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ABSTRACT
In this paper, we study strategies for allocating and man-
aging friendly jammers, so as to create virtual barriers that
would prevent hostile eavesdroppers from tapping sensitive
wireless communication. Our scheme precludes the use of
any encryption technique. Applications include domains
such as (i) protecting the privacy of storage locations where
RFID tags are used for item identification, (ii) secure reading
of RFID tags embedded in credit cards, (iii) protecting data
transmitted through wireless networks, sensor networks, etc.
By carefully managing jammers to produce noise, we show
how to reduce the SINR of eavesdroppers to below a thresh-
old for successful reception, without jeopardizing network
performance.

We present algorithms targeted towards optimizing power
allocation and number of jammers needed in several settings.
Experimental simulations back up our results.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection (e.g., firewalls); C.2.1 [Computer-
Communication Networks]: Network Architecture and
Design—Wireless Communication
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1. INTRODUCTION
Wireless communicaton is especially susceptible to eaves-

dropping due to its broadcast nature. Ensuring private
communication has typically been considered at higher lay-
ers of the network stack by using cryptographic techniques.
However, in many types of communication, such as RFID
communication and sensor networks, sophisticated crypto-
graphic techniques are often impractical or impossible to
implement, due to power or other hardware constraints.
Therefore, it is of interest to consider physical layer-based
techniques to secure the communication by exploiting the
nature of the wireless channel. Such techniques rely on re-
ducing the Signal-to-Interference-plus-Noise Ratio (SINR)
of eavesdroppers to below a threshold required for success-
ful reception, while taking care not to reduce the SINR at
legitimate receivers too much so as to prevent reception.

Consider the following scenario motivating the applica-
tion of such a technique. We have a warehouse where items
are stored with RFID tags embedded on them for inven-
tory management. These items are perpetually being trans-
ported in or out and can even be moved inside the ware-
house. The RFID tags on them may contain private in-
formation such as the history of transactions on the item,
which must be secured form eavesdroppers. We may ensure
physical security of warehouses by building a fence around
the warehouse such that potential eavesdroppers may not
enter the fence. However, communication security is com-
plicated by the fact that RFID devices are limited capability
precluding the implementation of cryptographic techniques.



Figure 1: An example application scenario. Jam-
mers secure communication in the warehouses gainst
eavesdroppers outside the fence.

To complicate matters further, although we may be able to
guess at the capabilities of eavesdroppers, we are unaware
of their exact locations. Thus, to ensure the privacy of com-
munication, friendly jammers which transmit artificial noise
need to be deployed so that, (i) at any potential eavesdrop-
per location, sufficient interference is caused to prevent re-
ception, and (ii) any legitimate communication inside the
warehouse is not disrupted; see Figure 1. Where should the
jammers be placed and what should be their transmission
powers such that the above requirements are satisfied?

RFID communication is an especially important applica-
tion since, although the information stored may be especially
sensitive, it is relatively easy to eavesdrop since the capa-
bilities of tags are extremely limited. For example, in [7],
the authors demonstrated the vulnerability of credit card
RFID tags by successfully performing various attacks in-
cluding eavesdropping using a device built at a cost of about
$150. Although there do exist RFID tags that possess cryp-
tographic capabilities [21], these have been shown to be weak
and vulnerable to even a brute-force attack (in [17], the au-
thors showed the weakness of the algorithms in a widely used
cryptographic RFID tag).

In general, friendly jamming may be applied in any sce-
nario where cryptographic techniques are not preferred or
where we desire additional security to cryptography. Physi-
cal methods such as insulation of the environment by some
means of padding or physically ensuring that eavesdrop-
pers cannot get near may oftentimes be cost-prohibitive and
therefore, friendly jamming may provide a cheaper alterna-
tive. For example, it may not be cost-effective to use such
methods in hospitals, warehouses or other large areas where
important communication may take place.

This paper focuses on application scenarios where com-
munication is geographically restricted, is of short range and
we may ensure some minimal physical security. One addi-
tional form of wireless communication worth mentioning is
the wireless sensor network, for example, in medical applica-
tions [14] and Ambient Assisted Living application [27, 16].
Sensor nodes have low power requirements and frequently
operate in adverse environments where packet errors may
make security schemes difficult. In general, although sensor
hardware may be capable of cryptography, these schemes
rely on either a trusted third party or secure key manage-
ment schemes (see [26, 22]). Further, the exact network
topology is hard to determine due to the large size and ran-
dom deployment. These properties make the application of
friendly jamming suitable. Placing jammers in such a man-
ner creates a “virtual Faraday cage” preventing malicious
nodes outside from eavesdropping.

The Environment Model. The model of the environ-
ment is termed as a storage/fence model. We assume that
legitimate communication takes place in the storage which
is a geographic region physically secured by a fence inside
which eavesdroppers may not enter. The storage is not re-
stricted in any way apart from the requirement that it is en-
closed by the fence. In particular, a wireless network when
the exact topology is known or multiple warehouses inside
which the communication topology is difficult or impossi-
ble to determine are both encompassed by this model. The
fence may not intersect the storage, i.e., we assume some
minimum gap between the storage and fence. If this re-
quirement is removed, eavesdroppers may move arbitrarily
close to legitimate transmitters which makes the problem in-
feasible. Friendly jammers may be located inside the fence
but not in the storage, termed as jammer space. Further,
we assume that some estimate of eavesdroppers’ capabilities
or some desired protection level is known.

A similar model may be developed for the case when com-
munication outside the fence should not be eavesdropped
upon inside the storage or communication from inside the
storage to outside the fence should be jammed. Such a model
would be applicable in scenarios such as prisons where cell-
phone use is not permitted inside. The algorithms in this
paper may be extended to this model as well.

