high
resolution kernel timer to reduce the overhead.

When loaded, iEDF hooks into the queue of the specified network device and replaces the
enqueue(), dequeue(), requeue(), drop() functions of the queue with its own functions. The two
most important functions are enqueue() and dequeue() function. enqueue() function is invoked
when an application requests to send a packet. iEDF captures this packet and extracts the identifier
of the application which has sent the packet. If the the application identifier maps to an unregistered
identifier, the task is treated as best-effort and the packet is put into the default BE queue. If the
application has registered with iEDF, iEDF will put the packet into the corresponding queue of the
RT task. Whenever a task is supposed to transmit according to the EDF policy, iEDF grasps a packet
from the corresponding task’s queue and sends the packet to the MAC. When dequeue() function
is called, iEDF will prioritize any RT task available to send. If there is no RT task available, it will
grasp a packet in the default queue and send to the MAC. This will ensure the work-conserving
semantic of the EDF algorithm. In other words, this is how BE packets are treated. They only get
transmitted (in FIFO manner) only when there is no RT packet in the queues of all clients.

iEDF maintains a FIFO queue for packets of each application. Each entry in a FIFO queue
is a pointer to sk buff kernel data structure of a real packet. Thus, iEDF works on pointers to
packets to avoid any extra data copy overhead. In addition, iEDF maintains a bitmap representing
applications that have packets in the FIFO queues (i.e. one bit per application). Whenever a packet
of a RT application enters the queue, the corresponding bit is set to 1. This bit will be set to 0 when
the last packet leaves the corresponding queue. To look up applications with non-empty FIFO queue,
iEDF uses ffs() operator on the bitmap to efficiently search for the 1-bit. Similar to DSRT, the
complexity of iEDF scheduling is O(n) (n is the number of RT applications) due to the complexity
of maintaining linked lists for the applications’ information. This complexity can be brought down
to O(log(n)) by using a heap data structure.

9 Evaluation

9.1 Experiment setup

We evaluate our system in a test-bed of 7 laptops. The configuration of laptops is IBM T60 Dual
Core 1.66Ghz with 802.11a/b/g Atheros-based wireless card. We disable one core to emphasize the
impact of DSRT on CPU scheduling. All laptops run Linux kernel version 2.6.16 with high-resolution
timer patch. We setup the laptops as shown in Figure 9. There is one laptop acting as a gateway.
The rest of the laptops are clients. To ensure that the gateway is more powerful than the clients,
we set the CPU frequency of the server to the highest one (1.66 Ghz) and the CPU frequency of
the clients to 1Ghz. All of laptops operate on 802.11a mode and are placed such that they are
within the transmission range of each other. The network also operates on the channel that has least
interference to minimize external effects.

15

Gateway
Client 1

Client 2
Client 3 Client 4

Client 5
Client 6

802.11a

Fig. 9. Testbed setup

9.2 Scenarios

The RT application in the experiment is a regular periodic task creating/reading and sending a
packet every 30ms. This is a typical RT task and time requirement for IED devices measurements
(e.g. Phasor Measurement Unit devices) as specified in [7]. Each packet encapsulating a PMU mea-
surement with the RTP-like header [5] has the size of 128 bytes. The RTP-like header contains the
sequence number for calculating packet losses and time-stamp for clock synchronization and delay
calculation.

Other parameters of RT applications such as computation time, network transmission time, sub-
deadlines are measured and assigned by iDSRT. To scale up the experiments, each client may have
more than one RT application. Specifically, we keep adding the RT applications in the system until
the admission control fails. Note that for any number of RT applications in the system, these RT
applications are distributed equally to clients. For example, if there are 10 RT applications in the
system, each client has b10/6c = 1 application and the remaining four RT applications are assigned
to any four clients.

Our goal is to to make sure that the system can provide real-time guarantees even there are
competing BE applications. On each client we run a very CPU-intensive BE application to compete
for the CPU resource. Furthermore, we setup three BE TCP flows from three clients to the server.
These three TCP flows will always try to send as much as they can when getting a chance. We use
iperf [4] as our TCP BE applications.

9.3 Evaluation metrics

We compare our iDSRT system against three other systems. The first one, named as “BestEffort”
is the combination of commodity Linux and 802.11 MAC. The second one, named as “DSRT only”,
is the system with DSRT enabled and iEDF disabled and the last one, named as “iEDF only” has
iEDF enabled only and DSRT disabled. The metrics we use are 1) RT end-to-end delay from a
client Ni to the gateway S, and 2) the percentage of packet losses of RT applications Aij and 3) the
percentage of missing deadlines of RT applications Aij .

