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Abstract We examine threshold-based transmission
strategies for distributed opportunistic medium ac-
cess in a scenario with fairly general probabilistic in-
terference conditions. Specifically, collisions between
concurrent transmissions are governed by arbitrary
probabilities, allowing for a form of channel capture
and covering binary interference constraints as an im-
portant special case. We address the problem of setting
the threshold values so as to optimize the aggregate
throughput utility of the various users, and particularly
focus on a weighted logarithmic throughput utility func-
tion (Proportional Fairness). We provide an adaptive
algorithm for finding the optimal threshold values in a
distributed fashion, and rigorously establish the conver-
gence of the proposed algorithm under mild statistical
assumptions. Moreover, we discuss how the algorithm
may be adapted to achieve packet-level stability with
only limited exchange of queue length information
among the various users. We also conduct extensive
numerical experiments to corroborate the theoretical
convergence results.
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1 Introduction

Channel conditions in wireless networks exhibit huge
variations across space and time, giving rise to vast
random fluctuations in the feasible transmission rates.
Channel-aware or opportunistic scheduling strategies
provide an effective mechanism for improving through-
put performance by exploiting such rate variations, and
have attracted immense attention over the last decade.

Even though the seminal paper by Knopp and
Humblet [15] considered opportunistic scheduling in
an uplink scenario, the bulk of the work has focused
on scheduled channel access and centralized control as
is typical of downlink type situations, see for instance
[3, 4, 6, 16, 22, 23, 30]. Extensions to joint scheduling
and congestion control as well as routing in network
settings have also been thoroughly investigated [5, 7, 21,
27, 28].

The problem of opportunistic scheduling in a
distributed setting in conjunction with random ac-
cess mechanisms such as Aloha has received rela-
tively less attention. Adireddy and Tong [1, 2] and
Venkitasubramaniam et al. [31] present strategies
where the probability of transmission is a function of
the Signal-to-Noise Ratio of a user. They study the
problem of finding the transmission probabilities so
as to maximize the aggregate throughput, characterize
the maximum achievable throughput, and evaluate the
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throughput gains in various scenarios. Qin and Berry
[24, 25] develop channel-aware Aloha type strategies
as well as so-called splitting algorithms for exploiting
multi-user diversity and improving the throughput per-
formance in a distributed setting. Ghurumuruhan et al.
[8, 9] consider the extension of channel-aware Aloha
type strategies to multi-channel scenarios, and evaluate
the throughput gains from the additional degree of
channel diversity. Ghurumuruhan et al. [10] examine
the impact of imperfect channel state information on
the throughput performance of channel-aware Aloha
strategies in multi-carrier systems. The stability region
of multi-carrier systems with channel-aware Aloha type
strategies is analyzed in Ghurumuruhan et al. [11].
Yu and Giannakis [35, 36] establish that threshold-
based transmission strategies maximize the aggregate
throughput in case of homogeneous users and the sum
of the log throughputs in case of heterogeneous users.

The above papers offer interesting results for ag-
gregate throughput measures in symmetric scenarios,
but do not specifically address the issue as to how
to set the various parameters, such as transmission
threshold values, so as to optimize a given performance
or throughput utility criterion in heterogeneous cases.
The latter problem is explicitly addressed in a separate
strand of papers which propose distributed algorithms
for optimizing transmission probabilities for various
given throughput objectives in the context of Aloha
systems but without channel variations.

Kar et al. [13, 14] and Wang and Kar [33] were
the first to present distributed random-access algo-
rithms for achieving Proportional Fair and Max-Min
fair rate allocations, respectively, in Aloha systems
with single-hop flows. Gupta and Stolyar [12] develop
distributed algorithms for realizing a weighted Pro-
portional Fair throughput allocation subject to mini-
mum throughput requirements in a single-hop Aloha
networks with a more general interference structure.
Stolyar [29] presents two distributed random-access
algorithms based on queue lengths for similar single-
hop Aloha models with exogenous packet arrivals,
and shows that these guarantee stability as long as
the arrival rate vector lies within the saturation rate
region. Wang and Kar [34] present both primal-based
and dual-based algorithms for achieving a Proportional
Fair rate allocation in Aloha networks with multi-
hop sessions. Liu and Stolyar [17] propose different
random-access algorithms based on queue lengths and
back-pressure mechanisms for achieving a weighted
Proportional Fair allocation and guaranteeing stability
in multi-hop Aloha networks.

In the present paper we examine threshold strate-
gies for distributed channel-aware medium access as in

[1, 2, 31, 36], where the users are subject to fairly gen-
eral probabilistic interference conditions. Specifically,
collisions between concurrent transmissions are gov-
erned by arbitrary probabilities, allowing for a form
of channel capture and covering binary interference
constraints as an important special case. We address
the problem of setting the threshold values so as to
optimize the aggregate throughput utility of the various
users, and particularly focus on a weighted logarithmic
throughput utility function (Proportional Fairness). We
provide an adaptive algorithm for finding the optimal
threshold values in a distributed fashion, and rigorously
establish the convergence of the proposed algorithm
under mild statistical assumptions. Moreover, we dis-
cuss how the algorithm may be adapted to achieve
packet-level stability with only limited exchange of
queue length information among the various users.
We also perform extensive numerical experiments to
support the theoretical convergence results.

The remainder of the paper is organized as follows.
In Section 2 we present a model description and discuss
a few important preliminaries. We analyze the through-
put optimization problem in Section 3. In Section 4 we
provide an adaptive algorithm for finding the optimal
threshold values in a distributed fashion, and prove its
convergence. Various packet-level stability issues are
discussed Section 5. In Section 6 we present numerical
results to further investigate the convergence proper-
ties of the proposed adaptive algorithm.