Contributions. We present algorithms for placing and
assigning power to jammers in the jammer space satisfy-
ing two objectives, as described above: (i) at any poten-
tial eavesdropper location, sufficient interference is caused
to prevent reception, and (ii) any legitimate communica-
tion inside the warehouse is not disrupted. We consider two
problems. The first problem is one of assigning transmis-
sion powers to a set of fixed jammers, referred to as power
assignment and the second is one of locating a minimum
number of fixed-power jammers. In addition, if we are given
a set of candidate jammer locations, we show how to solve
both problems simultaneously, i.e., locate a number of jam-
mers and assign transmission powers to them so that a cost
function which is a weighted sum of the number of jammers
and the total transmission power is minimized. In all cases,
we consider the setting where jammers may be co-operative
as well as when the jammer are responsible for individually
preventing eavesdropping.

Power Assignment. We present a linear programming for-
mulation for optimally assigning power to the jammers when
both the possible eavesdropper locations as well as possible
storage locations (communication nodes) are discrete sets of
points. In the more general case, where they may be continu-
ous regions, we present an ε-approximation algorithm which
solves a linear program with O((n2/ε2)(log2(n/ε) + logL))
constraints in which, given a tunable parameter 0 < ε < 1/2,
the interference at a storage location is approximated within
a factor of (1−2ε), while the total power assigned is approx-
imated within factor (1 + ε). Here, n is the total number of
vertices, edges of storage/fence plus jammers and L is the
distance between the two farthest points on the fence.

Jammer Placement. We present a linear programming for-
mulation with O((n|J|/ε2)(log(n/ε) log(|J|/ε)+logL)) when
the jammer space is a discrete set of points J of size |J|. The
solution to the linear program yields the minimum num-
ber of jammers so that, if each jammer is assigned factor
(1 + ε) more power, the interference in the storage is ε-



approximated, similar to above. In addition, for the case
when jammers are operativing individually, the storage and
fence are convex polygons and the jammers’ power is fixed
at a specified value, we provide an almost-optimal algorithm
for placing jammers anywhere in a continuous jammer space.
This is interesting primarily as a theoretic contribution and
serves to illustrate some of the difficulties of the problem.

We also show how to extend the algorithms to find a com-
bined optimum solution for both power allocation and jam-
mer location when the jammer space is discrete. In addition,
when eavesdroppers use directional antennas to reduce the
interference region, we show how to extend the linear pro-
grams to take this into account. Finally, we present the re-
sults of some preliminary simulations to compare individual
jammers versus co-operating ones.

Prior Work. Several issues have been identified as be-
ing specific to RFID security [8, 18]. Although active jam-
ming has been identified as a possible approach in previous
works [10], to the best of our knowledge, this method has
not been fully explored. This is partly because most works
are interested in the security of a specific RFID tag. A sim-
ilar approach to active jamming is explored in [10] where
a single tag, placed in a container such as a bag, triggers
a second “blocker” tag on the bag which sends interference
to untrusted readers. This has also been extended to soft-
ware approaches through “soft blocking” [9]. The drawback
of these approaches are that they are special-purpose and
require modification of RFID tags. In contrast with these
approaches, we consider the region in which tags may be
present for security purposes. To the best of our knowledge,
such an approach is novel.

Sensor network security [19] has been mostly focused on
cryptographic techniques. Asymmetric key cryptography is,
in general, resource intensive and hence, the focus is on sym-
metric key cryptography where the primary problem is key
management [22]. This still exposes vulnerabilities to eaves-
dropping or relay attacks during the key distribution phase.

In wireless networks, active jamming for security has been
considered before, particularly in military applications. In [3],
the authors formulate the problem of locating jammers with
an integer program similar to the formulation in this pa-
per. However, they do not consider the geometry of the
region. In information-theoretic security, there exists a sub-
stantial number of works following the seminal work of [28],
focusing on analysis of channel secrecy even when eavesdrop-
pers have unlimited resources [12, 15, 23, 25]. Other works
include game-theoretic approaches for power allocation to
jammers [6] and also identifying “forbidden” regions where
eavesdroppers must not be present. However, the geome-
try has not been fully explored and optimization schemes
providing guarantees are not presented.

Outline of the paper. We begin, in Section 2, by de-
scribing the problem settings. In Section 3, we show that,
under reasonable assumptions, it is sufficient to consider
only the fence as possible eavesdropper locations irrespec-
tive of where eavesdroppers could lie. Section 4 describes
our algorithms for power assignment and Section 5 for jam-
mer placement. In Section 6, we show how to extend our
algorithms for providing combined solutions as well as when
eavesdroppers use directional antennas. Simulation results
are presented in Section 7 followed by a few concluding re-
marks in Section 8.

2. SETTINGS
Let S ⊂ R2 be the storage region which may be a dis-

crete set of points or a collection of polygonal regions, inside
which legitimate communication takes place and let F be the
boundary of a polygon containing S, representing the fence.
Let this polygon be denoted by PF. Eavesdroppers may lie
anywhere in the region R2 \ PF. Let J denote the jammer
space which, typically, is the region between S and F. We
denote by n the description complexity of the problem. For
the power assignment problem, n is the total number of ver-
tices and edges of S and F plus the number of jammers and
for the placement problem, n denotes the total number of
vertices and edges of S and F.

Slightly abusing notation, we refer to a node (eavesdrop-
per, jammer or legitimate node in the storage) by its loca-
tion. For example, a jammer located at point j is referred
to as j. For any two points p1 and p2 in R2, ‖p1 − p2‖ in-
dicates the Euclidean distance between them. Further, for
two sets of points (possibly infinite) Q,Q′ ⊂ R2, we denote
by d(Q,Q′), the minimum distance ‖q − q′‖ over all points
q ∈ Q and q′ ∈ Q′. Given a set of points Q and a point p, let
NN(p,Q) denote the point in Q closest to p. Let d(S,F) = 1
and let L denote the diameter of F, i.e, the distance between
the two farthest points on F. Our algorithms for power as-
signment run in time polynomial in n and logL and those
for location depend only on n.

