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Abstract This papers presents a deep learning-based framework to predict
crowdsourced service availability spatially and temporally. A novel two-stage
prediction model is introduced based on historical spatio-temporal traces of
mobile crowdsourced services. The prediction model first clusters mobile crowd-
sourced services into regions. The availability prediction of a mobile crowd-
sourced service at a certain location and time is then formulated as a classi-
fication problem. To determine the availability duration of predicted mobile
crowdsourced services, we formulate a forecasting task of time series using
the Gramian Angular Field. We validated the effectiveness of the proposed
framework through multiple experiments.
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1 Introduction

Thanks to the fast proliferation of mobile devices, equipped with increasingly
powerful sensing capabilities, Mobile Crowdsourcing (MCS) has emerged as a
new paradigm that allows obtaining required data and services by soliciting
contribution from the crowd. Storing, processing and handling crowdsourced
sensory data also inherit important challenges. Cloud services could be used
to ease storing, aggregating and managing the spatiotemporal data collected
from MCS. By harnessing the service paradigm, the crowdsourced sensor data
can be abstracted as cloud-hosted crowdsourced services [1,2].
Mobile crowdsourced services can act as consumers and providers (e.g., WiFi
hotspots). In this work, we focus on crowdsourced WiFi hotspots. An intrinsic
feature of WiFi Hotspots services is their mobility. It provides great opportu-
nities but also challenges. One such a challenge is the ability to predict the
location and the availability duration of crowdsourced services. The key as-
pects of crowdsourced hotspots are the spatio-temporal attributes. They are
central to the selection and composition of WiFi hotspot services. In our pre-
vious work [1,2], crowdsourced services are considered to be deterministic,
i.e., the service attributes (functional and non-functional) are known a priori.
However, such assumption only allows static queries for services with known
location and availability time. This paper considers non-deterministic crowd-
sourced services whose time and availability are unknown in advance. For
Web services, Zeng et al. [3] define availability as the probability of a service
being accessible. Silic et al. [4] define availability as the probability that a ser-
vice invocation will complete successfully under the specified time constraints.
From a crowdsourced service perspective, the availability is constrained by the
spatio-temporal attributes of the service itself as the crowdsourced service is
available only at a given location for a particular time slot.
This paper presents a deep learning-based strategy to determine if a crowd-
sourced service (e.g., WiFi hotspot) is available given particular location and
timing. Our objective is to address the following challenges: Which crowd-
sourced service is available? When and where will this service(s) be available?
By acquiring the knowledge about the spatio-temporal attributes, services can
then be composed with greater certainty. In summary, this work is informed
by the following facts:

– Sensor data, particularly the ones from smartphones, can be collected and
acquired easily. The abundance of these data offers a great opportunity to
leverage useful information related to users such as their daily activities and
routines, geo-spatial and temporal behavior, etc. Therefore, one can infer,
given the appropriate tools and techniques, the availability of someone in
the spatio-temporal domain.

– Deep learning has been widely applied in computer vision, intelligent trans-
portation system [5] healthcare [6] and many other applications including
spatiotemporal data collected by smartphones. These advances have been
guided by steady supply of data.
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Our contributions consist of proposing a deep learning-based framework for
service availability prediction. In the first stage, each geolocation is assigned
to the crowdsourced service provider(s) at particular time granularity. By
using the historical data, our deep learning approach can predict available
crowdsourced services along a specific region at a particular time. Once the
crowdsourced available services are predicted, their availability duration can
be determined in the second stage using a Gramian Angular Field time series
prediction model that makes use of the historical temporal attributes of the
service.
The rest of the paper is as follows: We detail the crowdsourced service model in
section II. Section III presents details of the deep learning approach. In section
IV, experimental results are detailed and we conclude in the last section.

2 Crowdsourced WiFi coverage service

2.1 Motivating scenario

Fig. 1 illustrates a WiFi crowdsourced sharing service via smartphones. For
example, John may have some unused mobile data balance that he can share
via a mobile application such as WiFiMapper 1 at a certain location for a
period of time. These spatio-temporal attributes are the key to crowdsourcing
hotspots to enable consumers to select suitable WiFi services. The available
WiFi crowdsourced services can be overlaid on a transport network map to
allow the journey planning service to recommend to users journey plans that
offer the best WiFi coverage white traveling from point A to point B. In this
scenario, we assume that the time and availability of WiFi hotspot services
are not known in advance. The problem of hotspot service prediction can be
formulated as finding available crowdsourced WiFi hotspot services within a
particular region at a given time based on historical spatiotemporal data of the
service. We first present details of the spatiotemporal crowdsourced service

Fig. 1 Crowdsourced WiFi hotspot coverage

model then we describe the proposed model to predict their spatiotemporal

1 https://www.wifimapper.com
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properties. We use crowdsourced WiFi hotspot sharing as an illustrative ex-
ample.