2 Model description

We consider a wireless multi-access channel shared by
N users, operating in a time-slotted fashion. The fea-
sible transmission rates of the various users vary over
time as a result of fading. Denote by Ri(t) the feasible
transmission rate of user i in time slot t (measured for
example in bits per second, bits per slot, or packets per
slot). The feasible transmission rates are assumed to be
independent among the various users and form a sta-
tionary sequence, i.e., Ri(1), Ri(2), . . . have the same
distribution as some generic random variable Ri, but
may not be independent across time. We further sup-
pose that the distribution function Fi(r) = P{Ri < r} is
continuous with positive density fi(r) = dFi(r)/dr > 0.
The users decide to access the channel in a distributed
fashion, based on a threshold strategy. Specifically,
there exists some threshold value γi such that user i
transmits in time slot t if Ri(t) > γi, regardless of the
decisions of other users. Thus the probability that user i
decides to transmit is τi = 1 − Fi(γi), which we will
also refer to as the activity factor of user i. When a
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user j �= i transmits in the same slot as user i, this
causes the transmission of user i to fail with proba-
bility pij, independent of anything else. The set Si =
{ j : pij > 0} may be interpreted as the set of neigh-
bors of user i in the interference ‘graph’, while the
probabilities qij = 1 − pij represent a form of channel
capture allowing for arbitrary probabilistic interfer-
ence constraints. Thus the transmission of user i in
time slot t is successful if

∏N
j=1 I{Rj(t)≤γj or Eij(t)=0} = 1,

with Eij(t) representing a 0–1 random variable which
equals 0 with probability qij, independent of anything
else, so that the probability that a given transmission
of user i is successful, is

∏N
j=1(qij + (1 − qij)Fj(γj)) =

∏N
j=1(1 − pij(1 − Fj(γj))), with the convention that pii =

0 for all i = 1, . . . , N. The above-described thresh-
old strategy yields a Pareto-optimal throughput vector
within the class of ‘distributed’ strategies. In order to
see that, consider a ‘distributed’ strategy where user i
transmits a certain fraction τi of the time. Given that
user i transmits a fraction τi of the time, independent of
the activity of the other users (because of the ‘distrib-
uted’ nature), it makes stochastically no difference to
the other users when user i is active. For user i itself,
it is best to be active when its feasible transmission
rate exceeds some threshold value γi where τi = 1 −
Fi(γi). Thus, for any given ‘distributed’ strategy, one
can construct a threshold-based strategy that provides
no worse throughputs to each of the users.

For notational convenience, define

Ui(γi) = E
{

RiI{Ri>γi}
} =
∫ ∞

r=γi

rdFi(r),

and

Ci(γi) = E
{

Ri|Ri > γi
} = Ui(γi)

1 − Fi(γi)
.

The actual throughput or ‘goodput’ of user i in time
slot t may be expressed as

Ri(t)I{Ri(t)>γi}
N∏

j=1

I{Rj(t)≤γj or Eij(t)=0},

and the expected throughput of user i is

Ti(γ ) = Ui(γi)

N∏

j=1

(
qij + (1 − qij)Fj(γj)

)

= Ci(γi)(1 − Fi(γi))

N∏

j=1

(
1 − pij(1 − Fj(γj))

)
,

with γ = (γ1, . . . , γN) representing the vector of thresh-
old values.

3 Throughput optimization

As mentioned in the previous section, the above-
described family of threshold strategies yield Pareto-
optimal throughput vectors within the class of
‘distributed’ strategies. In this section we consider
the problem of throughput optimization, i.e., finding a
vector of threshold values which maximizes the aggre-
gate throughput utility. We will focus on logarithmic
throughput utility functions, which corresponds to
weighted Proportional Fairness.

Denote by wi > 0 the weight of user i in the through-
put optimization. Then the aggregate throughput utility
function may be expressed as

G(γ )=
N∑

i=1

wi log(Ti(γi))

=
N∑

i=1

wi log(Ui(γi)

N∏

j=1

(
1 − pij(1 − Fj(γj))

)

=
N∑

i=1

wi

⎡

⎣log(Ui(γi))+
N∑

j=1

log(1− pij(1−Fj(γj)))

⎤

⎦

=
N∑

i=1

⎡

⎣wi log(Ui(γi))

+
N∑

j=1

wj log
(
1− pji(1−Fi(γi))

)
⎤

⎦ .

Noting that dUi(γi)

dγi
= −γi fi(γi), we obtain

∂G(γ )

∂γi
= wi

Ui(γi)

dUi(γi)

dγi
+

N∑

j=1

wj pji

1− pji(1 − Fi(γi))

dFi(γi)

dγi

=−
[

wiγi

Ui(γi)
−

N∑

j=1

wj pji

1 − pji(1 − Fi(γi))

]

fi(γi).

Thus, the optimality condition becomes:

wiγi

Ui(γi)
=

N∑

j=1

wj pji

1 − pji(1 − Fi(γi))
. (1)

Note that the latter equation has a unique solution γ ∗
i ,

since the left-hand side is strictly increasing in γi being
equal to 0 for γi = 0 and approaching ∞ for γi → ∞,
while the right-hand side is nonnegative decreasing
in γi. In particular, when pji = 0 for all j �= i, the unique
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solution is γ ∗
i = 0. Indeed, it is optimal for user i to

always transmit if it cannot cause any collisions to
other users j �= i. A further important and remarkable
property is that the optimal threshold value γi only
depends on the weights wj and transmission failure
probabilities pji of the other users, and not on their
transmission rate distributions. Inspection shows that
the optimal threshold value γi is increasing (implying
that the transmission strategy of user i becomes less
aggressive) in the weights wj and transmission failure
probabilities pji of the other users.