Communication Model. We use the Signal to Inter-
ference plus Noise Ratio (SINR) model (termed as physical
model in [5]). Assuming all other factors are normalized
and following the standard power dissipation model [20], for
a transmission from p to q given a set of jammers J ,

SINRp(q) =
Pp‖p− q‖−γ∑
j∈J Pj‖j − q‖−γ

, (1)

where Pp is the transmission power of p, Pj is the trans-
mission power of jammer j, and γ is the path loss exponent
(typically from 2 to 4). For clarity, we assume no ambient
noise throughout the paper. All our results, with the ex-
ception of that of Section 5.2, can be extended to take this
into account. A receiver q is able to successfully receive a
transmission from p if SINRp(q) is at least a threshold de-
pending on the node characteristics. We refer to the SINR at
any eavesdropper location p of transmissions from its nearest
point on S as SINR(p). We assume that only jammer signals
cause interference, since typically, we would have some colli-
sion resolution protocol for transmissions inside the storage.

Equation (1) assumes a model in which all jammers co-
operate to interfere with a node. We term this the Fully Co-
operative interference model, denoted by Full . In addition,
we define the Nearest Jammer interference model, denoted
by NJ , where a receiver only encounters interference from
the closest jammer to it. Thus, in Equation (1), the denom-
inator would now incorporate only the interference from the
nearest jammer. The NJ model may be extended to include
the k closest jammers yielding the k-NJ model. In prac-
tice, we expect that the NJ model may not too far from the
Full interference model, due to the path loss exponent γ in
the power dissipation equation: interference from the closest
jammer is most important, while interference due to farther
jammers fades away fast with distance.

For the purposes of clarity, we assume that legitimate
communication inside S is of short enough range so as to



experience insignificant path loss, but our algorithms can
be extended to the cases where we know an upper bound on
the range, or if, we know the exact topology of the commu-
nicating nodes. We also assume that all transmitters in S

have the same transmitting power (normalized to 1). This
assumption may be removed if the exact topology of legiti-
mate nodes is known in advance. Let the SINR threshold for
successful reception by legitimate receivers be normalized to
1 and the threshold for eavesdroppers be δ. The capabili-
ties of eavesdropper nodes may be different from those of
legitimate receivers due to possibly different hardware and
therefore, we use different thresholds. We note that, for an
eavesdropper, it is sufficient to jam possible transmissions
from its nearest point on S.

Finally, throughout, we make the assumption that jam-
mers may be assigned a maximum power Pmax (due to hard-
ware constraints, a jammer may not be assigned an arbitrar-
ily high power) and a minimum power of (1/δ). Roughly,
the minimum power assumption implies that, if eavesdrop-
pers and legitimate receivers have similar capabilities, then
jammers must transmit at a power at least that of legitimate
transmitters. The greater the capabilities of eavesdroppers,
the higher the jammers’ minimum transmission power. We
show, in Section 3, that this assumption implies that it is
sufficient to consider eavesdroppers on F, i.e., if an eaves-
dropper cannot eavesdrop from any location on F, it cannot
eavesdrop from any location in R2\F. Although this does not
look surprising, if the jammers may be assigned an arbitrar-
ily low transmission power, it is easy to construct examples,
where an eavesdropper may be able to successfully eavesdrop
by moving away from S even though it could not eavesdrop
from a closer location. We may remove the minimum power
assumption if we instead assume that once an eavesdropper
gets too far from any point in S, it cannot eavesdrop (possi-
bly due to ambient noise). In this case, our algorithms can
be easily extended with running times which have an addi-
tional logarithmic dependence on this maximum distance.

Under the above communication model, assuming that
eavesdroppers may lie only on F, the following equations
formalize the requirements of a set of jammers J where each
jammer j ∈ J has transmission power Pj : (i) at any poten-
tial eavesdropper location, sufficient interference is caused
to prevent reception, and (ii) any legitimate communication
inside the warehouse is not disrupted.

1∑
j∈J Pj‖j − s‖−γ

≥ 1, ∀s ∈ S (2)

d(p, S)−γ∑
j∈J Pj‖j − p‖−γ

< δ. ∀p ∈ F (3)

The above equations would be modified under the NJ model.
We focus, in this paper, on the Full model and indicate the
changes wherever we refer to the NJ model.

3. CONSIDERING THE BOUNDARIES IS SUF-
FICIENT

We show that under our communication model: (i) jam-
ming the fence F is sufficient to ensure that eavesdroppers
located outside the fence are also jammed successfully and
(ii) ensuring that the any receiver on the boundary of S is
not jammed is sufficient to ensure that receivers inside S are
not jammed.

Lemma 3.1. Under any interference model, if SINR(p) <
δ for all points p on F, then for all points p′ outside the
region encapsulated by F, SINR(p′) < δ.

Proof. We prove the lemma under the Full interference
model. The proof for the NJ model is part of this proof.
Let J be a set of jammers such that no eavesdropper on
F is successfull and let Pj be the transmission power for
any jammer j ∈ J . Let p′ be a point outside F and let p
be a point on F on the segment connecting p′ to NN(p′, S).
Clearly, NN(p′, S) = NN(p, S). Rearranging the SINR equa-
tion, we need to show that, to show that (d(p, S))−γ <
δ
∑
j∈J Pj(‖j−p‖)

−γ implies that (d(p′, S))−γ < δ
∑
j∈J Pj(‖j−

p′‖)−γ .
We will show the proof by induction on the number of jam-

mers. For any subsetX ⊂ J , let aX be a real number satisfy-
ing a−γX = δ

∑
j∈X Pj(‖j−p‖)

−γ . Consider a singleton jam-

mer j and the corresponding aj . Clearly, (aj+‖p−p′‖)−γ <
δPj(‖j − p‖ + ‖p − p′‖)−γ since Pj ≥ 1/δ. Thus, the base
case is satisfied. This completes the proof for the NJ model.

Now, consider some subset X ⊂ J . The inductive hypoth-
esis is that,

(aX + ‖p− p′‖)−γ < δ
∑
j∈X

Pj(‖j − p‖+ ‖p− p′‖)−γ (4)

Now, consider than a jammer j′ is added to X and let
bX,j′ be a real number satisfying

b−γX,j′ = a−γX + δPj′‖j′ − p‖′−γ (5)

Clearly, bX,j′ ≤ ax and bX,j′ ≤ ‖j′ − p‖ since δPj′ ≥ 1.

