Jamming in wireless networks under uncertainty
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Abstract—The problem of jamming plays an important role  with the scenario when the user does not know how jamming
in ensuring the quality and security of wireless communications, efforts are distributed among sub-carriers and the user does
especially at this moment when wireless networks are quickly not know the fading channels’ gains with certainty.
becoming ubiquitous. Since jamming can be considered as a game A bi f ion for th . ider SINR
in which jammer is playing against the user (transmitter) who S an object function for the transmitter we consider e
would like to transmit signal with good quality and at the same 10 the best of our knowledge, the SINR as an objective
time with a reasonable amount of energy, game theory is an function in the power control game was only considered in
appropriate tool for dealing with jamming. Here we investigate [3], [10]. In [10] all users have a single common channel and
the effect of partially available information and correlation choose between several base stations. And in [3] the authors
among sub-carriers on the user behavior. Specifically, to do so )
we deal with the scenario when the user does not know how has considered the power control game bet\_’veen use.rs, not
jamming efforts are distributed among sub-carriers and the user P€tween a user and a jammer. We note that in the regime of
does not know the fading channels’ gains with certainty. As an low SINR the present objective can serve as an approximation
object function for the user we consider SINR. We consider zero- to the Shannon capacity. A central motivation to consider
sum games, so all of them can also be viewed as a minimaxg|\R as an objective function and not Shannon capacity, is
problem for the user playing against the nature. We study . .
independent fading channel gains scenario as well as dependentthat cgrrent technology for. voice over ereles§ does not try
fading channel gains scenario, both in discrete and continuous t0 achieve Shannon capacity but rather uses given codecs that
versions. We show that in all the scenarii the jammers equalize can adapt the transmission rate to the SINR; these turn out
the quality of the best sub-carriers for the transmitter on as low g adapt the rate in a way that is linear in the SINR over a
level as their power constraints allow. Meanwhile the transmitter wide range of throughput. The SINR has therefore been used

distributes his power among these jamming sub-carriers. We find -
the equilibrium strategies in closed form and specify the range very often to represent directly the throughput see [11], [12].

of sub-carriers where the transmitter can expect the jamming The validity of this can be seen e.g. in [9, p. 151, 222, 239].
attack. Also, we show for independent plot these strategies depend As we see from [9, Fig. 10.4, p. 222], the ratio between the

only on the expected value of the transmitters channel gains throughput and the SINR is close to a constant throughout
meanwhile for the dependent plot they depend on the whole long range of bit rates. For example, between 16Kbps and

spectra of these gains. Thus, for independent plot the behaviour . - . .
of the jammer is less fine tuned under environment since it works 2°0KDbPS, the maximum variation around the median value is

with the expected gains. The user for both scenarios has to take €SS than 20%.
the whole spectra of the jamming gains but, of course, for the ~ We analyse jamming as a zero-sum game. Thus, it can

independent scenario he is less specific because of the jammer. glso be viewed as a minimax problem for the user playing
1 . . . b
against the nature. We study independent fading channel gains
I. INTRODUCTION scenario as well as dependent fading channel gains scenario,

. . . . . both in discrete and continuous versions. Independent and
The problem of jamming plays an important role in ensurlnE

) . i . . ffependent channel gains scenarios can be considered as
the quahty and security 9f wireless commun|cat|.ons, eSpeClaty enarios where transmitter has different information about
atbithlsitmom_(la_rr:t V\:henn\iwlﬁal(rests rnetw?/rkrs ar?/ quimt:kly fb.e(r::rr:il vironment. To demonstrate how this information impacts on
ur %llj r(r)1us.1 3 eze 5 e6a ulz Coli S 25 arety otja e transmitter's behaviour we perform numerical modelling
problems [1], [2], [4], [5], [6], [13], [14], [15]. employing the obtained closed form solutions. Also, we show

. Slnce_jamml_ng can be considered as a game in Wh'c.hth%t in all the scenarii the jammers equalize the quality of
jammer is playing against a user (transmitter) who would li fie best sub-carriers for transmitter on as low level as their

o transmltb|5|gnal Wlt? ngOd quality andtﬁt the same time wi wer constraints allow. Meanwhile the transmitter distributes
a reasonable amount ot energy, game theory IS an appropr epower among these jamming sub-carriers. We find the

tool for dealing with jamming. Here we investigate the efTecécwilibrium strategies in a closed form and specify the range

of partially available information and correlation among subo-f sub-carriers where the transmitter can expect the jamming

carriers on the user behavior. Specifically, to do so we deaql[ack. Using this formulas we show for independent plot these