In case pji is either 0 or 1 for all j �= i, the optimality
condition in Eq. 1 reduces to

wiγi

Ui(γi)
= w−i

Fi(γi)
,

with w−i :=∑N
j=1 wj pji, or equivalently

wiγi Fi(γi) = w−iUi(γi). (2)

Now suppose that the transmission rate of user i has
an exponential distribution with mean ri, i.e., Fi(r) =
1 − e−r/ri . This assumption is roughly valid when the
user has a Rayleigh fading channel and the feasible
rate is approximately linear in the SNR (signal-to-noise
ratio). The latter approximation is reasonably accurate
when the SNR is not too high. In that case, it is easily
verified that Ui(r) = (r + ri)e−r/ri , and the optimality
condition 2 takes the form:

wiγi
(
1 − e−γi/ri

) = w−i
(
γi + ri

)
e−γi/ri ,

or equivalently

γi/ri = (w−i + (wi + w−i)γi/ri
)
e−γi/ri ,

which means that γ ∗
i = ris∗

i , with s∗
i the solution of the

equation

s = (w−i + (wi + w−i)s
)
e−s, (3)

and the corresponding activity factor is τi = e−s∗
i , inde-

pendent of the mean transmission rate ri. In particular,
for symmetric weights, the optimal threshold values are
proportional to the mean feasible rates of the various
users, where the factor of proportionality is the solution
of the equation

s = (N − 1 + Ns
)
e−s. (4)

Substituting Ui(γi) = Ci(γi)(1 − Fi(γi)) in Eq 2, we
obtain wiγi Fi(γi) = w−iCi(γi)(1 − Fi(γi)), or equiva-

lently, wiγi =(wiγi + w−iCi(γi))(1−Fi(γi)), which gives
1 − Fi(γi) = wiγi

wiγi+w−iCi(γi)
. Noting that Ci(γi) ≥ γi, we

deduce in case pji = 1 for all j �= i,

1 − Fi(γi) ≤ wi
∑N

j=1 wj

,

and

N∑

i=1

(
1 − Fi(γi)

) ≤ 1.

Hence, the collective activity factor of all the users is
at most unity, and if the user’s weights are all equal,
then the activity factor of each individual user is at most
1/N. Recall that in the standard Aloha system without
channel variations, the sum of the transmission proba-
bilities of all the users is exactly equal to unity for every
Pareto-optimal throughput vector [19]. Thus, the use of
opportunistic medium access in the presence of channel
variations reduces the optimal collective activity factor,
essentially because the relative loss caused by collisions
is larger.

In a symmetric scenario, it may be deduced that the
optimal collective activity factor is

Nγ

γ + MC(γ )
,

with M :=∑N
j=1 pji ≤ N − 1. In particular, the optimal

collective activity factor may either be smaller or larger
than unity, depending on whether (N−1)γ is smaller or
larger than MC(γ ), or equivalently whether M/(N−1)

is smaller or larger than γ /C(γ ). Note that M/(N−1)

provides a measure for the degree of interference
among the users, while C(γ )/γ offers a proxy for the
amount of channel variation.

As an alternative approach, we may work with the
activity factors τi = 1 − Fi(γi) as the independent vari-
ables instead of the threshold values, and write, with
minor abuse of notation, Ui(τi) = E{RiI{Ri>F−1

i (1−τi)}}.
In that case, the expression for the expected through-
put of user i is Ti(τ ) = Ui(τi)

∏N
j=1(1 − pijτj) with τ =

(τ1, . . . , τN). The expression for the aggregate through-
put utility function is:

G(γ ) =
N∑

i=1

wi log(Ti(γi))

=
N∑

i=1

[

wi log(Ui(τi)) +
N∑

j=1

wj log(1 − pjiτi)

]

.
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Noting that dUi(τi)

dτi
= F−1(1 − τi), we obtain

∂G(τ )

∂τi
= wi

Ui(τi)

dUi(τi)

dτi
−

N∑

j=1

wj pji

1 − pjiτi

= wi F−1
i (1 − τi)

Ui(τi)
−

N∑

j=1

wj pji

1 − pjiτi
.

Thus the optimality condition becomes

wi F−1
i (1 − τi)

Ui(τi)
=

N∑

j=1

wj pji

1 − pjiτi
,

which corresponds to Eq. 1 as Fi(γi) = 1 − τi.

Remark 3.1 When we work with the activity factors
instead of the threshold values as the independent
variables, we can in fact allow for rate distribution
functions that are not continuous but have probabil-
ity mass in discrete points. Specifically, we can define
Ui(τi)=

∫ γi(τi)

r=0 rdFi(r)+γi(τi)(τi−Fi(γ
−
i (τi)), with γi(τi)=

sup{γ : Fi(γ )≤τi}. In particular, we can allow for a
given user i to have a constant transmission rate ri,
in which case F−1

i (s) ≡ ri and Ui(τi) ≡ riτi, so that the
optimality condition reduces to wi(1 − τi) = w−iτi in
case pji is either 0 or 1 for all i �= j. In case wi = 1 for
all i = 1, . . . , N, we obtain τi = 1/N, which is consistent
with the fact that in a standard Aloha system with
constant (unit) transmission rates the sum of the trans-
mission probabilities of all users is equal to unity for
every Pareto-optimal throughput vector as mentioned
earlier [19].

Remark 3.2 As observed in the Introduction, the
present paper provides a bridge between opportunistic
medium access strategies in the presence of channel
variations and distributed throughput utility optimiza-
tion in a standard Aloha system without channel vari-
ations. Indeed, the expression for the throughput of
user i in terms of the activity factors τj has a similar
structure as in a standard Aloha system (with the term
Ui(τi) rather than just τi accounting for the gains from
opportunistic medium access), which is again related to
the observation in the previous remark.

4 Algorithm specification

As observed before, the optimality condition 1 only
involves the rate distribution function Fi(·) of user i,

and the weights wj and transmission failure probabili-
ties pji of the other users, but not their rate distribution
functions Fj(·). The optimal threshold values γ ∗

i can
therefore be found in a distributed fashion, as long
as each user i knows the weights wj and transmission
failure probabilities pji of the other users. Particularly,
in case pji is either 0 or 1 for all j �= i, user i only
needs to know the aggregate weight w−i =∑N

j=1 wj pji

of the other users it interferes with. When the rate
distribution function Fi(·) and hence the function Ui(·)
are known, Eq. 1 can then in principle be solved using
numerical means. In practice, however, the function
Fi(·) will not be known exactly and may exhibit non-
stationary characteristics, which means that use of an
adaptive algorithm based on actual rate observations is
preferable.

We now proceed to specify such an algorithm, where
we focus on a window-based version, but the basic
concept easily extends to similar non-window-based
incarnations. For convenience, we first treat the case
where pji is either 1 or 0 for all j �= i, so that the
optimality condition 2 applies. Below we will discuss
the case of arbitrary values of pij.