(bX,j′ + ‖p− p′‖)−γ = b−γX,j′(1 + (‖p− p′‖/bX,j′))−γ

=
a−γX ) + δPj′‖j′ − p‖−γ

(1 + (‖p− p′‖/bX,j′))γ
,

by Equation (5). Since bX,j′ < aX and bX,j′ < ‖j′−p‖, this
implies that,

(bX,j′ + ‖p− p′‖)−γ ≤(aX + ‖p− p′‖)−γ

+ δPj′(‖j′ − p‖+ ‖p− p′‖)−γ .

Hence, we know, for X = J , Equation (4) is satisfied. Now,
since aX ≤ d(p, S), the lemma is proved.

Lemma 3.2. Under any interference model, if for all points
p on the boundary of S, SINR(p) ≥ 1, then for all points p′

inside S, SINR(p′) > 1.

Proof. For the NJ model, select an arbitrary point p′

inside S whose closest jammer is j(p′). Let p be an intersec-
tion point of the segment joining p′ and j(p′) with S. Since
j(p′) = j(p), we clearly have 1 ≤ SINR(p) < SINR(p′).

For the Full model, the statement is equivalent to showing
that the SINR attains it’s minimum at the boundary of S.
This is the same as showing that the interference of the
jammers attains its maximum on the boundary of S. We
do this by showing that the interference, as a function of
position, is a sub-harmonic function and thus satisfies the
Maximum principle known from complex analysis [1]. This
is shown by differentiation:

∆sIs = (∂s1 + ∂s2)
∑
j∈J

Pj |s− j|−γ =
∑
j∈J

γ2|s− j|−γ−2.

Clearly, the Laplacian is positive. Hence, the function is
sub-harmonic and the result follows.



4. POWER ASSIGNMENT
In this section, we provide algorithms to assign powers

to a set of fixed jammers J such that Equation (2) and
Equation (3) are satisfied and the total power assigned is
minimized. We may express the problem by means of the
optimization program below, termed as Jamming-LP.

Jamming-LP: Minimize
∑
j∈J

Pj

s.t. ∀s ∈ S :
∑
j∈J

Pj‖s− j‖−γ ≤1, (I)

∀p ∈ F :
∑
i∈J

Pj‖i− p‖−γ >
1

δd(p, S)γ
, (II)

∀j ∈ J : (1/δ) ≤ Pj ≤Pmax. (III)

Constraints (I) and (II) are the equivalent of Equations (2)
and (3). Is and Ie are dependent on the variables Pj and
are dictated by the interference models as described in Sec-
tion 2. The number of constraints (I) and (II) is uncountably
infinite if S and E are continuous regions in R2.

First note that when S and E are discrete sets of points,
Jamming-LP becomes a linear program which may be solved
in polynomial time since the number of constraints depends
on the cardinalities of S and F.

The continuous case is a more difficult since, as mentioned
before, the number of constraints is uncountably infinite. To
get around this difficulty, we provide an ε-approximation al-
gorithm based on discretizations of S and F. Given a param-
eter ε in the range (0, 1), the algorithm proceeds according
to the following steps:
(1) Compute a discrete set S′ ⊂ S such that if Equation (2)
is satisfied for S′, then Equation (2) is satisfied for S with
threshold 1/(1 + 2ε) ≥ (1− 2ε).
(2) Compute a discrete set F′ ⊂ F such that if Equation (3)
is satisfied for F′ for some power assignment, then, by in-
creasing the powers of the jammers by a factor (1+ε), Equa-
tion (3) is satisfied for F.
(3) Solve the linear program Jamming-LP with constraints
corresponding to S′ and F′.

Theorem 1. Given storage S, F, a set of jammer loca-
tions J and an interference model for the jammers, by solv-
ing a linear program with O((n2/ε2)(log2(n/ε)+logL)) con-
straints, we may compute a power assignment for J such
that

∑
j∈J Pj ≤ (1 + ε)

∑
j∈J P

∗
j where P ∗j is the power of

jammer j under the optimal power assignment and (i) for
each location p ∈ F, Equation (3) is satisfied, (ii) for each
location s ∈ S, SINR(s) ≥ (1− 2ε).

S′ is constructed in a manner ensuring that the interfer-
ence at the point in S at which interference is maximum
is approximated within factor (1 − ε). Similarly, for the
fence F, the point p on F at which SINR is maximum for
a transmission from NN(p, S), does not receive more than
factor (1 + ε) more SINR than the corresponding point in
F′. Now, if each jammer is actually assigned (1 + ε) of the
power assignment returned by Jamming-LP, we can jam ev-
ery point on F and no point on S will reduce its SINR by
more than a factor of 1/(1+ε)2 > (1−2ε). Thus, Theorem 1
is proved. For the remainder of this section, we assume the
Full interference model. However, all results may be applied

to the NJ model with minimal modification. The schemes,
particular the discretization of S, use some of the ideas of
Vigneron [24].

Before, we proceed to describe the discretization schemes,
we briefly outline a couple of preliminary concepts which are
essential for the rest of this section.

Voronoi Diagrams. The Voronoi Diagram (see [2] and
[4, Chapter 7]) for a set of points Q, denoted by VD(Q) is a
decomposition of the plane into cells such that all points in a
cell are closest to the same point q ∈ Q. A cell is denoted by
Vor(q) and edges of the Voronoi Diagram are straight-line
segments (parts of bisectors between pairs of points of Q).
The generalized Voronoi Diagram [11, 13] of a polygon P ,
is the generalization of the Voronoi Diagram to the vertices
and edges of P . This is a decomposition of the plane into
cells such that, in each cell, all points have the same closest
vertex/edge. Both may be constructed in O(|P | log |P |) time
where |P | is the number of vertices/edges of P .

We are interested in the Voronoi Diagrams of the jammer
set VD(J) and the generalized Voronoi diagram VD(S) of S.
Similar to our notation above, we denote by Vor((u, v)) and
Vor(u), the Voronoi cells of an edge (u, v) and vertex u of S
respectively.
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Figure 2: (a) The disks corresponding to the super-
level sets for a jammer when Yj = {y1, y2, y3}. (b) The
arrangement of the disks with respect to S. Vertices
are marked as ×.

