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Abstract 

Underwater acoustic sensor network (UASN) offers a promising solution for exploring underwater resources remotely. For 

getting a better understanding of sensed data, accurate localization is essential. As the UASN acoustic channel is open and 

the environment is hostile, the risk of malicious activities is very high, particularly in time-critical military applications. 

Since the location estimation with false data ends up in wrong positioning, it is necessary to identify and ignore such data 

to ensure data integrity. Therefore, in this paper, we propose a novel anomaly detection system for UASN localization. To 

minimize computational power and storage, we designed separate anomaly detection schemes for sensor nodes and anchor 

nodes. We propose an auto-regressive prediction-based scheme for detecting anomalies at sensor nodes. For anchor nodes, a 

fuzzy inference system is designed to identify the presence of anomalous behavior. The detection schemes are implemented 

at every node for enabling identification of multiple and duplicate anomalies at its origin. We simulated the network, modeled 

anomalies and analyzed the performance of detection schemes at anchor nodes and sensor nodes. The results indicate that 

anomaly detection systems offer an acceptable accuracy with high true positive rate and F-Score. 

 

Keywords Underwater sensor networks · Localization · Time series analysis · Anomaly detection · Fuzzy logic · 
Auto-regression 

 

 

1 Introduction 
 

The growing need of ocean exploration demands the 

development of smart underwater acoustic sensor net- 

work(UASN). The estimation of geographical location of 

sensor nodes in UASN is termed as localization. Local- 

ization of an UASN node is very challenging because of 

unpredictable node mobility, absence of GPS, propagation 

delay and low bandwidth of the acoustic channel. In the 

case of real-time surveillance and data collection, informa- 

tion regarding their location is vital for interpreting the data 

received from UASN nodes accurately. 

UASN localization is well studied in the last decade [13, 

21]. Localization techniques proposed for mobile UASNs 
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can be grouped as range-free and range-based. As range- 

free techniques provide ambiguous location estimates, 

range-based techniques attract more attention. Most of the 

range-based schemes are anchor node based [8, 16]. SenLin 

et al. [44] proposed a localization scheme that does not 

require an even distribution of anchors. Beniwal et al. [4] 

introduced a time synchronization free localization scheme. 

They discussed an energy-efficient localization in [26]. 

Some localization techniques are suitable only for near 

surface networks [5, 14, 29]. Recently, researchers are 

focusing on localization schemes with mobility modeling 

and prediction [24, 27, 47]. Das and Thampi [9] proposed 

a fault resilient localization that exploit the spatial 

correlation property of underwater objects. However, the 

aforementioned techniques do not offer a robust, attack- 

resistant, and a secure communication path in localization. 

UASN is vulnerable to different kinds of malicious activ- 

ities because of the isolated and hostile nature of under- 

water environment. Also, an adversary can easily interrupt 

or deny packets through the unsecured and open acoustic 

channel [6, 7, 19]. This is very critical when the UASN 

system is deployed for defense applications. In practical 

cases, UASN is highly constraint to power, connectivity, and 
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computation, which in turn become more vulnerable to 

faults and malicious activities. Moreover, in IoT applica- 

tions, as the entanglement with the heterogeneous physical 

realm is very tight, security and privacy are the key require- 

ments [25, 32–34]. Security threats cause immense degra- 

dation of data availability, thus affecting data freshness. As 

localization at a sensor node highly depend on freshness 

and integrity of data, false data injection ends up in wrong 

positioning. In large networks, forwarding and processing 

the erroneous wrong location information result in wastage 

of energy and time. Thus, to ensure accurate and timely 

localization, integrity and authenticity are very critical. The 

malicious activities or intrusion to a network normally show 

an unusual behavior. Hence, for accurate data interpretation 

and ignoring the false data, it is required to detect anomaly 

behavior in localization at their origin. 

In this paper, we propose the first novel anomaly 

detection system for UASN localization. To identify and 

ignore malicious data at their origin, anomaly detection 

schemes are implemented in each sensor node and anchor 

node. We propose an auto-regressive prediction-based 

scheme for detecting anomalies at a sensor node (S- 

Node). A fuzzy inference system is designed to identify 

the presence of anomalous behavior at anchor nodes (A- 

Node). Once an anomaly is detected, the received data will 

be ignored and an alert packet is broadcast. We simulated 

the network and analyzed the performance of detection 

schemes. Results showed that anomaly detection schemes at 

A-Nodes and S-Nodes have good accuracy with less false 

alarms. 

