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Abstract— The problem of jamming plays an important role
in ensuring the quality and security of wireless communications,
especially at this moment when wireless networks are quickly
becoming ubiquitous. Since jamming can be considered as a game
in which jammer is playing against the user (transmitter) who
would like to transmit signal with good quality and at the same
time with a reasonable amount of energy, game theory is an
appropriate tool for dealing with jamming. Here we investigate
the effect of partially available information and correlation
among sub-carriers on the user behavior. Specifically, to do so
we deal with the scenario when the user does not know how
jamming efforts are distributed among sub-carriers and the user
does not know the fading channels’ gains with certainty. As an
object function for the user we consider SINR. We consider zero-
sum games, so all of them can also be viewed as a minimax
problem for the user playing against the nature. We study
independent fading channel gains scenario as well as dependent
fading channel gains scenario, both in discrete and continuous
versions. We show that in all the scenarii the jammers equalize
the quality of the best sub-carriers for the transmitter on as low
level as their power constraints allow. Meanwhile the transmitter
distributes his power among these jamming sub-carriers. We find
the equilibrium strategies in closed form and specify the range
of sub-carriers where the transmitter can expect the jamming
attack. Also, we show for independent plot these strategies depend
only on the expected value of the transmitters channel gains
meanwhile for the dependent plot they depend on the whole
spectra of these gains. Thus, for independent plot the behaviour
of the jammer is less fine tuned under environment since it works
with the expected gains. The user for both scenarios has to take
the whole spectra of the jamming gains but, of course, for the
independent scenario he is less specific because of the jammer.

1

I. I NTRODUCTION

The problem of jamming plays an important role in ensuring
the quality and security of wireless communications, especially
at this moment when wireless networks are quickly becoming
ubiquitous. The recent literature covers a variety of jamming
problems [1], [2], [4], [5], [6], [13], [14], [15].

Since jamming can be considered as a game in which a
jammer is playing against a user (transmitter) who would like
to transmit signal with good quality and at the same time with
a reasonable amount of energy, game theory is an appropriate
tool for dealing with jamming. Here we investigate the effect
of partially available information and correlation among sub-
carriers on the user behavior. Specifically, to do so we deal
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with the scenario when the user does not know how jamming
efforts are distributed among sub-carriers and the user does
not know the fading channels’ gains with certainty.

As an object function for the transmitter we consider SINR.
To the best of our knowledge, the SINR as an objective
function in the power control game was only considered in
[3], [10]. In [10] all users have a single common channel and
choose between several base stations. And in [3] the authors
has considered the power control game between users, not
between a user and a jammer. We note that in the regime of
low SINR the present objective can serve as an approximation
to the Shannon capacity. A central motivation to consider
SINR as an objective function and not Shannon capacity, is
that current technology for voice over wireless does not try
to achieve Shannon capacity but rather uses given codecs that
can adapt the transmission rate to the SINR; these turn out
to adapt the rate in a way that is linear in the SINR over a
wide range of throughput. The SINR has therefore been used
very often to represent directly the throughput see [11], [12].
The validity of this can be seen e.g. in [9, p. 151, 222, 239].
As we see from [9, Fig. 10.4, p. 222], the ratio between the
throughput and the SINR is close to a constant throughout
long range of bit rates. For example, between 16Kbps and
256Kbps, the maximum variation around the median value is
less than 20%.

We analyse jamming as a zero-sum game. Thus, it can
also be viewed as a minimax problem for the user playing
against the nature. We study independent fading channel gains
scenario as well as dependent fading channel gains scenario,
both in discrete and continuous versions. Independent and
dependent channel gains scenarios can be considered as
scenarios where transmitter has different information about
environment. To demonstrate how this information impacts on
the transmitter’s behaviour we perform numerical modelling
employing the obtained closed form solutions. Also, we show
that in all the scenarii the jammers equalize the quality of
the best sub-carriers for transmitter on as low level as their
power constraints allow. Meanwhile the transmitter distributes
his power among these jamming sub-carriers. We find the
equilibrium strategies in a closed form and specify the range
of sub-carriers where the transmitter can expect the jamming
attack. Using this formulas we show for independent plot these
strategies depend only on the expected value of the transmitters
channel gains meanwhile for the dependent plot they depend



on the whole spectra of these gains. Thus, for independent
plot the behaviour of the jammer is less fine tuned under
environment since it works with the expected gains. The user
for both scenarios has to take the whole spectra of the jamming
gains but, of course, for the independent scenario he is less
specific because of the jammer.