Superlevel Sets and Arrangements. For a set of ob-
jects Γ and a polygon or collection of polygons P , the ar-
rangement AP (Γ) of Γ is the planar subdivision induced by
Γ on the boundaries of polygons in P . Namely, its vertices
are the intersection points of the boundaries of the disks
and polygons in P together with original vertices of poly-
gons in P and edges are the maximal connected portions of
the boundaries of P not crossing a vertex; see Figure 2b.
If the number of vertices in P is M , the objects in Γ are
segments, rays or lines and the number of objects in Γ is N ,
the complexity, i.e., the number of vertices and intervals in
AP (Γ) is O(MN).

For a jammer j, let D[j; t] denote the disk of radius t cen-
tered at j. Note that at all points in D[j; t], the interference
due to j is atleast Pjt

−γ . In mathematics, D[j; t] is known
as a superlevel set of the function fj(x) = Pj‖j − x‖−γ .

Given three parameters ρ > 0, α > 0 and l ∈ Z+, we
define

Y (ρ, α, l) = {yi = ρ/(1 + α)i | 0 ≤ i ≤ l}.

Given a set of jammers J and Y (ρ, α, l) for a jammer j,
let Dj = {D[j; yi] | 0 ≤ i ≤ l}; see Figure 2a for an exam-



ple. Consider the arrangement AP (Dj) for some polygon or
collection of polygons P . The intervals are all located be-
tween successive concentric disks centered at j. Clearly, the
following lemma holds for AP (Dj)

Lemma 4.1. Let a, b be two points lying in the same in-
terval of AP (Dj). If a, b lie outside all disks of Dj, then
Pj‖j − a‖−γ ≤ ρ/(1 + α)s and Pj‖j − b‖−γ ≤ ρ/(1 + α)s.
Otherwise, Pj‖j − a‖−γ ≥ (1/(1 + α))Pj‖j − b‖−γ .

Discretization of S. We generate a discrete set S′ ⊂ S

as follows. First, we set ρ = Pjd(j, S)−γ , α = ε/9 and l =
d(1/ε) log(n/ε)e. Next, setting Yj = Y (ρ, α, l), we compute
the set of disks DS = ∪j∈JDj,Yj . Finally, we compute the
arrangement AS = AS(DS) and select an arbitrary point in
each interval of AS to add to the set S′.

We choose ρ = Pjd(j, S)−γ because it is an upper bound
on Pj‖j − s‖−γ for any point s ∈ S, implying that there is
no point of s in the smallest disk of Dj,Yj for all jammers j.
It is important to note that we do not know the values Pj to
determine the value of ρ. However, we do not actually need
it to compute the radii of the disks in Dj,Yj .

The correctness of the algorithm follows from the following
two lemmas.

Lemma 4.2. Let s be the point selected by our algorithm
in some interval of AS and let s′ be another point in the
same interval. For any jammer j ∈ J , we have

‖j−s‖−γ ≥

{
1

1+α
‖j − s′‖−γ , if s /∈ D[j; d(j,S)

(1+α)l
],

‖j − s′‖−γ − α
n
d(j, S)−γ , otherwise.

Proof. If s /∈ D[j; d(j, S)/(1 + α)l], i.e., if it lies outside
the outermost disk centered at j, then by the choice of l,
the lemma follows. Otherwise, there exist two consecutive
concentric disks centered at j such that interval containing s
and s′ lies in the region between these disks. By Lemma 4.1,
the proof follows.

Lemma 4.3. Given a power assignment for the jammers,
let s∗ be the point maximizing

∑
j∈J Pj‖j−s‖ over all s ∈ S

and let ŝ be the point selected by our algorithm in the same
interval in AS as s∗. Then,∑

j∈J
Pj‖j − s∗‖−γ ≤ (1 + ε/3)

∑
j∈J

Pj‖j − ŝ‖−γ .

Proof. Let Jout be the set of jammers such that s∗ and
ŝ lie outside D[j; d(j, S)/(1 +α)l] for all j ∈ Jout and let Jin
be the remaining jammers. Lemma 4.2 implies that∑
j∈J

Pj‖j − ŝ‖−γ ≥
∑
j∈Jin

Pj
1 + α

‖j − s∗‖−γ

+
∑
j∈Jout

Pj
(
‖j − s∗‖−γ − α

n
d(j, S)−γ

)
≥ 1

1 + α

∑
j∈J

Pj‖j − s∗‖−γ

− α
∑
j∈J

Pj‖j − s∗‖−γ ,

since s∗ is the point maximizing
∑
j∈J Pj‖j − s‖

−γ over all

s ∈ S. Since α = ε/9, the lemma follows.

Lemma 4.3 implies that if the point ŝ does not receive too
much interference from the jammers, no other point in S

would have too much interference. Since we do not actually
know which point is ŝ, we take care to ensure that the entire
set S′ is not jammed. If each jammer;s power is Pj(1 + ε),
then the approximation factor would become (1 + 2ε).

There are O((n/ε) log(n/ε)) level sets in our arrangement.
Thus, the cardinality of S′ which is the number of vertices of
AS is O((n2/ε2) log2(n/ε)) implying that the number of con-
straints (I) in Jamming-LP would be O((n2/ε2) log2(n/ε))
with an equal time required to generate them.

Discretization of F. We generate a discrete set F′ ⊂ F

as follows. Recall that L denotes the diameter of the fence.
First, we set ρ = 1, α = ε/3 and let l be the largest integer
such that 1/(1 + α)l ≤ L−γ . Next, setting Yj = Y (ρ, α, l),
we compute the set of disks DF = ∪j∈JDj,Yj . We compute
the generalized Voronoi Diagram (see Section 3) VD(S) of
S and let Γ denote the rays and lines constituting VD(S).
Finally, We compute the arrangement AF = AF(DF ∪ Γ)
and select the vertices of AF to add to the set F′.