All measurements above are done at the gateway S. In every experiment, each application sends
1000 samples, which takes 30ms × 1000 = 30s to finish. The end-to-end delay is measured as the
time difference from the packet sent at the client to the time that packet received at the server9.
The percentage of packet losses are measured by counting the missing sequence numbers. Similarly,

9 The clocks of these clients are synchronized on every wireless transmission

16

the percentage of missing deadlines is measured as the number of packets that are received later
than the deadline at the gateway. Also, in each scenario, experiments are repeated 5 times to get
the average measurements.

9.4 Experiment Results

End-to-End delay: Figure 10 shows the end-to-end delay four different systems. The x-axis rep-
resents the total number of applications. The y-axis shows the average end-to-end delay in ms. In
general, only iDSRT can guarantee the deadlines while the other systems cannot. BE system cannot
handle the RT applications well because it does not prevent CPU-intensive application and TCP
flows from exhausting CPU and network resources. This makes sense because BE system is designed
for general purpose, not for real-time purpose.

DSRT-only system prioritizes RT processes and schedules them according to their deadlines. The
CPU resource for RT processes is “reserved”, i.e. BE processes cannot compete for that reserved
resource. That is the reason why DSRT-only system performs better than the BE system. However,
because DSRT-only system can only provide RT guarantee on the CPU resource and it lacks of the
RT network scheduler, the end-to-end delay cannot be guaranteed.

iEDF-only system performs worst due to two reasons. The first one is the lack of support from
the RT CPU scheduler (i.e. DSRT). The BE CPU scheduler (i.e. Linux scheduler) is done in a
round-robin fashion and is not aware of application deadlines. Consequently, packets arrive to iEDF
in an aperiodic fashion, which may be earlier or later than the slots iEDF reserves for network
transmission. If a packet of a RT task arrives to iEDF later than the slot reserved for its network
part, it can only be transmitted until the next reserved time slot releases. This causes cascading
missing deadlines of a RT task and can only be fixed with a coordination from the CPU scheduler.
This explains why it performs worse than the BE system. The other reason is the shared nature of
wireless medium among clients which makes consumed network resource grow quickly as the number
of RT applications increase. That explains why iEDF does not scale as good as DSRT.

Lastly, iDSRT with the integration of DSRT, iEDF and the iCoord coordination protocol per-
forms the best. This result validates our design idea in which node scheduler, packet scheduler and
task scheduler have to coordinate very well. Missing any components will not be sufficient to provide
soft real-time guarantees.

It is also important to emphasize that iDSRT needs a good profiling and an admission control.
In our scenario, iDSRT cannot accept more than 13 RT applications due to the admission control.
We did run more than 13 applications and the results basically show that, not admitted RT tasks
perform much worse than in BE system because most resources in iDSRT are reserved for admitted
RT tasks. This, again, underscores the importance of QoS guarantees: once RT tasks are accepted,
they will receive what promised by the system.

Missing deadlines: Figure 11 shows the number of missing deadlines of the four systems under
various total number of applications. The x-axis shows the total number of applications and y-axis
is the percentage of missing deadlines.

The general trend in this figure is similar to the previous one. BE system and DSRT-only system
have similar percentages of missing deadlines (30% to 40%). In these systems, the main cause for
missing deadline is the lack of network scheduling. iEDF-only performs worst as expected due to
the lack of support from CPU scheduling and higher resource-consuming rate of each application.
iDSRT performs best and has only around 15% missing deadlines.

This figure also shows the nature of “soft” RT guarantees. The reasons for missing deadlines,
even in the case of iDSRT, are preemptions due to hardware interrupts and non-preemptive nature
of network scheduling (i.e. iEDF cannot preempt a packet being sent). However, iDSRT with a low
average end-to-end delay (around 15ms) and a reasonable missing deadlines (around 15%) is still
the best candidate to achieve soft RT guarantees.

To further support that iDSRT is the best candidate, we show the maximum delay of each systems
in Table 3. This table essentially shows the worst end-to-end delay of each system in our experiments.

17

It is clearly shown that iDSRT has the smallest worst end-to-end delay with the deviation of 5ms.
In other words, iDSRT misses 15% of deadlines but the deviation is bounded in 5ms.

#Apps Best Effort DSRT-only iEDF-only iDSRT

6 90.06 90.54 51.58 34.17

7 93.75 88.40 69.90 35.38

8 96.88 92.34 82.82 35.59

9 482.05 101.30 102.43 33.78

10 508.31 109.15 138.21 33.59

11 505.76 97.77 154.13 34.17

12 516.69 128.25 164.42 34.63

13 558.37 136.11 169.35 35.25

Table 3. Maximum EED (ms)

Packet Losses Figure 12 shows the packet losses of four systems. As shown clearly in the figure,
all systems have very low packet loss rate (less than 0.1%). iEDF in this case shows the advantage
of very low (almost no) packet losses due to the distributed scheduling mechanism. iDSRT, again,
inherits the advantage of both DSRT and iEDF to achieve almost no packet loss.