LThe work was partly supported by EGIDE ECO-NET grant no.18933sBtrategies depend only on the expected value of the transmitters
and RBRG no. 09-01-00334-a channel gains meanwhile for the dependent plot they depend



on the whole spectra of these gains. Thus, for independgains. The formulation and the analysis of the continuous
plot the behaviour of the jammer is less fine tuned undaerodels we will discuss in a separate section.

environment since it works with the expected gains. The user
for both scenarios has to take the whole spectra of the jammin
gains but, of course, for the independent scenario he is le
specific because of the jammer.

It is worth to mention that the considered jamming game
relates to resource allocation games which have a lot ofLet us consider the situation for the dependent fading
application with military favour (say, Colonel Blotto game [8channel gain scenario when one of the players is inactive.
or Star War game [7]) and in search theory [7]. Thus, in this section we deal with the optimization problems.
First we consider the case when the jammer is inactive, so
his strategyJ = (Jy,...,J,) is fixed and is known to the
transmitter. Since (1) is linear if’, the optimal strategy for

the transmitter for a fixed jammer strategy can be found as
The transmitter should assign different power levels fgfiven in the next theorem.

different sub-carriers to maximize the SINR meanwhile the

other user (jammel’) wants to minimize this ObjeCtive function. Theorem 1:Let the jammer be an inactive p|ayer, sb
This game can also be viewed as a minimax problem for th¢ fixed. Then the optimal strategy for the transmitter is to
transmitter against the nature. The strategy of the transmitiginsmit the signal within the sub-carriers with the maximal
is T = (Th,...,T,) with T; > 0,i € [1,n] such that induced expected fading gaifS;_, pra¥/(N + gF.J;).

S>r T, =T, whereT > 0 is the total power available to

the transmittery is the number of sub-carriers afid is the  Next let us assume that the transmitter fixes his strategy, so,
power level assigned to each sub-cariiefhe strategy of the transmitter is an inactive player and he would like to know

. OPTIMIZATION FORMULATIONS FOR THE DEPENDENT
FADING CHANNEL GAIN SCENARIO

II. FORMULATION OF THE GAME

jargmer isJ = (J1,...,Jn) With J; > 0,7 € [1,n] such that \hich payoff he can get under the most unfavorable circum-
>_i—1 Ji = J, where.J > 0 is the total power available to thestances, namely, the transmitter wants to find the minimum of
Jammer. vp(J) :==v(T, J) for a fixedT. Then, we have the following

We assume that the transmitter does not know the fadipgkt.
channels’ gains with certainty, namely, the fading channel

gains can be random, i.e. with probabilify, & € [1, K] they  Theorem 2:Let the transmitter be an inactive player, so

areaf, 57, i € [1,n]. The transmitter payoff is given as hisp — (1, ... T, is fixed. Then the worst payoff the trans-
average SINR: mitter could have is

K n k K n

aiT; of T,
o(T,J) =) pFy ———— 1) v=N"ppS %t

We assume that players know that all the possible variatio\wﬁere(Jf(V)7 ..., J¢(v) is the optimal jamming strategy and
of fading channel gaina;, §f, the noise levelsV*" and the (q) jf
probabilitiesp®. The total powersl” and J are also known Kk Bk
to both players. In the situation when the transmitter and the T; Z (;Volk)z >v
jammer are both active players, the payoff to the jammer is k=1

—u(T’,J). That is, we consider a zero-sum game. We woulgien j¢(»/) is the unique root of the following equation
like to emphasize that the formulation (1) allows one to study

the correlation among different sub-carriers. Fi(z) =v,
Also we consider a particular important case when gai
for both users are independent. In such a case the transmitter K k ok k
payoff is given as follows: Fi(x)=T,; Z M7
K L n 1 k=1 (NOk + ﬁlkx)Q
T,J) = O S I 2) andv is the unique root of the equation
o(T, J) ;;pq;NoJrﬁfJi’ (2) q > q
wherep” is the probability that the fading channel gaipis > Tw) =, (3)
in the statek (so, it is equal to3¥), andq' is the probability i=1
that the fading channel gain; is in the statel (so, it is (b) if
equal toa!) and N° is the background noise level in all the K ok pEpk
sub-carriers, which we assume to be constant. Besides these T Z (NOF)2 sv
discrete models we will also study their continuous versions k=1

with the continuous distributions for the fading channelghen.j?(v) = 0.