2.2 Crowdsourced service model

As an illustrative example of crowdsourced service, we present in this section
the WiFi coverage service model. It extends our earlier model reported in [4,
7] and illustrated in Fig. 2. A sensor is a tuple <Sen id, lc, Sen a, tsp>where:

Rs

y t

x

(xe,ye,te) 

te

ts
(xs,ys,ts) 

Fig. 2 Crowdsourced coverage service

– Sen id: sensor unique id.
– lc: last sensor location.
– Sen a: sensing area of radius Rs whose center is loc.
– tsp: latest timestamps when data related to the sensor were collected.

A crowdsourced service S is a tuple of <Sid, SENS, S&T, Fun, QoS>where:

– Sid: service unique id.
– SENS: finite set of sensors seni
– S&T: space and time attributes of the service. The space is represented by

the minimum bounding box of the sensing area. The time is a tuple <ts,
te>where ts is the starting time and te is the end time of the service.

– Fun: Functionality delivered by the service such as offering hostpot internet
access.

– QoS: QoS properties of the service such as bandwidth.

Crowdsourced service can be deterministic, i.e. service attributes are known a
priori, or non-deterministic where all the attributes (or subset) are not known.
Discovering a service refers to finding the service id and its corresponding
temporal attributes such as their availability duration. We focus our study on
finding services whose spatiotemporal attributes are non-deterministic. Inves-
tigating the non-determinism of the QoS properties of the service is left for
future work.
For a crowdsourced WiFi coverage service, the spatial characteristic is de-
scribed by the WiFi coverage zone. In an outdoor scenario, the coverage ex-
tends to 100 m with perfect Line of Sight. On the other hand, the temporal
attributes describing the start and end time of the service need to be predicted.
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3 Crowdsourced service availability prediction as a learning
problem

Periodicity is a common phenomenon. Animals yearly migrate to particular
locations at the same particular time. Humans often have periodic activities.
For example, on a weekday, one is very likely to be at home at 7 AM. At 10
AM, he is very likely to be at work, etc. Students usually have weekly schedule
for classes. One can also have his personal periodic activity such as going to the
gym once or twice a week. With the wide availability of smartphones with GPS
capabilities, valuable data can be collected, analyzed and used for ecological
research, improving urban planning, market, ads targeting, etc. The spatio-
temporal analysis presented in [8] reveals that the individual mobility of mobile
phone users is far from being random. González et al. [9] analyzed the trace
of multiple mobile users over 6 months. Authors confirmed the presence high
degree of spatio-temporal regularity. The main explanation of this observation
is that mobile phone users spend most of the time in particular locations This
fact is also confirmed by the findings of Song et al. [10]. The study conducted
by Csáji et al. [11] showed that 95% frequently visited less than 4 locations. The
findings in [12] demonstrated that commuters locations are highly predictable
on average.
Based on these research findings, one can associate particular locations at a
particular time granularity to particular service provider(s). Therefore, we can
formulate the service availability prediction as a classification task where the
aim is to find the associated label i.e. service provider(s) given the historical
time-geolocation data of service providers. Furthermore, given the data of
service providers, a good prediction model can estimate the time attributes of
the crowdsourced service i.e. start and end time.