We note that on each interval φ of AF, d(p, S) for all points
p ∈ φ is a linear function since there is a corresponding
segment or point on S on which lie all the points closest to
points in φ. Thus, the maximum and minimum distances
are at the vertices of φ. Contrary to the discretization of S
where we approximate the maximum interference received
by points in S, we approximate the maximum SINR. The
choice of l based on the diameter L is to ensure that no point
on F lies outside the disks for any j. Also, since Pj ≥ 1/δ
for all j ∈ J , eavesdroppers within distance 1 from any j are
always jammed, i.e., their SINR is always too low. Note that
we do not need to know the powers to compute the disks.

The correctness follows from the following two lemmas.

Lemma 4.4. Let p be a point selected by our algorithm for
any interval in AF and let p′ be a point in the same interval.
For any jammer j ∈ J , ‖j − p‖−γ ≤ (1 + α)‖j − p′‖−γ .

Proof. The distance from pφ to j is between 1 and L.
Thus, there exists two consecutive concentric disks in Dj,Yj

such that both p and p′ lie between these disks. The proof
follows from Lemma 4.1.

Lemma 4.5. Given a power assignment for the jammers,
let p∗ be the point on F at which SINR(p) is maximum over
all p ∈ F and let p̂ be the vertex in F′ in the interval of p∗

such that d(p̂, S) ≤ d(p∗, S). Then,

SINR(p∗) < (1 + ε)SINR(p̂).

Proof. Let
∑
j∈J Pj‖j − p∗‖−γ ≤

∑
j∈J Pj‖j − p̂‖−γ

since otherwise, there is nothing to prove. By Lemma 4.4,∑
j∈J

Pj‖j − p̂‖−γ ≤ (1 + α)
∑
j∈J

Pj‖j − p∗‖−γ .

Since d(p∗, S)−γ ≥ d(p̂, S)−γ and by our choice of α = ε/3,
the lemma follows.

Lemma 4.5 implies that the SINR(p) < (1 + ε)δ for any
p ∈ F. Thus, by assigning a power (1 + ε)Pj for all jam-
mers j ∈ J , we can ensure that SINR(p) < δ for all p ∈
F. The number of level sets corresponding to jammers is
O((n/ε) logL). The number of vertices in their arrangement
on F is O((n2/ε2) log2 L) leading to as many constraints (II)
in Jamming-LP, with an equal time required to generate F′.



Remarks. We note that if all the jammers’ powers are
required to be the same, and we need to find the minimum
power assignment, we may remove the dependency on the
diameter L of F. Briefly, this is due to the fact that, for
the discretization of F, we may develop an upper and lower
bound on the power received at the eavesdropper with max-
imum SINR whose ratio is independent of L.

5. PLACEMENT OF JAMMERS
In this section, we consider the problem of placing a min-

imum number of jammers all of which have the same trans-
mission power P̂ .

We first give some basic definitions. Note that for every
point s ∈ S, according to Equation 2, if a jammer j lies in
the disk D[s; P̂ 1/γ ], it will prevent reception at s. We define

the forbidden region ϕ(S) = ∪s∈SD[s; P̂ 1/γ ]. This is essen-

tially the Minkowski sum [4] of a disk with radius P̂ 1/γ and
S; see Figure 3. Next, for a point p ∈ F, according to Equa-
tion 3, a jammer must lie in the disk D[p; (δP̂ )1/γ/d(p, S))].
We call this the critical disk and denote it by Dp and de-
fine the visibility region Vis(p) as (PF ∩Dp) \ ϕ(S). This is
the region in which a jammer must lie in the jammer space
to successfully jam p; see Figure 3. We call two visibility
regions Vis(p1) and Vis(p2) adjacent if their intersection is
exactly one point.

S

F

ϕ(S)

p

Vis(p)

v

S

Figure 3: Forbidden region ϕ(S) of S and visibility
region Vis(p) for a point p ∈ F.

Before we proceed with the algorithms, let us try and un-
derstand some of the difficulties of this problem. Consider
the simple examples in Figure 4. In both cases, we consider
the NJ model. In Figure 4a, we have two disks which are
concentric representing S and F, while in Figure 4b, the disks
are not concentric. Critical disks are also shown for various
points on the fence. In both cases, an almost-optimal solu-
tion is to place the set of jammers at the points where two
disks touch. In Figure 4a, since all critical disk are congru-
ent, it is easy to characterize the optimal placement but in
Figure 4b, it is not simple to characterize algebraically since
the function of the distance between S and F is now more
complicated. If, even in this simple example, the character-
ization of the problem is difficult, if we take into account all
parameters such as jammer power, eavesdropper capability
and possibly complicated shapes of S and F, characterizing
the solution seems to be particularly difficult.

With that in mind, we consider two basic settings: (i)
when the jammer space J is a discrete set of points and (ii)
when J is the entire region PF \ S, where PF is the polygon
enclosed by F. In the former, we give an ε-approximation
algorithm and in the latter, we provide an optimal algorithm
under a restricted setting.

S

F

ϕ(S)

(a)

S

F

ϕ(S)

(b)

Figure 4: Two simple and similar examples where
solutions differ significantly. The optimal placement
of jammers is marked as ×.

5.1 ε-approximation given a discrete set of can-
didate locations

Given a discrete set of candidate locations J not in ϕ(S),
we discretize F and S using the scheme of Section 4. This
gives us discrete sets F′ ⊂ F and S′ ⊂ S. We can now design
the following integer linear program Jamming-ILP adapted
from Jamming-LP with binary variables ci for each location
i ∈ J indicating whether i is chosen or not.

Jamming-ILP: Minimize
∑
i∈J

ci

s.t. ∀s ∈ S
′ :
∑
i∈J

ciP̂‖s− i‖−γ ≤ 1, (I)

∀p ∈ F
′ :
∑
i∈J

ciP̂‖i− p‖−γ >
d(p, S)−γ

δ
. (II)

Although Jamming-ILPis formulated for the Full model
of interference, it may easily be modified for the NJ model.
This gives us the following theorem:

Theorem 2. Given storage region(s) S, a fence F, a model
of interference, a discrete set of candidate locations J for the
jammers and a fixed power P̂ , we can find a minimum num-
ber of jammer locations from J such that Equation (3) is
satisfied and for every point s ∈ S, SINR(s) > (1 − 2ε) by
solving an Integer Linear Program with O((n|J|/ε)(log(n/ε)
log(|J|/ε) + logL)) constraints.