10 Related Work

There has been large amount of research work that address individual, part of the end-to-end RT
problem and can be classified into three categories: real-time operating system, real-time wireless
network and end-to-end delay guarantee. The first category addressing real-time operating system
has been extensively explored. Typical work in this category includes hard real-time solutions such
as LynxOS [2], RTLinux [9]; firm real-time solutions such as Rialto [24], SMART[26], KURT [30]
and soft real-time solutions such as DSRT [22], GraceOS [34]. An important observation is that the
harder real-time guarantee is, the more support from special hardware or modification of operating
systems are required and thus the less accessability to wide-range of operating system services.
Furthermore, these works only address the real-time aspect of operating systems, which is a part of
the end-to-end delay guarantee.

The second category addressing real-time wireless network has been also well explored. A typical
work is the 802.11e standard [8]. Although 802.11e becomes the standard and commercially available,
its prioritization mechanism does not work well when there are multiple flows with the same priority.
In fact, it even increases more collisions due to its aggressive medium access parameters such as
smaller CWmin and CWmax. Besides 802.11e, there are plethora of work involving with MAC design
such as Black Burst contention [32][33][28], RI-EDF [16] or Wireless Token Ring [17]. Even though
these schemes can work well, they require MAC modification and thus make it less compatible and
more expensive to the work that exploits standard services and available hardware. We believe that
with the wide-spread availability of 802.11-based hardware, it is much cheaper and more applicable
to have a solution working on top of and independent of 802.11 MAC. Several works sharing this
view includes Overlay MAC [27] and middleware-based control [21] [20]. Unfortunately, these works
only address the real-time aspect of the wireless networks and ignore the real-time aspect of the
operating systems. Thus, again they cannot provide the full end-to-end delay guarantee.

In the third category, essentially, previous work has shown the need for integrating the task sched-
uler and the network scheduler referred to as multi-resource coordination/reservation and scheduling
problem [18][19][31][29]. In [29][25], the approach is to allocate the resources such that the end-to-
end delay can be guaranteed while optimizing the general resource utilization. Xu et al. [31] tries to
provide best end-to-end QoS level for an application under the constraints of resource availability
in wired networks. In [18][19] end-to-end delay is achieved by assigning deadlines for each resource

18

 0

 50

 100

 150

 200

 250

 6 7 8 9 10 11 12 13

E
nd

-t
o-

E
nd

 D
el

ay
 (

m
s)

#Apps

Best Effort
DSRT only
iEDF only

iDSRT
Apps’ period (30ms)

Fig. 10. End-to-End Delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 7 8 9 10 11 12 13

P
er

ce
nt

ag
e

of
 m

is
si

ng
 d

ea
dl

in
es

#Apps

Best Effort
DSRT only
iEDF only

iDSRT

Fig. 11. Missing deadlines

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 6 7 8 9 10 11 12 13

P
er

ce
nt

ag
e

of
 p

ac
ke

t l
os

s

#Apps

Best Effort
DSRT only
iEDF only

iDSRT

Fig. 12. Packet Loss

19

such that the number of future applications admitted is maximized. However, the works consider
only the wired networks and are not applicable to the wireless networks.

11 Conclusions

We have shown an integrated soft real-time scheduling framework, i.e. multi-resource allocation and
scheduling for periodic soft-real-time tasks in wireless LAN environment. This is the first integrated
system that considers both scheduling and coordination of three important entities in WLAN: the
RT tasks, the RT packets and the nodes that share the wireless medium. The result of iDSRT clearly
show that augmented Linux and 802.11 WLAN technologies are feasible for critical infrastructures
such as PowerGrid SCADA systems and can yield delay and loss guarantees currently only achievable
over the wired network with modified general purpose kernels. We believe that iDSRT allows an easy
deployment of general purpose hardware and software in PowerGrid substation, while preserving a
major requirement of the real-time guarantees.

References

1. General electric wireless SCADA/Telemetry networking, http://www.microwavedata.com/applications/scada/.
2. LynxOS - Hard real-time OS features and capabilities.
3. SEL-3022 wireless encrypting transceiver, http://www.selinc.com/sel-3022.htm.
4. The TCP/UDP bandwidth measurement tool, http://dast.nlanr.net/projects/iperf.
5. RTP: A transport protocol for real-time applications, RFC 3550, July 2003.
6. IEEE P1777/D1: Draft recommended practice for using wireless data communications in power system

operations, February 2007.
7. IEEE Standard 1646: Communication delivery time performance requirements for electric power sub-

station automation.
8. IEEE standard 802.11e, http://standards.ieee.org/getieee802/802.11.html, September 2004.
9. Ayers, and Yodaiken, B. V. Introducing real-time linux. Linux Journal 1997, 34es (1997), 5.