3.1 Two-stage prediction framework

Figure 3 illustrates our proposed framework. It consists of an initial pre-
processing step of data clustering, a first stage to predict the crowdsourced
service and a second stage to predict the temporal availability of the service.
The initial pre-processing is a clustering task where the aim is to discover the

major hotspots area where the service providers are concentrated. We pro-
pose to use K-means algorithm [13]. It is probably the most well-known par-
titional clustering algorithm with successful application in many real-world
problems such as intelligent transportation systems [23,24]. remote sensing
[14,15,16], semiconductor, electronics and polymer manufacturing [17,22], en-
ergy consumption and efficiency [18,19,20], water management [21]. The use
of K-means is justified by its scalability, rapidity, simplicity and efficiency for
processing large data [25].
Let X = {xi} be a set of data points where i = 1...N , K-means aims at finding
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Fig. 3 Two-stage prediction framework to predict crowdsourced service availability spa-
tially and temporally

the set of cluster centers. This is conducted by minimizing the cost function:

N∑
i=1

∑
xi∈Cj

d(xi, uj)
2 (1)

Where Cj is the jth group or cluster of centroid uj and d is a distance measure.
A classic choice for d is the Euclidean distance. However, unlike the classic algo-
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rithm, we propose to use the Haversine distance. It is the great-circle distance
between two points. Therefore, this distance is more suitable for geolocation
data. Given two geolocation points p1 = (φ1, τ1) and p2 = (φ2, τ2) where φ and
τ are the latitude and longitude respectively, the Haversine distance H(p1, p2)
is defined as:

H(p1, p2) = R ∗ b (2)

Where:

φ = φ1 − φ2

τ = τ1 − τ2

a = sin2(φ2 ) + cos(φ1) ∗ cos(φ2) ∗ sin( τ2 )

b = 2 ∗ atan2(
√
a,
√

1− a)

(3)

Where R is the radius of the earth. Furthermore, K-means requires the number
of clusters as input which is not always known a priori. To derive the num-
ber of clusters, the the gap statistic [26] is used. Specifically, the objective is
to standardize the comparison of the clustering compactness measure with a
reference distribution of the data i.e. data with no straightforward clustering.
The optimal number of clusters has the lowest cluster compactness compared
to the reference data. Given a cluster Ci of ni points, the within-cluster dis-
persion is expressed as:

Wk =

k∑
i=1

1

2ni
Di (4)

Where Di is the sum of pairwise distances of data points in Ci. The gap value
is expressed as:

Gap(k) = E∗{log(Wk)} − log(Wk) (5)

E∗{log(Wk)} is calculated using Monte Carlo sampling [27] from a reference
distribution and log(Wk) is derived from the sample data. Therefore, the op-
timal number of cluster is the one that maximizes Gap(k).

3.2 Stage 1: Crowdsourced service availability prediction

In stage 1, our objective is to predict the availability of services at location
li and time ti based on their previous spatio-temporal logs i.e. the historical
time-geolocation of their availability. Our prediction model is based on several
key features inferred from raw data including spatio-temporal attributes. This
stage is composed of two levels: Offline Processing and Online Processing. At
the first level, a deep learning model is trained on the data features. Once
trained, the model can be queried online in real-time to predict the available
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crowdsourced services at location li and time ti.
We explicitly define the following set of features:

– Latitude φ in WGS84 decimal degree.
– Longitude τ in WGS84 decimal degree.
– Time of day t with high granularity: hour, minute, second.
– Day of the week d.
– Is Weekday wd: a variable that indicates the type of the day:{

1, if d is a weekday (Monday, . . . , Friday)

0, if d is a weekend (Saturday, Sunday)
(6)

– Is Holiday hd: a variable indicating if the day is a holiday:{
1, if d is an official holiday

0, otherwise
(7)

The core component of the crowdsourced service prediction is the deep neu-
ral network (DNN). This network has multiple layers of neurons representing
the network depth. Unlike the shallow models, deep networks are generally
characterized by higher depth. Following the recent research breakthroughs in
machine learning, training such network has become significantly easier. DNNs
can model high complex non-linear relationships. Each layer extracts higher
level features from the previous layers. We rely in our framework on the multi-
layer perceptron model (MLP) depicted in Fig. 4. MLP is the quintessential
deep learning model. It is of extreme importance and represents the basis for
many commercial applications [28]. MLP seeks to approximate a function f∗.
f∗ maps a data point x to its class label in case of a classifier. The feedforward
network applies the mapping y = f(x, θ) and determines the optimal set of
parameters θ that gives the best data approximation. Therefore, a network is
a composition of many different functions. An MLP has at least three layers
of nodes which means f(x) = f1(f2(f3(x))). In this case, a function represents
a layer i.e. f1 is the first layer, etc. Node, or perceptron, represents the base-
line of DNN. At the perceptron level, data are non-linearly transformed using
an activation function inspired from neuroscience. However, modern activation
functions are instead derived from mathematical disciplines. In this first stage,
we opt for a Leaky ReLU [29] activation given by:

Leaky ReLU(x) =

{
1, if x ≥ 0.

ax, otherwise.
(8)

Where a is a fixed positive parameter less than 1 usually recommend to be
very small (e.g. 0.01). Leaky ReLU is an attempt to fix the dying ReLU (where
a = 0) problem. Indeed, ReLU can be fragile and dies during training. In other
words, a large gradient can result in weights update in such a way that the
neuron will no longer activate on future data sample.
The learning process consists of updating the set of parameters θ based on
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Fig. 4 Multi-layer Perceptron

an amount of error modeled by an objective function or loss. This process is
called backpropagation [29,30]. The mean square error is a classic loss choice,
generally used for regression problem:

J(x, θ) = ||f∗(x)− f(x, θ)||2 (9)

A typical choice of loss for classification problem is the binary cross-entropy,
defined for N training samples as:

J(x, θ) = − 1

N

∑
i

yilog(f∗(xi)) + (1− yi)log(1− f∗(xi)) (10)

The optimization of J((x, θ)) is conducted using an optimizer such as the
stochastic gradient descent where the update of parameters is carried out
using the following routine:

θ = θ − ψ∇θJ(θ;xi) (11)

Where ∇ is the gradient operator and ψ is the learning rate. Furthermore, we
apply a batch normalization procedure between layers to ensure faster learning
and higher prediction accuracy. Algorithm 1 gives details of the batch normal-
ization. First, the mean and variance of the batch are calculated. Then the
batch is normalized by centering (subtracting the mean) and scaling to unit
variance. An ε > 0 is used to avoid dividing by zero. Finally the batch is scaled
and shifted.
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Algorithm 1 Batch Normalization (BN)

Input: Batch B = {Xi, , Xm}
Parameters: α, β

Output: Normalized batch {Yi = BNα,β(Xi)}

#Batch Mean

µ = 1
N

∑
iXi

#Batch Variance

σ2 = 1
N

∑
i(Xi − µ)2

# Normalize

X̂i =
Xi−µ√
σ2+ε

#Scale and Shift

Yi = αX̂i + β

Algorithm 2 outlines the training process of the crowdsourced service avail-
ability prediction. First, we determine the cluster of each pair of crowdsourced
service Xi and its associated spatio-temporal features Ei. Next, a batch of
crowdsourced services, spatio-temporal features, cluster ids and service ids is
fed into the network model layer by layer using Eq. 8. The output of each layer
is also normalized using 1. At the last layer, the objective function is evalu-
ated and minimized in order to update the network parameters. This routine
is repeated till a stopping criterion is satisfied.
After training and obtaining the optimal parameters, the DNN can be queried

Algorithm 2 Crowdsourced service availability prediction
Input: Historical Crowdsourced services spatiotemporal data {X1, X2, · · ·XN}

Other features E: month, day, hour, minute, second, is weekend, is weekday,
is holiday

Output: learned DNN model to predict the availability of services at location li and
time ti

# Construct training instance
For every pair of Xi, Ei

Find the cluster Ci to which Xi belongs
Create instance {Xi, Ei, Ci, Sid}

#Train the model
Repeat

Select batch of instances {Xi, Ei, Ci, Sid}
For every layer

Feed the batch using (8)
Apply Batch Normalization using Algorithm 1

Find θ that minimizes (10) using (11)
Until stopping criterion is met
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by providing the geolocation and time associated to the query. The DNN pre-
dicts the corresponding service id(s).

3.3 Stage 2: Crowdsourced service duration prediction

In this stage, we aim at finding the temporal attributes of the available services
predicted at stage 1. Indeed, it is important to determine these attributes to
enable any potential application such as task assignment and coverage service
composition. Therefore, it is essential to develop an accurate prediction model.
We propose to formulate the task as time series forecasting to estimate the
duration of service availability. Our approach is to construct the time series of
every service provider associated to every cluster and sampled with a partic-
ular time granularity. The forecast is based on predicting whether the service
is present at this particular location or not. The forecast can be conducted for
multi-step ahead i.e. the next γ times. In the upcoming sub-sections, we de-
scribe the process of time series generation and how to transform these times
series into two types of Gramian Angular Field images. We also present our
DNN architecture for time series forecasting.