We assume that user i operates in cycles of pos-
sibly variable lengths, where the k-th cycle consists
of Li(k) ≥ 1 consecutive time slots. Let γi(k) be the
threshold value of user i at the beginning of the k-th
cycle. In each slot of the k-th cycle, user i transmits
if and only if its instantaneous rate exceeds γi(k). De-
note by Ri(k, l) the feasible transmission rate of user i
in the l-th time slot of the k-th cycle. Let the 0–1
variable Xi(k, l) = I{Ri(k,l)>γi(k)} indicate whether user i
transmits in the l-th time slot of the k-th cycle or not.
At the end of the k-th cycle, we compute the fraction
F̂i(k) = 1

Li(k)

∑Li(k)

l=1 (1 − Xi(k, l)) as empirical estimate

for Fi(γi(k)) and Ûi(k) = 1
Li(k)

∑Li(k)

l=1 Xi(k, l)Ri(k, l) as
empirical estimate for Ui(γi(k)).

In view of the optimality condition 2, we next cal-
culate the difference Di(k) = wiγi(k)F̂i(k) − w−iÛi(k).
In case Di(k) < 0, the current threshold value γi(k) is
likely to be smaller than the optimal threshold value γ ∗

i ,
whereas in the opposite case, it is likely to be larger.
Hence, in the former case it makes sense to increase
the threshold, whereas in the latter case it is sensible to
decrease the threshold. We will consider two specific
options, (A) multiplicative updates with a constant
factor and (B) additive updates with a variable step
size, but alternative combinations are possible too. In
option (A), we set the threshold value for the next cycle
to γi(k + 1) = γi(k)(1 + ε) or γi(k + 1) = γi(k)(1 − ε),
with ε > 0 a suitably small coefficient, depending on
whether Di(k) is negative or positive, respectively. In
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option (B), we set the threshold value for the next
cycle to γi(k + 1) = γi(k) − δi(k)Di(k) with δi(k) > 0
a sequence of coefficients such that

∑∞
k=0 δi(k) = ∞,

∑∞
k=0 δi(k)2 < ∞.
In view of the drift condition, it is intuitively plau-

sible that in both versions the threshold will approach
the optimal value γ ∗

i in some sense. In option (A),
assuming Li(k) ≡ Li for all k = 1, 2, . . . , the threshold
value will converge to a random variable which will
continue to toggle around γ ∗

i , with the magnitude of the
oscillation governed by the value of ε. In option (B),
the threshold value will converge to γ ∗

i almost surely,
as we will rigorously establish in the theorem below.
(For mathematical convenience, we will make the com-
mon assumption that the feasible transmission rates
are independent over time, but the proof arguments
can be extended to scenarios where the rates show
temporal correlations. A detailed convergence proof
for option (A) would require a complex and lengthy
mathematical treatment, and go beyond the scope of
the present paper.) From a practical point of view,
however, the downside of (B) is the sluggish response to
changes in the underlying statistics, whereas option (A)
is less accurate but more responsive. In Section 6 we
will conduct numerical experiments to examine the
performance of both versions (A) and (B).

Theorem 4.1 (Convergence of thresholds)
Assume that the feasible transmission rates Ri(1),

Ri(2), . . . are i.i.d. copies of a continuous random
variable Ri with E

{
R2

i

}
< ∞. Let δi(k) > 0 be a

sequence of coef f icients such that
∑∞

k=0 δi(k) = ∞,
∑∞

k=0 δi(k)2 < ∞. Let γi(k) be the value of the thresh-
old of user i after k updates according to γi(k + 1) =
[
γi(k) − δi(k)Di(k)

]γ max
i

0 , with

[x]b
a =

⎧
⎪⎨

⎪⎩

a if x < a
x if a ≤ x ≤ b
b if x > b

,

γ max
i > γ ∗

i an arbitrary constant, and Di(k) as def ined
above. Let γ ∗

i be the optimal threshold value of user i,
i.e., the unique solution of Eq. 2, and assume that

μi = inf
γi �=γ ∗

i

wiγi Fi(γi) − w−iUi(γi)

γi − γ ∗
i

> 0.

Then the random sequence γi(k) converges to γ ∗
i almost

surely as k → ∞.

The proof of Theorem 4.1 relies on a powerful con-
vergence result for nonnegative ‘almost’ supermartin-
gales which is stated in the next theorem.

Theorem 4.2 (Convergence of nonnegative ‘almost’
supermartingales)

Let the random sequence Mk ≥ 0, k = 1, 2, · · · be an
‘almost’ supermartingale i.e., the sequence satisf ies the
following three conditions:

(i) supk E {Mk} < ∞;
(ii) Mk is adapted to a f iltration (increasing sequence

of σ -algebras) F1 ⊆· · ·⊆Fk−1 ⊆Fk ⊆ . . ., where
the k-th σ -algebra, Fk is that induced by M1,

M2, · · · , Mk;
(iii) E {Mk+1|Fk} ≤ Mk + εk+1, for some sequence of

coef f icients εk ≥ 0 with
∑∞

k=1 εk < ∞.

Then limk→∞ Mk = M∞ exists and is f inite
with probability 1, where M∞ is measurable with
respect to F∞ = ∪∞

k=1Fk.

The proof of Theorem 4.2 follows by using the
definition of an ‘almost’ supermartingale and following
the steps leading to Theorem 11.5 in [32], see also
Chapter 10, and [20].

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1 Define Zk := γi(k) − γ ∗
i , where

we drop the user index i for conciseness. We will
show that the sequence Z 2

k converges to 0 almost
surely, which implies the almost-sure convergence of
the thresholds γi(k) to γ ∗

i as k → ∞.
The proof consists of two parts. We will first show

that the sequence Z 2
k converges to a finite limit almost

surely by verifying that it is an almost supermartingale
and then invoking Theorem 4.2. Second, we will prove
that the latter limit must be 0.

We first verify that the sequence Z 2
k satisfies condi-

tions (i)–(iii).

(i) This follows from (iii).
(ii) Adapted with respect to Fk means that the Zk

events are contained within Fk. This follows by
construction of the sequence γi(k).