5.2 Near-optimal algorithm for a restricted set-
ting

We consider the problem under the following restricted
setting: (i) NJ interference model, (ii) S and F are convex,
and (iii) each jammer is assigned a power 1/δ. Note that
the assumption that each jammer has a power exactly 1/δ
implies that Dp for any p ∈ F will have radius exactly d(p, S).
Without this assumption, Lemma 5.1 does not hold and it
is not possible to show almost-optimality for the algorithm.

The algorithm proceeds as follows. We first pick an arbi-
trary point p0 ∈ F as a starting point and keep finding adja-
cent regions by moving clockwise along the boundary until
we reach a region which intersects Vis(p0) again (see Fig-
ure 5). At the ith step of the algorithm, we place a jammer
ji+1 at the point of intersection of Vis(pi) and Vis(pi+1). Let
pk be the last point. We place a jammer jk+1 at the point
in the intersection of Vis(pk) and Vis(p0) which is farthest
from S. Let J denote the set of jammers obtained.
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Vis(pi+1)

Vis(pi)

j

Figure 5: One step of the algorithm. pi+1 is selected
such that Vis(pi) and Vis(pi+1) are adjacent.

The following lemma shows correctness as well as the fact
that for each i, we need atleast one jammer.

Lemma 5.1. Let pi−1, pi be two consecutive points se-
lected and let ji be the jammer placed at the point of in-
tersection of Vis(pi−1) and Vis(pi). The points jammed by
ji consists of the clockwise portion of F between pi−1 and pi.

Proof. First, we note that if Dpi−1 and Dpi are not tan-
gential, j is placed at the their point of intersection away
from S. This is the single point of intersection of Vis(pi−1)
and Vis(pi). Let l denote the line passing through pi−1 and
pi and t denote the line passing through j perpendicular to l.
l and t separate the plane into four quadrants. The portion
of the fence in between pi−1 and pi must clearly lie in the
two quadrants which does not contain S. Consider an eaves-
dropper location p between pi−1 and pi on the quadrant Q1

containing pi; see Figure 6a. S must lie wholly in the sec-
tor ΨP formed by the lines through the points (p, pi) and
(p, j) of smaller angle. For a point q ∈ Ψp which also lies on
the boundary of Dpi , consider the angles θ = ∠p, pi, q and
φ = ∠p, pi, j at pi. It is easy to see that θ > φ for every p.
Hence, ‖p− j‖ ≤ ‖p− q‖. The proof for the other quadrant
which contains pi−1 is similar.

Moving on to the second part, first, let ni−1 = NN(pi−1, S)
and ni = NN(pi, S). Clearly, ‖pi−ni‖ = ‖j−ni‖ and ‖pi−1−
ni−1‖ = ‖j − ni−1‖, implying that the Voronoi diagram
of {j, ni−1, ni} (see Section 4 for a description of Voronoi
diagrams) must pass through pi and pi−1, implying that the
portion of F clockwise from pi to pi−1 does not lie in the
Voronoi cell of j as then, F would not be convex. Thus,
all points of F in the portion clockwise from pi to pi−1 are
closer to either ni or ni−1 than j, implying that they are
not jammed.
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Vis(pi−1)

j
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Figure 6: Illustration of the proof of Lemma 5.1

We are now ready to bound the number of jammers in J .

Lemma 5.2. Let OPT be the size of the optimal set of
jammers. Then, |J | ≤ OPT + 1.

Proof. For each interval along the fence [pi, pi+1], by
Lemma 5.1, ji+1 is the only location where a jammer can
jam every point on [pi, pi+1] and does not jam any other
point, implying that we need atleast one jammer for this
interval. The proof follows.

Putting it all together, we get the following theorem.

Theorem 3. Given convex S and F, when jammers have
power P̂ = 1/δ, we can find a set of jammer locations J in
the jammer space such that Equation (2) and Equation (3)
are satisfied under NJ model of interference and |J | ≤ |OPT |+
1. The time required is polynomial in max{OPT, n} where
OPT is the size of the optimal solution.

Remarks. The solution guarantee does not hold when am-
bient noise is present. Further, the algorithm and its cor-
rectness proof outline the conditions under which guaran-
teed solutions may be obtained and serve to demonstrate
the difficulty of the problem in general. Therefore, it is of
primarily theoretical importance.

6. EXTENSIONS
We extend the algorithms of Sections 4 and 5 in two ways:

(i) we show how to provide a solution to the combined prob-
lem of power assignment and placement of jammers while
optimizing a linear combination of the total power and num-
ber of jammers, (ii) if eavesdroppers are equipped with direc-
tional antennas, we show how to extend Jamming-LP and
Jamming-ILP to incorporate this fact while still maintain-
ing a tractable number of constraints.

6.1 Combined Solution
We may develop a combined solution when given a discrete

set of candidate locations J as follows. We set a weight-
ing parameter µ, and define the cost functions

∑
j∈J cj +

µ
∑
j∈J Pj , where cj ∈ {0, 1} and Pj is the power assigned

to jammer j. If no jammer is located at j, this is simply in-
dicated by a value of Pj = 0. Here, the weighting parameter
µ specifies how we prefer one criteria versus the other. We
substitute this in Jamming-ILP to get the desired program.

6.2 Directional eavesdroppers
Let eavesdroppers be equipped with directional antennas

which may be orientable. Such an antenna would enable
the eavesdropper to receive more powerful signals in one
direction while other directions would have reduced power.
If jammers are sparse enough, eavesdroppers could avoid
interference. We model the beam of a directional antenna
as a cone of opening angle θ, centered at the eavesdropper.
Under this (simplified) model, the eavesdropper receives a
signal, from a transmitter only if it lies in this cone.