3.3.1 Time series generation

Initially, an offline pre-processing of the historical data is conducted. Specif-
ically, for every crowd service provider, we construct the time series of ap-
pearance at a particular cluster by assigning the historical geolocations to
the set of clusters C1, C2, , CN . Let TS be a T timestamp vector sequence
TS = (ts1, ts2, · · · , tsT ). tsi is given by:

tsi =

{
1, if Sid ∈ Cj at time i

0, otherwise.
(12)

Our forecasting approach is based on rolling and encoding time series as im-
ages. This allows applying recent deep learning techniques of high effectiveness
particularly in computer vision applications. These techniques enable learning
different image patters and structure. To image the time series, first, we run
a rolling window operation on the data. For each time series of n values, a
window w of length k ≤ n and an overlapping ratio r, we take the first block
of length k and then roll the window by r. Therefore, the second block of k
data observation starts from the rth observation. By doing so, we are looking
at the changing property of the time series over time instead of one single
observation.
The forecasting problem is a multi-step ahead prediction i.e. we forecast the
service presence at a given cluster for the next γ times (3 minutes for example).
Suppose that the time series is sampled per minute and γ = 3, the forecasting
process consists of predicting the label L = [l1, l2, l3] where li ∈ 0, 1. There-
fore, the time series forecasting is formulated as a multi-class classification
task where the the number of classes is 2γ .
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3.3.2 Imaging time series

To image the time series blocks, we propose to use the Gramian Angular
Field [31]. Specifically, the time series is presented in polar coordinates system
instead of the classic Cartesian system. Each element of the Gramian matrix is
the cosine of the summation of two angles. A time series TS = (ts1, ts2, , tsn),
tsi can be transformed to polar coordinates. This operation is conducted by
encoding tsi as angular cosine value and its corresponding timestamp i as the
radius:

Ψi = arccos(tsi); tsi ∈ TS

ρi = i
C ; i ∈ N

(13)

Where the constant C allows controlling the polar coordinates system span.
For example, we illustrate in Fig. 5 the polar plot of a sinusoidal time series.
After rescaling and transforming the time series to the polar coordinates
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Fig. 5 Polar plot of a sinusoidal time series

system, the angular property can be exploited by trigonometric means. The
idea is to exploit the correlation in time. The Gramian Angular Summation
Field (GASF) is a matrix of the form:

GASFi,j = cos(Ψi + Ψj)

= tr
(
TS
)
.TS − tr

(√(
I − TS2

)
.
(
I − TS2

)) (14)
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GASFi,j;|i−j|=k represents the correlation by superposition of directions given
time k. The Gramian Angular Difference Field (GADF) is a matrix defined
as:

GADFi,j = sin(Ψi + Ψj)

= tr
(√(

I − TS2
)
.TS − tr

(
TS
)
.
(√(

I − TS2
) (15)

GADFi,j;|i−j|=k represents the correlation by difference of directions given
time k. I is the unit vector and tr(X) is the transpose of X. The generation of
GASF and GADF results in matrices of the size T×T . If the size is too large for
manipulation, one can easily apply the Piecewise Aggregation Approximation
[32] to reduce the time series size without losing its trend. For a binary time
series, we illustrate in Fig. 6, its polar plot, GADF and GASF.

Fig. 6 Binary time series: Polar plot(left), GASF (middle) and GADF (right)

3.3.3 Deep Neural Network for multi-step ahead time series forecasting

We propose to exploit both the GASF and GADF to accurately forecast time
series. The general 2nd stage DNN architecture is illustrated in Fig. 7. It con-
sists of two ResNet-18 [33] pathways for both GAF images. At each pathway,
the image is fed into ResNet-18, a particular type of deep network. The out-
puts of each pathway are then concatenated at the fusion layer and then fed
into a fully connected layer. The Softmax layer enables distinguishing between
each input based on its class as classes are mutually exclusive. This is done by
applying the Softmax function on the previous layer. The Softmax represents
a reasonable alternative to the max function as it is differentiable and out-
puts maximum probability for the maximum value of the previous layer and
0 for the rest. ResNet-18 is an 18-layer DNN of residual Convolution Neural
Network (CNN) [34,35]. CNN is a particular type of neural network that per-
forms convolution operation of a n ×m filter w on tensor input a. For the k



14 Ben Said et al.

F
u

si
o

n
 L

ay
er

 