(iii) We may write γi(k + 1) = γi(k) − δi(k)ζi(k)Di(k),
with ζi(k) = γi(k)−γi(k+1)

δi(k)Di(k)
∈ [0, 1], and thus

Zk+1 = γi(k + 1) − γ ∗
i

= γi(k) − δi(k)ζi(k)D̂i(k) − γ ∗
i

= Zk − δi(k)ζi(k)Di(k),

yielding

E
{

Z 2
k+1|Fk

} = Z 2
k − 2δi(k)

× E
{
(γi(k) − γ ∗

i )ζi(k)Di(k)
}

+ δi(k)2
E
{
ζi(k)2 Di(k)2

}
.
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If γi(k) ≤ γ ∗
i , then E {Di(k)} ≤ 0, and if γi(k) ≥ γ ∗

i ,
then E {Di(k)} ≥ 0, so that E

{
(γi(k) − γ ∗

i )ζi(k)Di(k)
} ≥

0. Hence E
{

Z 2
k+1|Fk

} ≤ Z 2
k + εk+1, with εk+1 = δi(k)2

E
{
ζi(k)2 Di(k)2

}
. Now observe that Di(k) ∈ [− w−i

Li(k)∑Li(k)

l=1 Ri(k), wiγi(k)], which gives E
{
ζi(k)2 Di(k)2

} ≤
E
{

Di(k)2
} ≤ max{w2

−iE
{

R2
i

}
, w2

i (γ
max
i )2}. The fact that

∑∞
k=0 δi(k)2 < ∞ then implies that

∑∞
k=0 εk < ∞.

Applying Theorem 4.2, we conclude that the se-
quence Z 2

k converges to a finite limit Z 2∞ almost surely.
In order to complete the proof, it remains to be

shown that Z 2∞ = 0.
First observe that

|Zk+1| = |γi(k + 1) − γ ∗
i |

= |γi(k) − γ ∗
i − δi(k)ζi(k)Di(k)|

≤ |γi(k) − γ ∗
i − δi(k)Di(k)|.

It follows that

E
{

Z 2
k+1|Fk

} ≤ Z 2
k − 2δi(k)E {Zk Di(k)}

+ δi(k)2
E
{

Di(k)2
}
,

which could in fact also have been deduced from the
arguments used in checking condition (iii) above.

Taking expectations in the above inequality, tele-
scoping over all k, and recalling that

∑∞
k=0 δi(k)2 < ∞

and supk E
{

Di(k)2
}

< ∞, we obtain

2
∞∑

k=0

δi(k)E {Zk Di(k)} ≤ E
{

Z 2
0

}− E
{

Z 2
∞
}

+
∞∑

k=0

δi(k)2
E
{

Di(k)2
}

< ∞.

Also, E {Zk Di(k)} ≥ μiE
{

Z 2
k

}
.

Since
∑∞

k=0 δi(k) = ∞, it follows that

lim inf
k→∞

E
{

Z 2
k

} = 0.

Invoking Fatou’s lemma, we deduce

E
{

Z 2
∞
} = E

{

lim inf
k→∞

Z 2
k

}

≤ lim inf
k→∞

E
{

Z 2
k

} = 0,

which implies that Z 2∞ = 0 almost surely. �


We now briefly treat the case of probabilistic cap-
ture, where we suppose that all capture probabilities
satisfy 0 < pij < 1, j �= i, and are known exactly. As-
sume further that L rate samples are used before each
update.

We will concentrate on user i and suppress the i
index as well as the cycle index k. Let Xl, l = 1, · · · , L,
be the indicator random variables as before, so that
E {Xl}=1−F(γ ). We now show that similar arguments
to the above will lead to convergence to a point arbi-
trarily close (of O(1/L) to the root of Eq. 1).

Define

AL(γ, X) :=
1
L

∑L
l=1 Rl Xl

γ
,

then E {AL} is decreasing in γ . Also, define

BL(γ, X) :=
⎛

⎝
N∑

j=1

wj pj

1 − pj

L

∑L
l=1 Xl

⎞

⎠

−1

,

so that E {BL} is increasing in γ and the two expecta-
tions have a root 0 < γmin < γL < γmax, for sufficiently
large L. Hence, if we set DL := BL − AL we obtain an
‘almost’ supermartingale as before.

Since at the root

E {AL} = U(γL)

γL

E {BL} =
⎛

⎝
N∑

j=1

wj pj

1 − pj(1 − F(γL)

⎞

⎠

−1

+ εL

where εL → 0 as L → ∞, the point of convergence can
be chosen arbitrarily close to γ ∗.

5 Packet-level stability

In the previous section we considered the problem of
throughput optimization, implicitly assuming the var-
ious users to have saturated queues, i.e., always have
packets to transmit, and established the convergence of
the proposed adaptive algorithm. In this section we turn
our attention to a scenario with queue dynamics where
users are not infinitely backlogged but have queues
fed by packet arrivals, and address the stability of the
adaptive transmission algorithm. Specifically, denote
by Ai(t) the number of packets arriving to the queue
of the ith user in the tth time slot. We assume that
Ai(1), Ai(2), . . . are i.i.d. copies of some discrete ran-
dom variable Ai with mean λi = E{Ai}. We assume that
a user only decides to transmit if its queue is non-empty
and its feasible transmission rate exceeds the threshold
value. Since the arrival processes are expressed in terms
of packets per slot, it will be convenient to measure the
feasible transmission rates in the same unit.
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Let Qi(t) represent the queue length of the ith user
at the start of the tth time slot. Define

R′
i(t) = Ri(t)Xi(t)

∏

j∈Si

(1 − Xj(t)),

as the number of packets served from the ith queue in
the tth time slot, with

Xi(t) = I{Ri(t)>γk,Qi(t)+Ai(t)>0}

indicating whether or not the ith user transmits in the
tth time slot. The time evolution of the ith queue may
then be described by the familiar recursion

Qi(t + 1) = [Qi(t) + Ai(t) − R′
i(t)
]+

.

Observe that the queue size process Q(t) = (Q1(t),
. . . , QN(t)) is a discrete-time Markov chain.