Our major contributions are 

– An anomaly detection scheme is proposed for UASN 

localization 

– The network is simulated and analyzed the performance 

of detection schemes 

The rest of this paper is structured as follows: Section 2 

summarizes related works, Section 3 explains network 

architecture and steps in localization, the proposed anomaly 

detection system is discussed in Sections 4 and 5 describes 

the experimental results and discussions, and Section 6 

concludes the paper. 

 

 

2 Related work 
 

Even though energy efficiency, storage, data dissemination, 

time synchronization, routing and localization of UASN 

are well explored [40], its security aspects are scarcely 

addressed. Wormhole attacks in UASNs are studied  in 

[18, 42, 43]. Dini and Duca [12] proposed a secure 

communication suit for UASN that offers confidentiality 

and  integrity  in  routing.  Authors  also  addressed  [11] 

the security issues in network  discovery.  Atenieseet  al. 

[3] proposed a security framework for secure routing in 

UASNs. Han et al. [15] proposed a trust model for UASN. 

Secure localization schemes and frameworks proposed 

for WSN are well enough to address the issues with 

terrestrial networks [2, 17, 31, 37, 39, 45], but they are 

not enough to cope up with the challenges in UASN. As 

the unique characteristics and challenges of UASN are 

different from WSN [7], UASN requires trusted, reliable, 

and energy-efficient systems. 

Anomaly detection mechanisms for terrestrial wireless 

sensor networks (WSN) can be classified as parametric- 

based and non-parametric based [35]. Parametric-based 

methods either follow statistical approaches or machine 

learning based classifiers that require a trained model. 

They are application specific and suitable only when the 

underlying data distribution is known. Moreover, machine 

learning based techniques cannot be used in UASN scenario 

because the behavior of the network is unpredictable and is 

not predefined in an isolated underwater environment. Non- 

parametric approaches do not require any prior knowledge 

about the distribution of data. It can be applied to 

networks having frequent changes in data distribution. 

Non-parametric approaches can be again classified as rule- 

based, density-based, and clustering-based. In density-based 

methods, population density distribution of the data is 

approximated and anomalies are tracked as those data 

points in low density areas. In clustering approaches, 

anomaly detection is performed on clustered data. Most 

of the rule-based approaches take information from data 

packets such as interval time between two packets, number 

of retransmissions, message payload  size,  and  number 

of packet collisions [28, 38]. In UASN domain, a rule- 

based system with multiple parameters requires complex 

computation. 

The approaches to deploy anomaly detection schemes in 

WSN can be categorized as centralized and distributed [36]. 

Distributed  deployment  is  preferred  in  sensor  networks. 

Centralized deployment creates high communication over- 

head, since all sensor nodes are supposed to send data to 

a gateway node or base station where anomaly detection is 

performed. Centralized anomaly detection consumes a high 

amount of node energy hence reducing the network lifetime. 

Liu et al. [20] proposed anomaly detection, localization, 

and diagnosis scheme for WSN. Mamun et al. [23] proposed 

a  voronoi  diagram  based  network  architecture  to  detect 

anomaly in WSN. Zheng et al. [46] introduced a trust- 

assisted anomaly detection and localization. The historic 

observations  of  anomaly  detection  are  used  to  compute 

the trust of a link in the assumption that anomaly at one 

link is independent of others. They adopt an incremental 

probe selection based strategy for anomaly detection and 

localization that ends up in high communication overhead. 



 

 

 

The inherent limitations of UASN should be considered 

in  the  design  of  the  anomaly   detection   system   so 

that energy consumption in the sensor nodes can be 

minimized and the lifetime of the network be maximized. 

The major constraints are acceptable accuracy, minimum 

computational power, and  less  false  alarms.  Therefore, 

to minimize energy utilization, instead of centralized or 

distributed deployment approach, we designed separate 

anomaly detection schemes for S-Nodes and A-Nodes. The 

detection schemes are implemented in every node, which 

enable identifying multiple and duplicate anomalies at its 

origin. Detection is progressed by processing and analyzing 

the received location data and does not require any 

additional communication packets. Apart from traditional 

complex rule based techniques, we designed a fuzzy rule 

based anomaly detection system at the A-Node where only 

the distance measurement derived from the location data is 

used for the rule generation. To scale with the unexpected 

nature of the hostile underwater environment, instead of 

trained machine learning model, we designed a statistical 

auto-regressive model to identify the anomalies at the S- 

Node. 