F
u

ll
y

 C
o

n
n

ec
te

d
 

S
o

ft
m

ax
 

ResNet 18 

ResNet 18 

GASF 

GADF 

Fig. 7 Time series forecasting model

lth hidden neuron, the convolution operation is:

f(

n−1∑
i

m−1∑
j

wi,jak+i,l+j + b) (16)

Residual network offers a simple yet efficient way to train very deep neural
network without suffering the notorious problem of vanishing/exploding gra-
dient [36]. The residual block maps the input x to F (x) through two layers of
neural networks (CNN for instance) with ReLU activation. At the output, the
input x is summed with F (x). This is done through an identity skip connection
that carries out the input x to the output. The residual block is illustrated in
Fig. 8. The purpose of going deeper in neural network is to learn something
new from previous layer. By providing the input without transformation, we
are driving the new layer to learn something new and different from what has
been already encoded in previous layers. With such building block, it is safe
to go deeper since in worst case scenario, the unnecessary layers will run an
identity mapping and will not degrade performance.
ResNet-18 network is detailed in Tab. 1. The input image is fed into a 7 × 7
CNN of stride 2 which is connected to a max pooling layer (downsampling
by max operation) to reduce image size. Next, it is propagated in 8 blocks of
residual network of 64, 128, 256 and 512 CNN filters connected to an average
pooling layer (downsampling by average operation), a fully connected layer
and a Softmax to output the image label. In our proposed architecture, the
ResNet-18 Softmax and Fully Connected layers are dropped and a fusion layer
is added where the output of the average pooling layer of both pathways are
concatenated. This layer is connected to a 2γ-d Fully connected layer linked
to a Softmax. In addition, to maximize the prediction performance, we use a
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Table 1 ResNet-18

7× 7 64 stride 2

3× 3 max pool stride 2

[
3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 512
3× 3, 512

]
× 2

Average pooling, 2γ -d Fully

Connected, Softmax

learning scheduler. Indeed, it is well-known that the convergence of stochastic
gradient descent is carried out by reducing the step size. However, a scheduling
approach where the learning rate is changed over time, can lead to significantly
faster convergence to better minimum. Initially, a large step leads to fast min-
imization of the objective function. Later, smaller steps are necessary in order
to reach finer minimum of the loss. In our training algorithms, we use the
following scheduler:

α = α.δfloor(epoch/drop) (17)
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Where δ is the drop rate, drop is the epoch drop and floor(x) is the function
that returns the integer less than or equal to x. The second term controls the
amount of the learning rate decrease from the previous epoch.
The pseudocode of training the DNN of the time series forecasting is detailed
in Algorithm 3. Once the model is trained, it can be queried to predict in the
next gamma times the presence of the corresponding crowdsourced service in
this particular geolocation and particular time.

Algorithm 3 Time series forecasting
Input: XGASF , XGADF
Output: learned DNN forecasting model

Repeat
# For both GASF and GADF pathways

Feed the data using (16) in 7× 7, 64, stride 2 CNN
Apply max pooling with 3× 3 filter
Feed the data in two residual blocks of 3× 3, 64 CNN
Feed the data in two residual blocks of 3× 3, 128 CNN
Feed the data in two residual blocks of 3× 3, 256 CNN
Feed the data in two residual blocks of 3× 3, 512 CNN
Apply Average pooling
# Fusion layer
Concatenate outputs of Average pooling layers
Feed data using (8) in 2γ − d Fully Connected
Apply Softmax
Find θ that minimizes (10) using (11)
Decreas α using (17)

Until Stopping criterion is met

4 Experimental results

To assess the performance of the prediction framework, we run multiple ex-
periments on different datasets. Due to the lack of crowdsourced data, we use
alternative datasets with spatio-temporal records:

– ECML/PKDD-15 dataset [37] provides one year records (from 01-07-2013
to 30-06-2014) of trajectories for 442 taxis operating in Porto, Portugal.
For every taxi, the id, geolocations sampled every 15 seconds, timestamp
and day type are extracted. We also eliminate taxi ids which have few
occurrences in the data. This results in 428 taxi ids.