Proof. Since Also,

ov
F(T;) = a7 i af B p*
B NOk le w 2

and » K gyt i) = T ( o kﬁi 1) , ieI’(w),

Z:Tiz Cg; ikp 37 Z Z Z 0k : ikp 2

aJi k=1 (N + BL ']Z) iel’ (w N + ﬁz Jl(w))
by Kuhn-Tucker Theorem, there isia(Lagrange multiplier) 0, i 17 (w),
such that h )
=v, if J;>0, wi
Fi(T;) {g v i T =0, (4) I(w)={ie[l,n]: Ji(w) > 0}.

. , . _ And, v = wT is the value of th :
Note thatJ?(v) is correctly defined by (5) sincé;(z) is nd. v =wi is the valle ot the game

decreasing inz and Proof. Since the payoff (1) is linear ii’ and concave in/J,

K ki Brph (T, J) is the equilibrium if and only if there are positive
=T Z NO’f such thatv (Lagrange multiplier) such that
- () if
Besides,G(v) = Y., J?(v) is non-negative, continuous K ok glph
for » > 0 and also decreasing in while it is positive, and Tiz d\,(fk)Q >v
G(0+) = o0, G(v) = 0 for v > max; F;(0). So, there is the k=1
unique root of (3). This completes the proof of Theorem 2.then J; is the unique root of the equation
k gk pk
IV. ZERO-SUM POWER GAME UNDER UNCERTAINTY T Z (NOk T ﬁZ{cTi)Q =V (8)
T . . (b) if
In the situation when both the transmitter and the jammer K ki grpk
are active players we are in the context of the zero-sum game T; Z NO’f <
and the payoff to the jammer isv (T, J). We will look for k=1
an equilibrium and the value of the game, that is, we want tgen
find the strategie$T*, J*) € A x B such that J; =0, 9)
o(T, J*) < o(T*,J*) <o(T*,J) forany (T, J) € Ax B, (c) the following relation holds:
where A and B are the sets of all the strategies of the > 0. if Z prof
transmitter and the jammer, respectively, and v(T*, .J*) is ) ’ N4 gk, + ﬁl 5 (10)

the value of the game. We have the following result describing
the equilibrium of the game for the case of the dependent =0, if Z N 4 gF g, < w.
fading channel gains. '
By (a) and (b),J; = 0 for T; = 0. Since we deal with zero-
Theorem 3:The equilibrium of the game with the depen-

dent fading channel gains (g, J) = (T'(w), J(w)) where
employed by the transmitter, namefy, = 0 for J; = 0. Since

pral R;(z) is decreasing and continuousanit yields, by (10), that
ng > W,  the optimalJ; has to be of the form (5), whereis the unique
positive root of (6). Then, it is clear th&f;(w) given by (7)

the unique root ofR;(z) = w,

0, pkﬁég <w turns the system of the equations (8) into equalities with
k=1 N T
©) Y= ok gk '
with akgkp
Kk DD L 3
Ri(z) =Y —gpri e T o (N B i ()

N+ GFa j
k=1 +hiw This completes the proof of Theorem 3.

andw = w, is the unique positive root of the equation

sum game it is reasonable to look for the jammer’s optimal
strategy among such strategies hampering only the sub-carriers

It is interesting that the optimal jamming strategy assumes to
Z Ji(w) = (6) jam as much channels as possible with the best expected SINR
meanwhile transmitter just adjusts to the situation making



the best average harmed channels equally attractive for thieere
jammer. I’'(w)={ie[1,n]: Ji(w) > 0},
andw is the unique root of the following water-filling equation:
V. A PARTICULAR CASE THE FADING COEFFICIENT GAINS . .
ARE KNOWN TO THE PLAYERS Z @i [1 B N} _7
/BZ Qg +
We will assume that all the fading channel gainsandg;, _ .
the noise levels\V?, the total powers” and J are known to ANd: v =wT'is the value of the game.