 

 

3 UASN localization 
 

The architecture of a typical UASN is shown in Fig. 1. The 

network is assumed to be having n S-Nodes geographically 

clustered. Each cluster consists of an A-Node and a group 

of S-Nodes in its coverage. S-Node is the sensor device 

deployed under water. A-Node is a surface-level node which 

is equipped with GPS receivers to support the positioning 

of S-Nodes. A-Nodes are monitored from remote terrestrial 

control stations through radio link. S-Nodes in a particular 

cluster are localized with the aid of the A-Node in that 

cluster. Figure 2 illustrates the steps in UASN localization 

procedure introduced in [8]. An A-Node sends its location 

data to all S-Nodes within its coverage periodically. Once an 

unusual event occurs, S-Node estimates its location based 

on the information retrieved from an A-Node. The estimated 

location information is embedded with the data packet and 

sent back to the A-Node. Therefore, localization procedure 

consists of two packet transfers, which are as follows: 
 

1. The broadcast message from an A-Node to a desired 

S-Node 

2. The location information along with the sensor data 

from S-Node to A-Node 

 
3.1 Attack model 

 
The malicious activities in the communication path from 

the S-Node to A-Node and from A-Node  to  S-Node 

lead to location estimation with false data and result in 

the wrong positioning that in turn  affects  the  accuracy 

and integrity of data interpretation at the remote control 

station. Figure 3 shows the impact of external attack in 

localization procedure. We assume that the presence of 

malicious behavior in these communication paths exhibits 

an abnormal behavior in the received packet. 

 

 

 

 
 

Fig. 1   UASN architecture 



 

 

 

Fig. 2   Sequence diagram 

illustrating localization steps 
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4 Proposed anomaly detection system 
 

As the role, functionality, mode of operation, and the format 

of sending and receiving packets are different for A-Node 

and S-Node, to ensure security with least computation and 

storage, separate anomaly detection systems are designed 

for A-Nodes and S-Nodes. The anomaly detection system 

is meant to examine the abnormal behavior of each 

incoming packet. Figure  4  illustrates  the  steps  involved 

in anomaly detection enabled localization. The anomaly 

detection system at the A-Node and S-Node identifies the 

inconsistency in the behavior of the received packet. Once 

an A-Node receives a packet from the S-Node, the anomaly 

detection system checks its unusual behavior. If an anomaly 

is detected, the packet will be rejected and an alert message 

indicating the anomaly detection is broadcast. Otherwise, 

the A-Node accepts the packet. Similarly, anomaly detection 

system implemented in the S-Node examines the unusual 

nature of the incoming packet and accepts or rejects it 

according to the suggestion from the detection system. 

The inconsistency of the received packet is examined 

by  using  the  location  data  retrieved  from  the  packet. 

 

Fig. 3   Sequence diagram 

illustrating external attack in 

localization process 
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Fig. 4   Sequence diagram 

illustrating anomaly detection in 

localization 
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The variations in other packet-level parameters such as 

time-interval, the number of retransmissions, and packet 

collisions do not show a consistent behavior because of 

the hostile nature of the underwater environment. Also, 

retrieving and handling multiple packet-level parameters 

require high computation. Figure 5 illustrates the high level 

architectural view of detection systems designed for A- 

Node and S-Node. Since an A-Node sends its location data 

periodically to all S-Nodes, each S-Node is able to keep 

track of A-Node’s geographical coordinates. Anomalies are 

detected by exploiting the statistical time series prediction 

principles on these stored coordinate data. For detecting 

anomaly at the S-Node, an anomaly index η is derived using 

fuzzy intelligence. 

 

4.1 Anomaly detection system at an S-Node 
 

The abnormal nature of the packet from an A-Node is 

determined by observing the previous location history of the 

A-Node. A-Node has a specific mobility pattern that can 

be viewed by analyzing its location data. The variation in 

location co-ordinates between any two consecutive packet 

transfers shows an almost similar behavior. It is assumed 

that the location data in a malicious packet is different from 

the mobility pattern of the A-Node and does not resemble 

the nature of the previous location data. Figure 6 depicts the 

detailed view of the detection system. Since the underwater 

objects follow a circular orbital motion, there will be least 

variation in the y-co-ordinate compared to x-co-ordinate 

 

 

Fig. 5   Anomaly detection 

system 
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Fig. 6   Anomaly detection 

system at an S-Node 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

with respect to time [41]. Hence, the y-co-ordinate of A- 

Node in the incoming packet is examined first. For that, 

the y-coordinate at time t is predicted and analyzed. If 

the standard deviation, σY of the predicted value and the 

received value is greater than the y-co-ordinate threshold 

δY , then the x-coordinate will be predicted and analyzed in 

a similar manner. Otherwise, the packet will be accepted. 