It is worth to mention that the considered jamming game
relates to resource allocation games which have a lot of
application with military favour (say, Colonel Blotto game [8]
or Star War game [7]) and in search theory [7].

II. FORMULATION OF THE GAME

The transmitter should assign different power levels for
different sub-carriers to maximize the SINR meanwhile the
other user (jammer) wants to minimize this objective function.
This game can also be viewed as a minimax problem for the
transmitter against the nature. The strategy of the transmitter
is T = (T1, . . . , Tn) with Ti ≥ 0, i ∈ [1, n] such that∑n

i=1 Ti = T̄ , where T̄ > 0 is the total power available to
the transmitter,n is the number of sub-carriers andTi is the
power level assigned to each sub-carrieri. The strategy of the
jammer isJ = (J1, . . . , Jn) with Ji ≥ 0, i ∈ [1, n] such that∑n

i=1 Ji = J̄ , whereJ̄ > 0 is the total power available to the
jammer.

We assume that the transmitter does not know the fading
channels’ gains with certainty, namely, the fading channel
gains can be random, i.e. with probabilitypk, k ∈ [1,K] they
are αk

i , βk
i , i ∈ [1, n]. The transmitter payoff is given as his

average SINR:

v(T, J) =
K∑

k=1

pk
n∑

i=1

αk
i Ti

N0k + βk
i Ji

. (1)

We assume that players know that all the possible variations
of fading channel gainsαk

i , βk
i , the noise levelsN0k and the

probabilitiespk. The total powersT̄ and J̄ are also known
to both players. In the situation when the transmitter and the
jammer are both active players, the payoff to the jammer is
−v(T, J). That is, we consider a zero-sum game. We would
like to emphasize that the formulation (1) allows one to study
the correlation among different sub-carriers.

Also we consider a particular important case when gains
for both users are independent. In such a case the transmitter
payoff is given as follows:

v(T, J) =
K∑

k=1

L∑
l=1

pkql
n∑

i=1

αl
iTi

N0 + βk
i Ji

, (2)

wherepk is the probability that the fading channel gainβi is
in the statek (so, it is equal toβk

i ), andql is the probability
that the fading channel gainαi is in the statel (so, it is
equal toαl

i) andN0 is the background noise level in all the
sub-carriers, which we assume to be constant. Besides these
discrete models we will also study their continuous versions
with the continuous distributions for the fading channels’

gains. The formulation and the analysis of the continuous
models we will discuss in a separate section.

III. O PTIMIZATION FORMULATIONS FOR THE DEPENDENT

FADING CHANNEL GAIN SCENARIO

Let us consider the situation for the dependent fading
channel gain scenario when one of the players is inactive.
Thus, in this section we deal with the optimization problems.
First we consider the case when the jammer is inactive, so
his strategyJ = (J1, . . . , Jn) is fixed and is known to the
transmitter. Since (1) is linear inT , the optimal strategy for
the transmitter for a fixed jammer strategy can be found as
given in the next theorem.

Theorem 1:Let the jammer be an inactive player, soJ
is fixed. Then the optimal strategy for the transmitter is to
transmit the signal within the sub-carriers with the maximal
induced expected fading gains

∑K
k=1 pkαk

i /(N0k + βk
i Ji).

Next let us assume that the transmitter fixes his strategy, so,
transmitter is an inactive player and he would like to know
which payoff he can get under the most unfavorable circum-
stances, namely, the transmitter wants to find the minimum of
vT (J) := v(T, J) for a fixedT . Then, we have the following
result.

Theorem 2:Let the transmitter be an inactive player, so
T = (T1, . . . , Tn) is fixed. Then the worst payoff the trans-
mitter could have is

v =
K∑

k=1

pk
n∑

i=1

αk
i Ti

N0k + βk
i Jo

i (ν)
,

where(Jo
1 (ν), . . . , Jo

n(ν) is the optimal jamming strategy and
(a) if

Ti

K∑
k=1

αk
i βk

i pk

(N0k)2
> ν

thenJo
i (ν) is the unique root of the following equation

Fi(x) = ν,

where

Fi(x) = Ti

K∑
k=1

αk
i βk

i pk

(N0k + βk
i x)2

,

andν is the unique root of the equation
n∑

i=1

Jo
i (ν) = J̄ , (3)

(b) if

Ti

K∑
k=1

αk
i βk

i pk

(N0k)2
≤ ν

thenJo
i (ν) = 0.