both players. Then the object function (payoff) to transmitter
is as folows: It is interesting that the optimal jamming strategy has water

filling form which depends on the transmitter fading channel
il ) (11) 9ains () and on the relation between the transmitter and
— NO+ B;J; jamming fading channel gaing(/3;) where the transmitter
fading channel gains plays bigger role since it defines the
Since (11) is linear inT, the optimal strategy of the Sequence of the channels harmed by jammer. The level of the
transmitter for a fixed jammer strategy (so, jammer is dPwer the jammer has defines the number of the best channels

unactive player) can be found as given in the next statemeR@ can harm. Transmitter just adjusts to the situation making
the best harmed channel equally attractive for the jammer.

n

o(T,J) =

Theorem 4:Let the jammer be an inactive player, sb
is fixed. Then the the optimal strategy for the transmitter is

VI. A PARTICULAR CASE ZERO-SUM GAME FOR THE
to transmit the signal by the sub-carriers with the maX|maFIADING CHANNEL GAINS INDEPENDENT WITH RESPECT TO
induced fading gains; /(N° + 3;J;).

THE OPPONENT

Let the transmitter be an inactive player (so, his strategy
is fixed) and he would like to know which payoff he can geln the case of the fading channel gains independent with
under the most unfavorable circumstances, namely transmittespect to the opponent the payoff (2) is equivalent to
wants to find the minimum ofr(J) := v(T, J) for a fixed T
Then, the optimal strategy for the jammer has a water-filling Zp Z ai T
form. —~ N+ NO+ 5T,

Theorem 5:Let the transmitter be an inactive player, swherea; = >/ ¢'al is the expected fading channel gain for
T is fixed. Then the worst payoff he could haveds= the transmitter. Then we have the following result describing
S (T /(N + 3;J?(w))), where J?(w) is the optimal the equilibrium of the game.
jamming strategy:

Theorem 7:The equilibrium of the game for the indepen-
J2(w) = 51 A /TO‘l@ No] . ie(ln] dent fading channel gain plot {§, J) = (T'(w), J(w)) where
. . o . the unique root ofR;(z) = w, if a% > w,
andw is the unique root of the water filling equation Ji(w) = ]g[[
0, if =i <
1 T f3; Nl =7 NO =¥
Bi P with «
. i _ Ri(z) =& Zpi’“
In the situation when the transmitter and the jammer are ’ NO 4 gka

active players we have the following result supplying the
equilibrium strategies in a closed form and specifying tHadw = w. is the unique positive root of the equation
range of sub-carriers where the transmitter can expect the

attack of the jammer. Hy(w) = ZJi(W) =J
Theorem 6:In the zero-sum game formulatiof7’, J) = Also,
(T(w), J(w)) is the equilibrium where K o
o [1 NO . aiﬁip
=212 e ey e
Bi a; |, ) T , iel’(w),
Ta;/B; ) W)= aifip"
, iel’(w), Z Z 0 kJ
Tl(w) = Zkep](w)(ak/ﬂk) ( ) i€l (w) k= 1 N + ﬂ ( ))
0, i g 17 (w), 0, i & 17(w),




with that for independent plof = L, N° = 1 and ¢¢ = p’,
I'(w)={icl,n]: Ji(w) >0} i € [1,L] Of course, forp! = 0 the strategies in the game
and optimization frameworks coincide with the strategies from
Table 1. Fop' = 0.2 in the game framework of the dependent
plot the players still stick to the same strategies in spite of the
fact that the value of the game goes down meanwhile for the
the independent plot these strategies differ from each other. In
the optimization framework the jammer tunes his behaviour
more flexibly already fop! = 0.2 which allows him to bring
To compare the optimization and game-theoretical apigger harm. With decreasing more and more sub-carriers
proaches we consider a system consistingnof= 5 sub- hecome involved into strategies and frgrh = 0.6 all the
carriers. sub-carriers have to be taken into account by players. Figure 1
First we consider the situation when the transmitter knowg,ows the dependence of the optimal payoff and the value of
the fading channel gains. Assume that the background nojg@ game for both plots op'. The value of the game for the
is N° = 1. Let the transmitter and the jammer have thgdependent case is always less than the optimization payoff
same power budgets, namely, [Et= J = 3. The jammer and the value for the dependent one. Thus, we demonstrate that
fading gains are given by the linear la# = 4, i € [1,5]. one can take advantage from the knowledge of the correlation
The transmitter fading gains are; = 6 — i, i € [2,5] and  structure. At two boundary poingg = 0 andp! = 1 the value
o = 5,10,20. For the optimization scenario we assumgf the games coincide, and the maximally differpat= 0.6.
that transmitter applies the uniform strate@y, so 7° = For p; e [0.3,0.5] the optimization payoff for the uniform