If the standard deviation, σX of x co-ordinate prediction, is 

also greater than the x-coordinate threshold, δX , the received 

packet will be rejected and an alert packet confirming 

anomaly detection is broadcast. Otherwise, the packet will 

be accepted. 

 
4.1.1 Prediction using AR 

 
As an A-Node sends the packet at regular intervals, each S- 

Node retrieves co-ordinate information of A-Node from that 

received packet and stores it as a time series data. Let the 

series be (Xa0, Ya0), (Xat , Yat ), (Xa2t , Ya2t )..., (XaT , YaT ) 

where, t is the time lag between two packet receptions and 

T is the current packet reception time. Table 1 displays 

the format of A-Node’s co-ordinate data stored in an S- 

Node. In UASN domain, the mobility pattern of an object 

is with respect to the wave motion. Hence, the location 

(Xap, Yap) exhibits a temporal correlation with its lagged 

data (Xa( p−t), Ya( p−t)). Therefore, it is possible to predict 

 
Table 1  Format of A-Node location history stored in an S-Node 

the future values of this  time  series  data  by  observing 

the behavior of its previous values. However, in the harsh 

UASN environment, the probability of occurrence of the 

unexpected factors affecting the mobility behavior of a 

node is high. The impact of unexpected external forces 

affecting the wave motion in an UASN environment can 

be modeled as an unpredictable stochastic factor. Hence, 

we exploit an auto-regressive (AR) model to predict the 

future location. The AR model is applied for a time varying 

random process. AR provides the predicted future value of 

a parameter depending on its own previous values and an 

imperfectly predictable stochastic factor. Since the mobility 

model of UASN nodes have dependency with external 

domain characteristics, it can be better mapped into an AR 

model than other auto-regressive moving average models. 

Let p be the order of an AR model; then the prediction of 

x-coordinate of an A-Node is 

XaT  = β + β1 XaT −1 + β2 XaT −2 + ... + βp XaT − p + ε (1) 

where, β is the constant, 
f
β1, β2, ..., βp 

r
, are the parameters 

of the AR model, and ε is the error term. Similarly, YaT can 

also be predicted. 

 

4.2 Anomaly detection system at A-Node 
 

A fuzzy inference system is designed to identify the 

presence of anomalous data at the A-Node. An S-Node 

 
Table 2  Format of location data stored in an A-Node 

Time Location    

Time Node id Location Immediate neighbors 
0 (xa0, ya0)    

t (xat , yat ) 0 S0 (xs0, ys0) A set of Si s where, Si E {S0 S1, ..., Sn } 

2t (xa2t , ya2t ) ..
.
 ..

.
 ..

.
 

..

.
 ..

.
 Sn (xsn, ysn) A set of Si s where, Si E {S0 S1, ..., Sn } 
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)
. Di is the distance between the present 

location of Sj and the stored location of its alive immediate 

neighbor. The alive immediate neighbor is an S-Node in 

Sj ’s immediate neighbor set whose location is recently 

updated in the stored database. Let Sk be the alive immediate 

neighbor whose stored location is (xsk, ysk). The input 

parameters to the fuzzy inference system are calculated as 

follows: 

 
Fig. 7   Anomaly detection system at an A-Node 
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sends a packet to the A-Node only when it senses an unusual    

or critical event in the environment. Hence an A-Node does 

not have the time series location data of all S-Nodes. Also, it 
Di = 

( \2 

sj − xsk 

( \2 

+  y'  − ysk (3) 

is hard to store the location history of S-Nodes in a resource 

constraint UASN. Instead of that, A-Nodes keep track of 

the information of the immediate neighbors of all S-Nodes. 

In UASN domain, S-Nodes exhibits a spatial correlation 

property [24]. The coordinates of an S-Node are positively 

correlated with the coordinates of its immediate neighbors. 

Therefore, immediate neighbors exhibit similar variation in 

their mobility pattern. This property is exploited to design 

the fuzzy rules based anomaly detection technique. Initially, 

at the deployment stage, an A-Node stores the location 

information and immediate neighbors of each S-Node. 

Immediate neighbors of an S-Node are other S-Nodes that 

have the least euclidean distance from it. Table 2 presents 

the format of data stored in an A-Node. On each incoming 

packet from S-Node, A-Node checks its trustiness using the 

fuzzy inference system. Figure 7 illustrates the detection 

mechanism. The incoming packet has the coordinates of 

the sender S-Node. Once it is identified as a packet from a 

trusted S-Node, the location of that S-Node is updated. The 

Mamdani fuzzy model is used [22] to generate the anomaly 

index. Two inputs are given to the fuzzy system, D and Di . 