Proof: Since

Fi(Ti) =
∂v

∂Ji

and
∂2v

∂J2
i

= Ti

K∑
k=1

2αk
i (βk

i )2pk

(N0k + βk
i Ji)3

,

by Kuhn-Tucker Theorem, there is aν (Lagrange multiplier)
such that

Fi(Ti)

{
= ν, if Ji > 0,

≤ ν, if Ji = 0.
(4)

Note that Jo
i (ν) is correctly defined by (5) sinceFi(x) is

decreasing inx and

Fi(0) = Ti

K∑
k=1

αk
i βk

i pk

(N0k)2
.

Besides,G(ν) :=
∑n

i=1 Jo
i (ν) is non-negative, continuous

for ν > 0 and also decreasing inν while it is positive, and
G(0+) = ∞, G(ν) = 0 for ν ≥ maxi Fi(0). So, there is the
unique root of (3). This completes the proof of Theorem 2.

IV. Z ERO-SUM POWER GAME UNDER UNCERTAINTY

In the situation when both the transmitter and the jammer
are active players we are in the context of the zero-sum game
and the payoff to the jammer is−v(T, J). We will look for
an equilibrium and the value of the game, that is, we want to
find the strategies(T ∗, J∗) ∈ A×B such that

v(T, J∗) ≤ v(T ∗, J∗) ≤ v(T ∗, J) for any (T, J) ∈ A×B,

where A and B are the sets of all the strategies of the
transmitter and the jammer, respectively, andv = v(T ∗, J∗) is
the value of the game. We have the following result describing
the equilibrium of the game for the case of the dependent
fading channel gains.

Theorem 3:The equilibrium of the game with the depen-
dent fading channel gains is(T, J) = (T (ω), J(ω)) where

Ji(ω) =


the unique root ofRi(x) = ω,

K∑
k=1

pkαk
i

N0k
> ω,

0,
K∑

k=1

pkαk
i

N0k
≤ ω

(5)
with

Ri(x) :=
K∑

k=1

αk
i pk

N0k + βk
i x

andω = ω∗ is the unique positive root of the equation

HJ(ω) :=
n∑

i=1

Ji(ω) = J̄ . (6)

Also,

Ti(ω) =


T̄

K∑
k=1

αk
i βk

i pk

(N0k + βk
i Ji(ω))2∑

i∈IJ (ω)

K∑
k=1

αk
i βk

i pk

(N0k + βk
i Ji(ω))2

, i ∈ IJ(ω),

0, i 6∈ IJ(ω),
(7)

with
IJ(ω) = {i ∈ [1, n] : Ji(ω) > 0}.

And, v = ωT̄ is the value of the game.

Proof: Since the payoff (1) is linear inT and concave inJ ,
(T, J) is the equilibrium if and only if there are positiveω
such thatν (Lagrange multiplier) such that

(a) if

Ti

K∑
k=1

αk
i βk

i pk

(N0k)2
> ν

thenJi is the unique root of the equation

Ti

K∑
k=1

αk
i βk

i pk

(N0k + βk
i Ji)2

= ν (8)

(b) if

Ti

K∑
k=1

αk
i βk

i pk

(N0k)2
≤ ν

then
Ji = 0, (9)

(c) the following relation holds:

Ti


≥ 0, if

K∑
k=1

pkαk
i

N0k + βk
i Ji

= ω,

= 0, if
K∑

k=1

pkαk
i

N0k + βk
i Ji

< ω.

(10)

By (a) and (b),Ji = 0 for Ti = 0. Since we deal with zero-
sum game it is reasonable to look for the jammer’s optimal
strategy among such strategies hampering only the sub-carriers
employed by the transmitter, namely,Ti = 0 for Ji = 0. Since
Ri(x) is decreasing and continuous inx, it yields, by (10), that
the optimalJi has to be of the form (5), whereω is the unique
positive root of (6). Then, it is clear thatTi(ω) given by (7)
turns the system of the equations (8) into equalities with

ν =
T̄∑

i∈IJ (ω)

K∑
k=1

αk
i βk

i pk

(N0k + βk
i Ji(ω))2

.

This completes the proof of Theorem 3.

It is interesting that the optimal jamming strategy assumes to
jam as much channels as possible with the best expected SINR
meanwhile transmitter just adjusts to the situation making



the best average harmed channels equally attractive for the
jammer.