– Foursquare dataset [38] provides check-in data for around 10 months in
New York collected from April 2012 to February 2013. These check-ins
correspond to 1083 users on 400 categories of venues. For every check-in,
several features are provided. We keep for our experiments the user id,
latitude, longitude and timestamp. We also eliminate the user ids with few
check-in records.
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– Uber dataset 2 contains information about over 4.5 million Uber pickups
from April to September 2014, and 14.3 million more Uber pickups from
January to June 2015 in New York City. The dataset includes also Trip-
level data on 10 other for-hire vehicle (FHV) companies in addition to
aggregated data for 329 FHV companies. We conduct our experiments on
Uber data records of 5 service providers tracked in April 2014.

The gap statistics is applied to derive the optimal number of clusters. Our
findings showed that CECML/PKDD−15 = 8, CFoursquare=12 and CUber = 3.

4.1 Crowdsourced service availability prediction

We evaluate the deep learning-based crowdsourced service prediction approach
against well-known classic algorithms: Random Forest (RF), Decision Tree
(DT), k-Nearest Neighbors (kNN) and Support Vector Machine (SVM). We
experiment with different parameters for every algorithm and we report the
best result.
We split all datasets into 80/20 training/testing with 10% of the data reserved
for validation. We choose batch size = 256 for ECML/PKDD-15, batch size
= 128 for Foursquare and Uber. We train the DNN until the decrease in error
is less than 10−4. We illustrate in Tables 2, 3 and 4 the deep learning archi-
tecture for each dataset. The ECML/PKDD-15 DNN has 4 layers where the
first two layers have 512 neurons activated using Leaky-ReLU with a = 0.01
while the last two layers have 448 neurons activated using Leaky-ReLU with
a = 0.02. For Foursquare dataset, we use a 5-layer DNN. The first three layers
have 256 neurons while the last two layers have 128 neurons. All layers are
activated using Leaky-ReLU with a = 0.01. The Uber prediction DNN has 3
Leaky-ReLU layers with a = 0.01. The first and second layers have 16 neurons
while the third layer has 8 neurons. For all DNNs, each layer is connected to
a Batch Normalization layer. We empirically set the value of parameter a i.e.
the ones leading to the best performance. All DNNs were trained on a GTX-
670MX of 3GB memory and required 15 minutes for ECML/PKDD-15, 12
minutes for Foursquare dataset and 10 minutes for Uber dataset. We report

Table 2 ECML/PKDD-15 prediction DNN

[
512 Leaky-ReLU, a = 0.01

Batch Normalization()

]
× 2

[
448 Leaky-ReLU, a = 0.02
BatchNormalization()

]
× 2

428 Softmax

2 https://www.kaggle.com/theoddwaffle/uber-data-analysis/data
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Table 3 Foursquare prediction DNN

[
256 Leaky-ReLU, a = 0.01

Batch Normalization()

]
× 3

[
128 Leaky-ReLU, a = 0.01

Batch Normalization()

]
× 2

50 Softmax

Table 4 Uber prediction DNN

[
16 Leaky-ReLU, a = 0.01
Batch Normalization()

]
× 2

[
8 Leaky-ReLU, a = 0.01
Batch Normalization()

]
5 Softmax

in Fig.9 the classification error rate on the test sets for each dataset. These
results show that DNN based approach achieved the lowest classification error
rate on all datasets. For example, on Foursquare data, RF and DF achieved
an average error rate of 0.21 and 0.29 respectively. SVM and k-NN failed to
achieve a good service prediction as the error rate was 0.39 and 0.46. However,
the DNN showed a good prediction accuracy with an error rate of 0.13. These
findings confirm that by opting for a deep learning approach, we can achieve
the best crowdsourced service prediction performance. By going deeper, we
can learn multiple levels of abstractions from the data. For this reason, we
further analyze how the number of layers affects the DNN prediction perfor-
mance. Results are detailed in Fig. 10. We notice that, initially, the error rate
decreases as the DNN goes deeper but starts to increase. Indeed, the model
starts overfitting i.e. performing well during the training phase but less ef-
ficient in the testing phase which would require regularizing the network by
including dropout layers [39] for example. In addition, by adding more layers,
we increase the model complexity which requires more training data to reach
good generalization.