An important issue that arises, is (I) whether the
queue process is ‘stable’ in some appropriate sense.
More formally stated, for a given vector of threshold
values γ = (γ1, . . . , γN), what is the stability region
�(γ ) ∈ R

N+ , i.e., the set of arrival rate vectors λ =
(λ1, . . . , λN) for which the queue process is stable?
A closely related question is (II) whether we can
easily characterize the overall stability region, � =
∪γ∈R

N+ �(γ ), i.e., the set of arrival rate vectors for which
there exists a vector of threshold values such that the
queues are stable. A further related question is (III)
whether we can find threshold values that achieve sta-
bility, given that λ ∈ �, but without any explicit knowl-
edge of the feasible transmission rate distributions and
arrival parameters.

We will address each of the problems (I), (II) and
(III) below.

5.1 Problem I

Problem I has been thoroughly studied in the slightly
simpler but similar context of a standard slotted Aloha
system (without channel variations), where the stability
region is determined for a given vector of transmis-
sion probabilities, rather than for a given vector of
threshold values. While an abundance of interesting
results have been obtained in the literature, an explicit
characterization of the stability region in that setting is
essentially limited to the case of two users. The depen-
dence between the queue lengths renders the case of an
arbitrary number of users extremely complex, and the
available results are limited to bounds and asymptotic
approximations, or entail restrictive assumptions on the
packet arrival processes.

In view of these considerations, we henceforth focus
on the case of two interfering users, i.e., N = 2, and use
a similar proof technique as developed for the standard
slotted Aloha model. In particular, we adopt the notion
of a ‘dominant system’ as in Luo and Ephremides [18],
Rao and Ephremides [26] and consider a corresponding
version of the system where user 1 transmits ‘dummy’
packets when its queue is empty. It is easily verified that
the queues of both users are stochastically larger in that
system, hence the term dominant system. In particular,
stability of the queue process in the dominant system
implies that of the queue process in the original system.

In the dominant system, the probability that a trans-
mission of user 1 is successful, alternates between
the values 1 and 1 − p12 + p12 F2(γ2), depending on
whether the queue of user 2 is empty or not. In con-
trast, the probability that a transmission of user 2 is
successful, is always 1 − p21 + p21 F1(γ1), since user 1
transmits dummy packets when its queue is empty, and
hence the expected throughput of user 2 is T2(γ1, γ2) =
U2(γ2)(1 − p21 + p21 F1(γ1)). It follows that the queue
of user 2 is stable if and only if

λ2 < U2(γ2)(1 − p21 + p21 F1(γ1)), (5)

and whenever that inequality holds, the fraction of time
that the queue is non-empty is

π2 = λ2

U2(γ2)
(
1 − p21 + p21 F1(γ1)

) .

Thus, the time-average throughput of user 1 is

U1(γ1)
[
1 − π2 + π2

(
1 − p12 + p12 F2(γ2)

)]

= U1(γ1)
[
1 − π2 p12(1 − F2(γ2))

]

= U1(γ1)

[

1 − λ2 p12(1 − F2(γ2))

U2(γ2)(1 − p21 + p21 F1(γ1))

]

,

which means that the queue of user 1 is stable if and
only if

λ1 < U1(γ1)

[

1 − λ2 p12(1 − F2(γ2))

U2(γ2)(1 − p21 + p21 F1(γ1))

]

. (6)

Because of the dominance, the above two inequalities
imply that the queue process in the original system is
stable.

Considering a dominant system with the roles of the
two users reversed, we deduce that the queue process in
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the original system is also guaranteed to be stable when
the following two inequalities are satisfied:

λ1 < U1(γ1)
(
1 − p12 + p12 F2(γ2)

)
, (7)

and

λ2 < U2(γ2)

[

1 − λ1 p21(1 − F1(γ1))

U1(γ1)
(
1 − p12 + p12 F2(γ2)

)

]

. (8)

We obtain that the stability of the queue length
process is ensured when either inequalities 5 and 6 or
inequalities 7 and 8 hold. Following a similar line of
argument as in [18, 26], it may be concluded that the
latter conditions are not only sufficient, but in fact also
necessary for stability.

In conclusion, the stability region �(γ1, γ2) for a
given pair of threshold values (γ1, γ2) is the set of
all arrival rate vectors (λ1, λ2) ∈ R

2+ satisfying either
inequalities 5 and 6 or inequalities 7 and 8.

5.2 Problem II

We now turn to the problem of characterizing the over-
all stability region � :=⋃(γ1,γ2)∈R

2+ �(γ1, γ2), i.e., the set
of arrival rate vectors for which there exists a pair of
threshold values such that the queues are stable.

For any (γ1, γ2) ∈ R
2+, define T (γ1, γ2) := {(x1, x2) ∈

R
2+ : xi ≤ Ti(γ1, γ2)} = [0, T1(γ1, γ2)] × [0, T2(γ1, γ2)],

and T :=⋃(γ1,γ2)∈R
2+ T (γ1, γ2). Note that T (γ1, γ2) ⊆

closure(�(γ1, γ2)).
Let g1(w1/w2) be the unique solution to the optimal-

ity equation w1γ1(1− p21+ p21 F1(γ1))=w2 p21U1(γ1)

as function of the ratio w1/w2. Likewise, let g2(w2/w1)

be the unique solution to the optimality equation
w2γ2(1 − p12 + p12 F2(γ2)) = w1 p12U2(γ2) as function
of the ratio w2/w1. For any r ∈ (0, ∞), define U(r) :=
{(x1, x2) ∈ R

2+ : xi ≤ Ti(g1(r), g2(1/r))} = [0, T1(g1(r),
g2(1/r))]×[0, T2(g1(r), g2(1/r))], and U :=⋃r∈(0,∞)U(r).
It may then be shown that closure(�) = T = U .