V. A PARTICULAR CASE: THE FADING COEFFICIENT GAINS

ARE KNOWN TO THE PLAYERS

We will assume that all the fading channel gainsαi andβi,
the noise levelsN0, the total powersT̄ and J̄ are known to
both players. Then the object function (payoff) to transmitter
is as folows:

v(T, J) =
n∑

i=1

αiTi

N0 + βiJi
. (11)

Since (11) is linear inT , the optimal strategy of the
transmitter for a fixed jammer strategy (so, jammer is an
unactive player) can be found as given in the next statement.

Theorem 4:Let the jammer be an inactive player, soJ
is fixed. Then the the optimal strategy for the transmitter is
to transmit the signal by the sub-carriers with the maximal
induced fading gainsαi/(N0 + βiJi).

Let the transmitter be an inactive player (so, his strategy
is fixed) and he would like to know which payoff he can get
under the most unfavorable circumstances, namely transmitter
wants to find the minimum ofvT (J) := v(T, J) for a fixedT .
Then, the optimal strategy for the jammer has a water-filling
form.

Theorem 5:Let the transmitter be an inactive player, so
T is fixed. Then the worst payoff he could have isv =∑n

i=1(αiTi/(N0 + βiJ
o
i (ω))), where Jo

i (ω) is the optimal
jamming strategy:

Jo
i (ω) =

1
βi

[√
Tiαiβi

ω
−N0

]
+

, i ∈ [1, n]

andω is the unique root of the water filling equation

1
βi

[√
Tiαiβi

ω
−N0

]
+

= J̄ .

In the situation when the transmitter and the jammer are
active players we have the following result supplying the
equilibrium strategies in a closed form and specifying the
range of sub-carriers where the transmitter can expect the
attack of the jammer.

Theorem 6:In the zero-sum game formulation,(T, J) =
(T (ω), J(ω)) is the equilibrium where

Ji(ω) =
αi

βi

[
1
ω
− N0

αi

]
+

, i ∈ [1, n],

Ti(ω) =


T̄αi/βi∑

k∈IJ (ω)(αk/βk)
, i ∈ IJ(ω),

0, i 6∈ IJ(ω),

where
IJ(ω) = {i ∈ [1, n] : Ji(ω) > 0},

andω is the unique root of the following water-filling equation:
n∑

i=1

αi

βi

[
1
ω
− N0

αi

]
+

= J̄ .

And, v = ωT̄ is the value of the game.

It is interesting that the optimal jamming strategy has water
filling form which depends on the transmitter fading channel
gains (αi) and on the relation between the transmitter and
jamming fading channel gains (αi/βi) where the transmitter
fading channel gains plays bigger role since it defines the
sequence of the channels harmed by jammer. The level of the
power the jammer has defines the number of the best channels
he can harm. Transmitter just adjusts to the situation making
the best harmed channel equally attractive for the jammer.

VI. A PARTICULAR CASE: ZERO-SUM GAME FOR THE

FADING CHANNEL GAINS INDEPENDENT WITH RESPECT TO

THE OPPONENT

In the case of the fading channel gains independent with
respect to the opponent the payoff (2) is equivalent to

v(T, J) =
K∑

k=1

pk
n∑

i=1

ᾱiTi

N0 + βk
i Ji

whereᾱi =
∑L

l=1 qlαl
i is the expected fading channel gain for

the transmitter. Then we have the following result describing
the equilibrium of the game.

Theorem 7:The equilibrium of the game for the indepen-
dent fading channel gain plot is(T, J) = (T (ω), J(ω)) where

Ji(ω) =

the unique root ofRi(x) = ω, if
ᾱi

N0 > ω,

0, if ᾱi

N0 ≤ ω

with

Ri(x) := ᾱi

K∑
k=1

pk

N0 + βk
i x

andω = ω∗ is the unique positive root of the equation

HJ(ω) :=
n∑

i=1

Ji(ω) = J̄ .

Also,

Ti(ω) =


T̄

K∑
k=1

ᾱiβ
k
i pk

(N0 + βk
i Ji(ω))2∑

i∈IJ (ω)

K∑
k=1

ᾱiβ
k
i pk

(N0 + βk
i Ji(ω))2

, i ∈ IJ(ω),

0, i 6∈ IJ(ω),



with
IJ(ω) = {i ∈ [1, n] : Ji(ω) > 0}.

Also, v = ωT̄ is the value of the game.

VII. N UMERICAL EXAMPLES: COMPARING OPTIMIZATION

AND GAME PLOTS

To compare the optimization and game-theoretical ap-
proaches we consider a system consisting ofn = 5 sub-
carriers.