4.2 Crowdsourced service duration prediction

Once the service availability is predicted at the first stage and based on the bi-
nary time series of its presence at the corresponding location, the second stage
DNN model depicted in Fig. 7 predicts at multiple step ahead the availability
duration of the service. In our experiment, we set γ =1, 2 and 3 that is we con-
duct experiments to forecast the service presence for the next one minute, next
two minutes and next three minutes. Therefore, the set of labels are: {0, 1}γ=1,
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Fig. 9 Service availability prediction: error rate
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Fig. 10 Service availability prediction: error rate vs number of hidden layers

{00, 10, 01, 11}γ=2 and {000, 100, 010, 110, 001, 101, 011, 111}γ=3. We also add
a small perturbation ε = 10− 3 to the zeros time series to ensure proper con-
struction of the GASF and GADF. For both datasets, we set up the learning
scheduler parameters as: α = 0.1, τ = 0.5 and drop = 10.
The data turn out to be unbalanced for all the step ahead setting. Indeed, the
most dominant forecasting label is {0} since it is less likely one service will be
present in the same location every day. This unbalanced property would lead
to poor prediction performance for all DNN based approaches. Therefore, we
conduct a data augmentation procedure where we generate artificial data by
manipulating the GASF and GADF images. Specifically, we rotate the image
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with an angle = 40 degree and apply a shearing transformation on the image.
By doing so, we are able to balance the training data in order to ensure good
generalization on the test set.
We compare the proposed ResNet-based DNN for time series forecasting with
the hierarchical Recurrent Neural Network [40] applied instead of ResNet on
the same architecture. We also provide comparison with two forecasting DNNs
applied on the raw data (without GASF and GADF transform) where we use
in the first one IRNN [41] and in the second one the MLP model. All models
are trained on a GTX-670MX of 3GB memory. Training the proposed archi-
tecture required 45 minutes.
Figures 11, 12 and 13 depict the error rate for the ECML/PKDD-15 and
Foursquare for 1, 2 and 3 minutes prediction. Results demonstrate that DNN
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Fig. 11 Forecasting error rate for one minute ahead

trained on GASF and GADF i.e. H-RNN and ResNet outperform predic-
tion models trained on the raw data i.e. MLP and IRNN. For example, for
Foursquare data and for 3 minutes ahead prediction, the proposed approach
achieves an error rate of 0.025 while H-RNN leads to an error rate of 0.048.
With MLP, the achieved error rate is 0.1 while IRNN shows the worst perfor-
mance with error rate of 0.16. Given the achieved error rates, the proposed
architecture showed the best performance and is able to generalize quite well
on the testing data with 47% improvement compared to the closest perfor-
mance.

4.3 Discussion

Our experiments showed that the DNN can exploit the data efficiently to
achieve good prediction performance unlike classical machine learning algo-
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Fig. 12 Forecasting error rate for two minutes ahead
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Fig. 13 Forecasting error rate for three minutes ahead

rithms. This confirms the fact that more data represent a burden for classic
learning tasks. The abundance of the crowdsourced data represents a great
opportunity to apply state-of-art deep learning techniques to make these data
useful. Our aim is to benefit from these opportunities to provide a data-driven
approach to enhance the crowdsourced service paradigm and tackle the prob-
lem of non-determinism of their spatiotemporal properties. However, one of
the major challenges is to train these models on good representative data
from crowdsourced sensors. Building such data is quite challenging, complex
and time consuming and raises privacy issues. Furthermore, training very deep
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network such as ResNet-18 requires using adequate hardware. Fortunately, this
task can be conducted offline using Graphics Processor Units (GPUs). Once
trained, these models can be queried online to predict the service availability
and its temporal attributes.

Conclusion

We presented a deep learning based framework to predict crowdsourced service
availability spatially and temporally. This framework is based on two predic-
tion models preceded by a pre-processing stage where we take into account the
spatiotemporal features of the input data. In the first stage, we formulated the
service discovery as a classification problem in which we associated every ge-
olocation and time granularity to particular service providers. A DNN trained
on these data can effectively predict the availability of services at location li
and time ti. In the second stage, we formulated the prediction of the service
availability duration as time series forecasting task. The time series are trans-
formed into polar coordinates systems and the Gramian Angular Field are
derived. This offered a new data representation of time series and enabled the
application of a deep learning-based forecasting technique. A ResNet-based
DNN trained on the generated images is able to predict the presence of the
crowdsourced service for multi-step ahead .
We conducted experimental studies to confirm the effectiveness of our frame-
work. We have compared the service prediction using our deep learning-based
approach with classical machine learning algorithms and assessed the perfor-
mance of the proposed time series forecasting network against state-of-the-art
deep learning based approaches.
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