(i) We first prove that closure(�) ⊆ T .
Assume that (λ1, λ2) ∈ closure(�). Then there
exists a vector (γ1, γ2) ∈ R

2+ such that (λ1, λ2) sat-
isfies either inequalities 5 and 6 or inequalities 7
and 8. By symmetry, we may assume the former
to be the case, without loss of generality. Now let
γ ′

2 be such that 1 − F2(γ
′
2) = π2(1 − F2(γ2)), with

π2 = λ2

U2(γ2)(1 − p21 + p21 F1(γ1))
< 1,

due to Eq. 5, so that γ2 ≤γ ′
2, 1− p21+ p21 F1(γ1)=

λ2/(π2U2(γ2)) and

1 − p12 + p12 F2
(
γ ′

2

)

= 1 − π2 p12(1 − F2(γ2))

= 1 − λ2 p12(1 − F2(γ2))

U2(γ2)
(
1 − p21 + p21 F1(γ1)

) .

Thus,

T2
(
γ1, γ

′
2

) = U2
(
γ ′

2

) (
1 − p21 + p21 F1(γ1)

)

= λ2U2
(
γ ′

2

)

π2U2(γ2)
> λ2/π2 > λ2,

and

T1
(
γ1, γ

′
2

)

= U1(γ1)
(
1 − p12 + p12 F2

(
γ ′

2

) )

= U1(γ1)

[

1− λ2 p12(1−F2(γ2))

U2(γ2)(1− p21+ p21 F1(γ1))

]

>λ1,

because of Eq. 6.
Hence, (λ1, λ2) ∈ T (γ1, γ

′
2) ⊆ T .

(ii) We now show that T ⊆ U .
Assume that (λ1, λ2) ∈ T . Then there exists a
vector (γ1, γ2) ∈ R

2+ such that λi ≤ Ti(γ1, γ2), i =
1, 2, and (T ′

1, T ′
2)≥(T1(γ1, γ2), T2(γ1, γ2)) implies

that (T ′
1, T ′

2) /∈ T . Therefore (log(T1(γ1, γ2)),

log(T2(γ1, γ2)))∈ log(T ), with log(T ) :={(log(T1),

log(T2)) : (T1, T2) ∈ T }, and (log(T ′
1), log(T ′

2)) ≥
(log(T1(γ1, γ2)), log(T2(γ1, γ2))) implies (log(T ′

1),

log(T ′
2)) /∈ log(T ), i.e., (log(T1(γ1, γ2)), log(T2(γ1,

γ2))) is Pareto-optimal and maximizes some lin-
ear function over log(T ) since the set log(T ) is
convex as may be shown by a somewhat tedious
but otherwise straightforward argument. In other
words, there exists a vector (w1, w2) ∈ R

2+ such
that

w1 log
(
T1(γ1, γ2)

)+ w2 log
(
T2(γ1, γ2)

)

= max
(y1,y2)∈log(T )

w1 y1 + w2 y2.

It follows that γ1 = g1(r) and γ2 = g2(1/r) with
r = w1/w2, i.e., (λ1, λ2) ∈ U(r) ⊆ U .

(iii) Finally, we prove that U ⊆ closure(�).
Assume that (λ1, λ2) ∈ U . Then there exists a
number r∈(0, ∞) such that λi ≤Ti(g1(r), g2(1/r)),
i = 1, 2. Taking γ1 = g1(r) and γ2 = g2(1/r), we
obtain (λ1, λ2)∈T (γ1, γ2) ⊆ closure(�(γ1, γ2)) ⊆
closure(�).
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5.3 Problem III

Finally, we consider the problem of finding threshold
values that achieve stability for an unknown vector of
arrival rates λ (assuming λ ∈ � to ensure the existence
of such threshold values). Surprisingly, the problem
turns out to be simpler than the problem of determining
the stability region for given threshold values, and can
be tackled in far greater generality. Thus we now return
to the scenario as studied in Sections 2 and 3 with an
arbitrary number of N users and a general interference
structure in terms of the probabilities pij. We consider a
transmission strategy which adapts the threshold values
over time as specified in Section 3. Rather than using
fixed user weights wi, however, we take these equal to
the current queue lengths of the various users, setting
wi(t) = Qi(t). Note that the transmission strategy does
not use any explicit knowledge of the feasible transmis-
sion rate distributions or arrival parameters.

The above-described transmission strategy achieves
stability for any arrival rate vector (λ1, . . . , λN) ∈ �.
A detailed proof is beyond the scope of the present
paper, and hence we only provide a brief sketch of
the approach which is quite similar to that in [29],
and relies on consideration of the fluid limit where the
queue length process is scaled in both space and time.
Specifically, we consider a sequence of queue length
processes, indexed by the superscript (r), where the
initial state satisfies ||Q(r)(0)|| = r, with r some positive
scaling coefficient. For convenience, we extend the
definition of the queue length process to continuous
time by adopting the convention Q(t) = Q(�t�).

As observed in [29], in order to prove the ergodicity
of the original discrete-time queue length process Q(t),
t = 1, 2, . . . , it suffices to show that there exist constants
ε > 0 and τ > 0 such that for any sequence of the queue
length processes Q(r)(t),

lim sup
r→∞

E

{
1

r
||Q(r)(rτ)||

}

≤ 1 − ε.

To establish the above property, we will consider the
sequence of fluid scaled processes

q(r)(t) := 1

r
Q(r)(rt),

and observe that we may impose the additional condi-
tion that the sequence of initial states converges, i.e.,
q(r)(0) → q(0) as r → ∞ with ||q(0)|| = 1.

It may be shown that any subsequence q(r)(t) has a
further subsequence that converges to a trajectory q(t),
referred to as a fluid sample path, which is Lipschitz

continuous as function of t. For similar reasons as
in [29], any fluid sample path satisfies the equations

qi(t) = (λi − Ti(t))I{qi(t)>0},

i = 1, . . . , N, with

T(t) ∈ arg max
y∈T

N∑

i=1

qi(t) log(yi).

Since λ∈� and closure(�)=T , there exists a vector
μ∈T with λi < μ∗

i , i = 1, . . . , N. Define the Lyapunov
function G(x) :=∑N

i=1 x2
i /μ

∗
i . Along similar lines as

in [29], it may be shown that

d
dt

G(q(t)) ≤
N∑

i=1

qi(t)[λi/μ
∗
i − 1],

which implies that d
dt G(q(t)) is negative and bounded

away from zero as long as G(q(t)) is positive and
bounded away from zero. Hence, it follows that there
exist constants ε and τ such that ||q(τ )|| ≤ 1 − ε for any
sequence with ||q(0)|| = 1.