(3/5,3/5,3/5,3/5,3/5). Then, in Table 1 the optimal strate-transmitter strategy is greater than the value of the game for
gies (T, J) for game-theoretical plot and® for optimization the dependent case.

plot and corresponding payoffs are given. For the game plot

Also, v = wT is the value of the game.

VIl. NUMERICAL EXAMPLES: COMPARING OPTIMIZATION
AND GAME PLOTS

while the quality of the first sub-carriers (relationef /N°) is TABLE Il
increasing the players more and more concentrate their efforts THE GAME-THEORETICAL AND OPTIMIZATION PLOTS
on this sub-carrier till they completely switch their efforts just o - 777 1 5 3 7 5
for this sub-carrier. In the optimization approach the influence[—o [ 3826 [ J, [ 0.207 | 0.394 | 0577 | 0.787 | 1.035
of this sub-carrier is increasing but not so big as in the game 5.016 | Jg | 0.000 | 0.049 | 0.265| 0.696 | 1.990
plot. The ratio of game and optimization payoffs increases Ta | 0000 1622 0811 0405/ 0.162
) 5016 | J; | 0.000 | 0.049 | 0.265 | 0.696 | 1.990
from 1.31 fora; = 5 to 2.04 foray = 20. T, | 0.000| 1.622 | 0.811 | 0.405 | 0.162
0.2 | 5167 | J, | 0.780| 0.403 | 0.503 | 0.612 | 0.702
TABLE | 5760 | J; | 1.214| 0.076 | 0.188 | 0.405 | 1.117
THE GAME-THEORETICAL AND OPTIMIZATION PLOTS Td 0213 1.177| 0.875| 0.518 | 0.217
4638 | J; | 0.609| 0.157 | 0.313 | 0.583 | 1.338
o > T77 1 5 3 7 5 T, | 0.484 | 1.085 | 0.749 | 0.466 | 0.215

0.4 | 6.003 Jo 1.239 | 0.410 | 0.444 | 0.472 | 0.435
7.214 Ja 2.392 | 0.059 | 0.083 | 0.136 | 0.331
Tq 0.116 | 0.927 | 0.938 | 0.699 | 0.321
5.285 Ji 1.776 | 0.191 | 0.234 | 0.308 | 0.491
T; 0.192 | 0.897 | 0.837 | 0.674 | 0.401
0.6 | 6.582 Jo 1.559 | 0.421 | 0.400 | 0.366 | 0.253
9.123 Ja 2.979 | 0.021 | 0.000 | 0.000 | 0.000
Tq 0.291 | 2.709 | 0.000 | 0.000 | 0.000
7.081 J; 2.689 | 0.131 | 0.090 | 0.059 | 0.031
T; 0.084 | 0.580 | 0.700 | 0.778 | 0.859
0.8 | 7.008 Jo 1.783 | 0.428 | 0.361 | 0.281 | 0.148
12.038 | Jg 3.000 | 0.000 | 0.000 | 0.000 | 0.000
Ty 3.000 | 0.000 | 0.000 | 0.000 | 0.000

5 5.016 J 1.990 | 0.696 | 0.265 | 0.049 | 0.000
T 1.765| 0.706 | 0.353 | 0.176 | 0.000
3.826 JO 1.035| 0.787 | 0.577 | 0.394 | 0.207
10 | 8.069 J 2.718 | 0.244 | 0.038 | 0.000 | 0.000
T 2.308 | 0.462 | 0.231| 0.000 | 0.000
5.144 JO 1.482 | 0.610 | 0.452 | 0.305 | 0.151
20 | 15.000 J 3.000 | 0.000 | 0.000 | 0.000 | 0.000
T 3.000 | 0.000 | 0.000 | 0.000 | 0.000
7.342 Jo 1.939 | 0.429 | 0.324 | 0.215 | 0.094