10. Baruah, S., Rosier, L., and Howell, R. R. Algorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one processor. In Journal of Real-time Systems (1990).

11. Bertsekas, D. P. Nonlinear Programming. Athena Scientific, 1999.
12. Bini, E., and Buttazzo, G. The space of EDF feasible deadlines. In 19th Euromicro Conference on

Real-Time Systems (ECRTS) (2007).
13. Boyd, S., and Vandenberghe, L. Convex Optimization. Cambridge University Press, 2004.
14. Buttazzo, G. Hard Real-Time Computing Systems, Predictable Scheduling Algorithms and Applica-

tions. Kluwer Academic Publishers, 1997.
15. Caccamo, M., Zhang, L. Y., Sha, L., and Buttazzo, G. An implicit prioritized access protocol for

wireless sensor networks. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS) (2002).
16. Crenshaw, T. L., Hoke, S., Tirumala, A., and Caccamo, M. Robust implicit EDF: A wireless

MAC protocol for collaborative real-time systems. In Transaction on Embedded Computing System
(2007).

17. Ergen, M., Duke Lee, R. S., and Varaiya, P. WTRP: Wireless token ring protocol. In IEEE
Transaction on Vehicular Technology (2004).

18. Gopalan, K., and cker Chiueh, T. Multi-resource allocation and scheduling for periodic soft real-time
applications. In Proceedings of ACM/SPIE Multimedia Computing and Networking (2002).

19. Gopalan, K., and Kang, K.-D. Coordinated allocation and scheduling of multiple resources in real-
time operating systems. In Proceedings of Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT) (2007).

20. He, W., and Nahrstedt, K. Impact of upper layer adaptation on end-to-end delay management
in wireless ad hoc networks. In 12th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), (2006).

21. He, W., Nguyen, H., and Nahrstedt, K. Experimental validation of middleware-based QoS control
in 802.11 wireless networks. In 3rd International Conference on Broadband Communications, Netwoks,
and Systems (BROADNETs) (2006).

22. hua Chu, H. CPU Service Classes: A Soft Real Time Framework for Multimedia Applications. PhD
thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, 1999.

20

23. Jeffay, K., Stanat, D., , and Martel, C. On non-preemptive scheduling of periodic and sporadic
tasks. In Proceedings of IEEE Real-Time Systems Symposium (RTSS) (1991).

24. Jones, M., Alessandro, J., Paul, F., Leach, J., RoOu, D., and RoOu, M. An overview of the
rialto realtime architecture, 1996.

25. Nahrstedt, K., hua Chu, H., and Narayan, S. QoS-aware resource management for distributed
multimedia applications. Journal on High-Speed Networking, Special Issue on Multimedia Networking
Vol. 8 (1998), pp. 227–255.

26. Nieh, J., and Lam, M. S. The design of SMART: A scheduler for multimedia applications. Tech. Rep.
CSL-TR-96-697, 1996.

27. Rao, A., and Stoica, I. An overlay MAC layer for 802.11 networks. In 3rd International Conference
on Mobile Systems, Applications, and Services (2005).

28. Sobrinho, J. L., and Krishnakumar, A. S. Quality-of-service in ad hoc carrier sense multiple access
networks. In IEEE Journal on Selected Areas in Communications (1999).

29. Sourav Ghosh, Ragunathan Rajkumar, J. H., and Lehoczky, J. Integrated resource management
and scheduling with multi-resource constraints. Proceedings of the IEEE Real-Time Systems Symposium
(RTSS) (2004).

30. Srinivasan, B., Pather, S., Hill, R., Ansari, F., and Niehaus, D. A firm real-time system imple-
mentation using commercial off-the-shelf hardware and free software. In Proceedings of the Fourth IEEE
Real-Time Technology and Applications Symposium (RTAS) (1998).

31. Xu, D., Nahrstedt, K., Viswanathan, A., and Wichadakul, D. Qos and contention-aware multi-
resource reservation. IEEE International Symposium on High Performance Distributed Computing
(HDPC) (2000).

32. Yang, Y., and Kravets, R. Achieving delay guarantees in ad hoc networks through dynamic contention
window adaptation. In IEEE Conference on Computer Communication (INFOCOM) (2006).

33. Yang, Y., Wang, J., and Kravets, R. Distributed optimal contention window control for elastic
traffic in wireless LANs. In IEEE Conference on Computer Communication (INFOCOM) (2005).

34. Yuan, W. GRACE-OS: An Energy-Efficient Mobile Multimedia Operating System. PhD thesis, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign, 2004.