First we consider the situation when the transmitter knows
the fading channel gains. Assume that the background noise
is N0 = 1. Let the transmitter and the jammer have the
same power budgets, namely, letT̄ = J̄ = 3. The jammer
fading gains are given by the linear lawβi = i, i ∈ [1, 5].
The transmitter fading gains areαi = 6 − i, i ∈ [2, 5] and
α1 = 5, 10, 20. For the optimization scenario we assume
that transmitter applies the uniform strategyT 0, so T 0 =
(3/5, 3/5, 3/5, 3/5, 3/5). Then, in Table 1 the optimal strate-
gies (T, J) for game-theoretical plot andJ0 for optimization
plot and corresponding payoffs are given. For the game plot
while the quality of the first sub-carriers (relation ofα1/N

0) is
increasing the players more and more concentrate their efforts
on this sub-carrier till they completely switch their efforts just
for this sub-carrier. In the optimization approach the influence
of this sub-carrier is increasing but not so big as in the game
plot. The ratio of game and optimization payoffs increases
from 1.31 forα1 = 5 to 2.04 forα1 = 20.

TABLE I

THE GAME-THEORETICAL AND OPTIMIZATION PLOTS

α1 v T/J 1 2 3 4 5
5 5.016 J 1.990 0.696 0.265 0.049 0.000

T 1.765 0.706 0.353 0.176 0.000
3.826 J0 1.035 0.787 0.577 0.394 0.207

10 8.069 J 2.718 0.244 0.038 0.000 0.000
T 2.308 0.462 0.231 0.000 0.000

5.144 J0 1.482 0.610 0.452 0.305 0.151
20 15.000 J 3.000 0.000 0.000 0.000 0.000

T 3.000 0.000 0.000 0.000 0.000
7.342 J0 1.939 0.429 0.324 0.215 0.094

Now consider the situation where the transmitter does not
know the fading channel gains and we assume that the system
consists fromn = 5 sub-carriers and it can be in two
states (K = 2) with background noiseN0 = (1, 1). The
transmitter and the jammer have the same power budgets,
namely, let T̄ = J̄ = 3. The jammer fading and trans-
mitter gains are given by((1, 5), (2, 4)), (3, 3), (4, 2), (5, 1))
and ((20, 1), (4, 2), (3, 3), (2, 4), (1, 5)), respectively. For the
optimization scenario we assume that the transmitter applies
the uniform strategyT 0, so T 0 = (3/5, 3/5, 3/5, 3/5, 3/5).
Then, in Table 2 the optimal strategies(Td, Jd) and(Ti, Ji) for
dependent and independent game-theoretical plot andJ0 for
optimization plot and corresponding payoffs are given for the
probability p1 = 0.0(0.2)1.0 of being in state 1. We assume

that for independent plotK = L, N0 = 1 and qi = pi,
i ∈ [1, L] Of course, forp1 = 0 the strategies in the game
and optimization frameworks coincide with the strategies from
Table 1. Forp1 = 0.2 in the game framework of the dependent
plot the players still stick to the same strategies in spite of the
fact that the value of the game goes down meanwhile for the
the independent plot these strategies differ from each other. In
the optimization framework the jammer tunes his behaviour
more flexibly already forp1 = 0.2 which allows him to bring
bigger harm. With decreasingp1 more and more sub-carriers
become involved into strategies and fromp1 = 0.6 all the
sub-carriers have to be taken into account by players. Figure 1
shows the dependence of the optimal payoff and the value of
the game for both plots onp1. The value of the game for the
independent case is always less than the optimization payoff
and the value for the dependent one. Thus, we demonstrate that
one can take advantage from the knowledge of the correlation
structure. At two boundary pointsp1 = 0 andp1 = 1 the value
of the games coincide, and the maximally differ atp1 = 0.6.
For p1 ∈ [0.3, 0.5] the optimization payoff for the uniform
transmitter strategy is greater than the value of the game for
the dependent case.

TABLE II

THE GAME-THEORETICAL AND OPTIMIZATION PLOTS

p1 v T/J 1 2 3 4 5
0 3.826 Jo 0.207 0.394 0.577 0.787 1.035

5.016 Jd 0.000 0.049 0.265 0.696 1.990
Td 0.000 1.622 0.811 0.405 0.162

5.016 Ji 0.000 0.049 0.265 0.696 1.990
Ti 0.000 1.622 0.811 0.405 0.162

0.2 5.167 Jo 0.780 0.403 0.503 0.612 0.702
5.760 Jd 1.214 0.076 0.188 0.405 1.117