Now consider the situation where the transmitter does not

know the fading channel gains and we assume that the system 10.373| J; | 2.983| 0.017 | 0.000 | 0.000 | 0.000
consists fromn = 5 sub-carriers and it can be in two L | 7340 ? g.ggé g.igg 8.2(2)2 8.2(1)(5) 8.882
states £ = 2) with background noiseV® = (1,1). The 15.000 | J, | 3.000 | 0.000 | 0.000 | 0.000 | 0.000
transmitter and the jammer have the same power budgets, T, | 3.000 | 0.000 | 0.000| 0.000 | 0.000
namely, letT = J = 3. The jammer fading and trans- 15.000| J; | 3.000 | 0.000 | 0.000 | 0.000 | 0.000
mitter gains are given by(1,5),(2,4)),(3,3), (4,2),(5,1)) T; | 3.000] 0.000 ] 0.000 | 0.000 | 0.000

and ((20,1), (4,2),(3,3),(2,4), (1,5)), respectively. For the

optimization scenario we assume that the transmitter applies

the uniform strategyl®, so 7° = (3/5,3/5,3/5,3/5,3/5).

Then, in Table 2 the optimal strategi€g;, J;) and(T;, J;) for VIIl. CONTINUOUS MODEL

dependent and independent game-theoretical plot&ntbr

optimization plot and corresponding payoffs are given for the In this section we assume that the fading channel gains
probability p! = 0.0(0.2)1.0 of being in state 1. We assumecoefficients change in a continuous set and the transmitter



and w = w, is the unique positive root of the equation

16 S Ji(w) = J. Also, the optimal strategy of the transmitter
is given as follows:
L (a) fori € I’ (w)
12 = [es} [e’e)
dad
i - //( +5J1 ))G()(ﬁ)aﬁ
“ oi(a)pi(B) davdp
W E hi ZGIJ(uJ)/O Y +5J ))
il (b) for i & I’ (w)
3 Ti(w) =0
441 & with
5 I'w)={i€[1,n]: Ji(w) > 0}.
And, v = wT is the value of the game.
P1

In this paper we have studied how the available information
and sub-carriers fading channel gains correlation impact the
transmitter in the case of jamming. As an object function to

— i - = Optimization

—8— Dependent the transmitter we have considered SINR. We have considered
optimization and zero-sum game plots. The zero-sum game
— =& — Indeppendant can also be viewed as a minimax problem for the user

playing against the nature. We have studied independent fading
channel gains scenario as well as dependent fading channel
gains scenario. We have shown that in all the scenarii the
Fig. 1. The optimal payoff and the value of the game jammers equalize the quality of the best sub-carriers for
the transmitter on as low level as their power constraints
knows the distribution of the fading channel gains. Then tn”é'OW- f"ea”‘_Nh”e the tra_nsmitter distributes his power among
payoff to the transmitter is given as follows: these jamming sub-carriers. We _h_ave found the equmbrlu_m
. strategies in closed form and specified the range of sub-carriers
. R ‘ ‘ aT; where the transmitter can expect the jamming attack.
o(T, ) = Z/ / TP NO + 3J, davdf3. An interesting conclusion also can be done from comparing
. . the closed form optimal strategies for the independent and
If oi(a) and pi(5) are mdependept of sub-carrier, nfam(_}lydependent case. Namely, for independent plot these strategies
oi(a) = o(a) andp;(5) = p(p) for i € [1, n] then the optimal depend only ona;, so they depend on the expected value
strategies for the transmitter and the jammer are the un'foépthe transmitters channel gains meanwhile for the dependent
ones. Otherwise the optimal strategy of the jammer is g|v%not they depend on the whole spectra of these gains. Thus, for
as f.OHOWS: independent plot the behaviour of the jammer is less fine tuned
(a) if under environment since it works with the expected gains. The
R;i(0) > w user for both scenarios has to take the whole spectra of the
then J;(w) is the unique root of jamming gains but, of course, for the independent scenario he
is less specific because of the jammer.

Ri(z) = w,
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