6 Numerical experiments

We now present numerical results to further investigate
the convergence properties of the adaptive algorithm
described in Section 4. We consider a total of three
different scenarios. Throughout, the feasible transmis-
sion rates of the various users are assumed to be inde-
pendent from slot to slot, with an exponential marginal
distribution and possibly user-dependent means. The
threshold values are always initialized to the mean
transmission rates.

In Scenario I we consider a system with N = 3 users
with equal weights, mean rates of 1.0, 3.0 and 5.0,
respectively, and full interference, i.e., the collision
probabilities are given by pij = 1 for all i �= j. We
first examine the convergence of Algorithm (A). The
length of the cycles is set to Lk = 1000 slots, and the
coefficient in the multiplicative update is taken to be
ε = 0.001.

Figure 1 shows the behavior of the ‘drift’ term Di(k)

during the first 1,000 cycles. While the drift never re-
duces to zero in the presence of multiplicative updates
with a constant factor, the figure confirms that the drift
term cannot persistently be negative or positive. After
an initial transient phase, the system rapidly settles into
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Fig. 1 Scenario I; drift terms for Algorithm A; ε = 0.001

an equilibrium where the drift exhibits slight, random
oscillations around zero.

Figure 2 plots the evolution of the threshold values
γi(k) and illustrates that these converge to reasonably
stable values which are proportional to the mean feasi-
ble transmission rates.

Figure 3 shows the transmission probabilities
F̄i(γi(k)) and indicates that these are equal for the
various users.

The above-mentioned properties of the threshold
values and transmission probabilities corroborate the
results described in Section 3 for the case where the fea-
sible transmission rates of the users are exponentially
distributed. In particular, for N = 3, the solution s∗ of
Eq. 4—representing the proportionality factor between

Fig. 2 Scenario I; threshold values for Algorithm A; ε = 0.001

Fig. 3 Scenario I; transmission probabilities for Algorithm A;
ε = 0.001

the mean rates and the threshold values—is approxi-
mately 1.472, and the corresponding activity factor is
roughly 0.23.

Figure 4 plots the evolution of the threshold values
during the first 100 cycles when the coefficient in the
multiplicative update is increased to ε = 0.01. Because
of page limitations, we henceforth only present results
for the threshold values and not the drift terms and
transmission probabilities. As to be expected, the con-
vergence occurs about 10 times as fast, but the am-
plitude of the oscillations in equilibrium is somewhat
larger.

Figure 5 shows the evolution of the threshold values
for Algorithm (B) with Lk = 1 slots per update and a

Fig. 4 Scenario I; threshold values for Algorithm A; ε = 0.01
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Fig. 5 Scenario I; threshold values for Algorithm B; variable step
size δk = 1/k

variable step size δk = 1/k. Thanks to the initially large
and gradually reduced step size, the convergence occurs
fast, and the random oscillations completely vanish in
the limit, reflecting the almost-sure convergence estab-
lished in Theorem 4.1.

Figure 6 shows the evolution of the threshold values
for Algorithm (B) with Lk = 1 slots per update and a
constant step size δk = 0.001. As a result of the constant
step size, convergence occurs slower, and the amplitude
of the random oscillations in equilibrium is larger.

In Scenario II, we consider a system with N = 5 users
with equal weights and unit mean rates. Users only
partly interfere with others, and the collision probabili-

Fig. 6 Scenario I; threshold values for Algorithm B; constant
step size δk = 0.001

ties (or incidence matrix of the interference graph) are
given by

(pij) =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 1 0 1
0 0 0 1 1
1 0 0 1 1
0 1 1 0 1
1 1 1 1 0

⎞

⎟
⎟
⎟
⎟
⎠

,

so that w−1 = w−2 = 2, w−3 = w−4 = 3, and w−5 = 4.
Figure 7 shows the evolution of the threshold values

for Algorithm (B) with Lk = 1 slots per update and a
variable step size δk = 1/k. The solutions of Eq. 3 are
now s∗

1 = s∗
2 = 1.472, s∗

3 = s∗
4 = 1.744, and s∗

5 = 1.953,
respectively, which agree with the equilibrium values of
the threshold parameters as observed in the figure.

Figure 8 plots the evolution of the threshold values
for Algorithm (B) with Lk = 1 slots per update and a
constant step size δk = 0.001. We observe again that
convergence occurs slower as a result of the constant
step size, and that the behavior in equilibrium is noisier.

In Scenario III, we consider the same system as
in Scenario II, except that after 5,000 time slots, an
additional user emerges and the incidence matrix of the
interference graph changes to

(pij) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 1 0
0 0 0 1 1 0
1 0 0 1 1 1
0 1 1 0 1 1
1 1 1 1 0 0
0 0 1 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

so that w−1 =w−2 =w−6 =2 and w−3 =w−4 =w−5 =4.

Fig. 7 Scenario II; threshold values for Algorithm B; variable
step size δk = 1/k
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Fig. 8 Scenario II; threshold values for Algorithm B; constant
step size δk = 0.001

Figure 9 shows the evolution of the threshold values
for Algorithm (B) with Lk = 1 slots per update and a
variable step size δk = 1/k. Once the additional user
has entered the system, the solutions of Eq. 3 are s∗

1 =
s∗

2 = s∗
6 = 1.472, and s∗

3 = s∗
4 = s∗

5 = 1.953, respectively,
which agree with the equilibrium values of the thresh-
old parameters in the figure. Observe however that
the re-convergence after 5,000 time slots to the new
equilibrium values is quite sluggish since the step size
has been significantly reduced by then.

Figure 10 plots the evolution of the threshold values
for Algorithm (B) with Lk = 1 slots per update and a
constant step size δk = 0.001. Note that the algorithm

Fig. 9 Scenario III; threshold values for Algorithm B; variable
step size δk = 1/k

Fig. 10 Scenario III; threshold values for Algorithm B; constant
step size δk = 0.001

exhibits better responsiveness and achieves substan-
tially faster re-convergence to the new equilibrium val-
ues after 5,000 time slots due to the constant step size.

Open Access This article is distributed under the terms of the
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