Td 0.213 1.177 0.875 0.518 0.217
4.638 Ji 0.609 0.157 0.313 0.583 1.338

Ti 0.484 1.085 0.749 0.466 0.215
0.4 6.003 Jo 1.239 0.410 0.444 0.472 0.435

7.214 Jd 2.392 0.059 0.083 0.136 0.331
Td 0.116 0.927 0.938 0.699 0.321

5.285 Ji 1.776 0.191 0.234 0.308 0.491
Ti 0.192 0.897 0.837 0.674 0.401

0.6 6.582 Jo 1.559 0.421 0.400 0.366 0.253
9.123 Jd 2.979 0.021 0.000 0.000 0.000

Td 0.291 2.709 0.000 0.000 0.000
7.081 Ji 2.689 0.131 0.090 0.059 0.031

Ti 0.084 0.580 0.700 0.778 0.859
0.8 7.008 Jo 1.783 0.428 0.361 0.281 0.148

12.038 Jd 3.000 0.000 0.000 0.000 0.000
Td 3.000 0.000 0.000 0.000 0.000

10.373 Ji 2.983 0.017 0.000 0.000 0.000
Ti 0.301 2.699 0.000 0.000 0.000

1 7.342 Jo 1.939 0.429 0.324 0.215 0.094
15.000 Jd 3.000 0.000 0.000 0.000 0.000

Td 3.000 0.000 0.000 0.000 0.000
15.000 Ji 3.000 0.000 0.000 0.000 0.000

Ti 3.000 0.000 0.000 0.000 0.000

VIII. C ONTINUOUS MODEL

In this section we assume that the fading channel gains
coefficients change in a continuous set and the transmitter



Fig. 1. The optimal payoff and the value of the game

knows the distribution of the fading channel gains. Then the
payoff to the transmitter is given as follows:

v(T, J) =
n∑

i=1

∫ ∞

0

∫ ∞

0

σi(α)ρi(β)
αTi

N0 + βJi
dα dβ.

If σi(α) and ρi(β) are independent of sub-carrier, namely,
σi(α) = σ(α) andρi(β) = ρ(β) for i ∈ [1, n] then the optimal
strategies for the transmitter and the jammer are the uniform
ones. Otherwise the optimal strategy of the jammer is given
as follows:
(a) if

Ri(0) > ω

thenJi(ω) is the unique root of

Ri(x) = ω,

(b) if
Ri(0) ≤ ω

then
Ri(x) = 0,

where

Ri(x) :=
∫ ∞

0

∫ ∞

0

α

N0 + βx
σi(α)ρi(β) dα dβ

and ω = ω∗ is the unique positive root of the equation∑n
i=1 Ji(ω) = J̄ . Also, the optimal strategy of the transmitter

is given as follows:

(a) for i ∈ IJ(ω)

Ti(ω) = T̄

∫ ∞

0

∫ ∞

0

αβ

(N0 + βJi(ω))2
σi(α)ρi(β) dα dβ∑

i∈IJ (ω)

∫ ∞

0

∫ ∞

0

αβ

(N0 + βJi(ω))2
σi(α)ρi(β) dα dβ

,

(b) for i 6∈ IJ(ω)
Ti(ω) = 0

with
IJ(ω) = {i ∈ [1, n] : Ji(ω) > 0}.

And, v = ωT̄ is the value of the game.

IX. CONCLUSIONS

In this paper we have studied how the available information
and sub-carriers fading channel gains correlation impact the
transmitter in the case of jamming. As an object function to
the transmitter we have considered SINR. We have considered
optimization and zero-sum game plots. The zero-sum game
can also be viewed as a minimax problem for the user
playing against the nature. We have studied independent fading
channel gains scenario as well as dependent fading channel
gains scenario. We have shown that in all the scenarii the
jammers equalize the quality of the best sub-carriers for
the transmitter on as low level as their power constraints
allow, meanwhile the transmitter distributes his power among
these jamming sub-carriers. We have found the equilibrium
strategies in closed form and specified the range of sub-carriers
where the transmitter can expect the jamming attack.

An interesting conclusion also can be done from comparing
the closed form optimal strategies for the independent and
dependent case. Namely, for independent plot these strategies
depend only onᾱi, so they depend on the expected value
of the transmitters channel gains meanwhile for the dependent
plot they depend on the whole spectra of these gains. Thus, for
independent plot the behaviour of the jammer is less fine tuned
under environment since it works with the expected gains. The
user for both scenarios has to take the whole spectra of the
jamming gains but, of course, for the independent scenario he
is less specific because of the jammer.
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