Given a discrete set of candidate locations J, We need to
find jammer locations and/or power assignment such that
no such direction exists, so that for every possible cone ori-
entation and location, there exists a jammer inside this cone
which would jam the signal from any point in S in the cone;
see Figure 7. It is important to note that this is particularly
applicable to RFID communication because, due to the low
frequencies of RFID tags (13.56 Mhz), θ would be relatively
large.
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Figure 7: Jammer j needs to lie in the range of the
directional antenna of eavesdropper p to affect p.

Theorem 4. Given θ, the opening angle of a directional
antenna used by the eavesdropper, it is possible to find an
ε-approximation to both power allocation and jammer place-
ment problems by solving a linear program with polynomial
number of constraints.

Proof Sketch. First, we note that, for a point on F, if
there exists an orientation of the directional antenna where
no jammer in J exists in the cone at this orientation, then it
is not possible to jam this point. Thus, we assume that there
does not exist any location on the fence with an orientation
that contains no points in J.

First, we obtain the set F′ as in Section 4. However, to
the set F′, we add further points to obtain a new set F′′.
Consider a point p ∈ F. If we perform a circular sweep of a
cone Ψ with p as apex, we have many“events”corresponding
to some point j ∈ J or some vertex v of S added/deleted from
Ψ. The number of such events is O(n + |J|). The set F′′ is
constructed in such a manner that for each interval (u, v) on
the fence obtained from consecutive points u, v ∈ F′′, two
points in (u, v) have the same order of the sweep events.

For a location p′′ ∈ F′′, we add a constraint for each
“event” of the circular sweep. In between the events, the
closest point in the storage is farther than at one of the
events and the set of jammer candidates is the same. Since
the number of events is O(n+|J|), we have only a polynomial
number of constraints in total.

7. SIMULATIONS
We conducted preliminary experiments to compare the

NJ and Fullmodels. The setting we have chosen is the stor-
age/fence shown in Figure 9. The fence is of dimensions
50x33 units and we placed a grid of 1x1 cells in the entire re-
gion. We simulated both Jamming-LPand Jamming-ILPin
this setting. For the power assignment from Jamming-LP,
we investigated the difference in power and for Jamming-
ILP, we investigated the difference in number of jammers.
Finally, we observed the variation in total power assigned
with ε and δ and the number of jammers placed with ε, δ and
P̂ . We chose the following values: (i) ε = {0.1, 0.2, 0.3, 0.4,
0.5}, (ii) δ = {0.5, 0.6, . . . , 1}, (iii) P̂ = {(1/δ), (2/δ), . . . ,
(5/δ)}. Total Relative Power indicates the mean total power.
In both Full and NJ, we removed all grid points which were
in the forbidden region.

For Jamming-LP, we picked 10 random points from this
set of grid points, repeated the simulation 50 times and cal-
culated the mean and variance. Figure 8(a) shows the vari-
ation in total relative power with δ, which indicates how
much more capable the eavesdropper is than legitimate re-
ceivers. As the eavesdropper gets more capable than stor-

age receivers, the drop in the total relative power under
NJ model is sharper than under Full model. The gap be-
tween them seems to be no more than constant-factor (ap-
proximately 2-3 times) but is definitely not negligible. How-
ever, the variance in NJ is also extremely high (ranging from
aroung 60 to 100 vs 5 to 20 for the Full model). Possibly,
the random selection of jammer locations leads to the large
variance over different choices. The variance is likely to be
much more in NJ model because each jammer contributes
all the interference at a large number of nodes instead of
only being a part of the entire jammer set. This emphasizes
the importance of carefully locating the jammers. We con-
clude that, in practical scenarios, it would be of benefit to
consider the combined problem of location and power assign-
ment rather than computing an optimal power assignment
for a naive placement of jammers. Further, the graph indi-
cates that as the eavesdropper gets more and more capable,
the effectiveness of the NJ model diminishes.

For Jamming-ILP, the candidate jammer locations were
all the points on the grid. In total, there are 1121 points.
Figure 8(b) and Figure 8(c) show the variation of the num-
ber of jammers located with the power assigned and with
δ, respectively. In this case, we note that NJ model and
Full model are not far apart thus demonstrating the benefits
of NJ model in this example setting. We noted that there
was no significant variation in total relative power or number
of jammers with ε indicating that even choosing large values
of ε would yield results better than theoretical guarantees.

8. DISCUSSIONS AND CONCLUSION
Although the algorithms in this paper extensively use the

geometry of the environment, it is to important to more
clearly characterize this geometry to understand under what
conditions our algorithms would be most effective. Two
properties which would be particularly useful to understand
are the shape of the storage/fence and the size of the jammer
space. We feel that the interdependence betweenthe various
parameters of the problem will be a major roadblock when
we aim for universal solutions. In Section 5, we make an
initial attempt to understand under what conditions, opti-
mality of jammer placement can be achieved.

It is also important to understand the effects of using di-
rectional antennas for jammers. Although, in many cases,
using directional antennas would not be cost-effective, for
example in indoor areas, it would still be helpful to under-
stand what benefits or drawbacks they would have in the
context of this paper. For example, if the beamwidths are
not wide enough, although we now do not have to worry
about affecting the storage, we might need to use many more
jammers. This is an interesting area for future research.

In conclusion, our ε-approximation algorithms in this pa-
per show that we might be able to efficiently apply friendly
jamming to wide-ranging application scenarios when we uti-
lize the geometry of the environment. Our preliminary sim-
ulations also indicate that, in practice, the effect of the ap-
proximation factor ε on the quality of the solution is not
tight, indicating that choosing worse ε would still yield good
quality solutions. Next, we show that simplifying the jam-
mers to be non-cooperative enables us to provide guarantees,
albeit in a more restricted setting, and further, our simula-
tions show that the tradeoff need not necessarily be large.
Finally, we show the applicability of our algorithms to the
case when eavesdroppers use directional antennas.
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Figure 9: Storage/fence
with candidate locations
(small dots) and solution of
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