Let the S-Node, Sj  send a packet to the A-Node and the 

The output of the fuzzy inference system is the anomaly 

index η, which determines whether to reject or accept the 

packet. The dependence of η on D and Di can be expressed 

by the following four fuzzy rules: 

1. If D is Very near or Near and Di  is Very near or Near, 

then the output is Normal 

2. If D is Very near or Near and Di  is Far or Very Far, 

then the output is May be Normal 

3. If D is Far or Very Far and Di  is Very near or Near, 

then the output is May be Anomaly 

4. If D is Far or Very Far and Di  is Far or Very Far, then 

the output is Anomaly 

The membership functions Very near, Near, Far, and Very 

Far for the variables D and Di are defined as μV N (x), 

μN (x), μF (x), and μV F (x)based on the threshold values 

a, b, c, d, e, and f. It is assumed that the mean time-interval 

between two packet transfers from an S-Node is 100 s. The 

distance traveled by all S-Nodes in 100 s is observed, and its 

minimum value, mean value, and maximum value are taken 

for the parameters a, b, and c respectively. The parameters 
d, e, and f are assigned in accordance with a, b, and c. Hence 

location is , 
(
x ' , y' 

\
 D is the distance between the present 

s j s j   
. 

and the previous location of S j . Let the stored location of 
a trapezoidal membership function is used for Very near, 

Near, Far, and Very Far. 
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The membership function for Very near, Near, Far, and 
Very Far are defined as follows: 

⎧ 
1, D < a 

rules, the obtained result is subjected to defuzzification 

process. Centroid method is used for defuzzification. The 

output of defuzzification process is a crisp value η, which 

μV N (x) = 
⎨ 

a − D , a ≤ D ≤ b 
⎩ 

0, Otherwise 

⎧ 
D −b , a ≤ D ≤ b 

μN (x) = 
⎨ 

1, b ≤ D ≤ c 
⎪ d−c , c ≤ D ≤ d 
⎩ 

0, Otherwise 

⎧ D−d , c ≤ D ≤ d 

μ   (x) = 
⎨ 

1, d ≤ D ≤ e 
F e   D 

(4) 

 

 

 
 

(5) 

 

 

 

 

(6) 

indicates the probability of occurrence of abnormal signal. 

The membership function of η is shown in Fig. 10. To 

optimize false negatives, the threshold of η is set as 0.5. In 

each incoming packet, η is computed and compared with the 

threshold. If η > 0.5, an alert message indicating anomaly 

detection is broadcast. 

 

 

5 Experimental results and discussion 
 

The performance of anomaly detection systems at the A- 

⎪⎪⎩
 f −e , e ≤ D ≤ f 
0, Otherwise 

Node and S-Node is analyzed by conducting separate sets 

of simulation experiments. 
⎧ D − f  
⎨  f −e 

≤ ≤ 
μV F (x) = 1, D > f 

⎩ 
0, Otherwise 

 
 

(7) 

 

5.1 Anomaly detection at the S-Node 
 

Anomalous nature of the signal from an A-Node is modeled 

Figures 8 and 9 shows  the membership  functions  of 

D  and  Di ,  respectively.  After  applying  fuzzy  inference 

as the data packet with random location data, that is location 

data having random values of X and Y coordinates. Packets 

 

 

Fig. 10   Membership function of 

anomaly behavior index 
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Table 3  Simulation parameters used Table 4  Performance metrics 
 

Simulator : AquaSim 

 
Simulation parameter Value 

 
Communication channel UnderWater channel 

Attenuation model Thorp’s attenuation 

Communication range 100 m 

Packet size 50 bytes 

 
 

Metric Equation 
 

 

Accuracy 
tP +tN

 

tP +tN + f P + f N 

Precision 
tP

 

tP + f P 

True positive rate (TPR) tP
 

tP + f N 

False positive rate (FPR) 
f P

 

f P +tN 

F-Score 2    P r e c ision ∗ T PR  
Precision+T P R 

Mobility model RPGM 

Network Layer Vector based forwarding 

MAC Broadcast mac 

Bit rate 10 kbps 

Frequency 25 kHz 

Initial Energy 10000 J 

Simulation time 700 s 

Receiver operat- 

ing  characteris- 

tics (ROC) 

 
Area  under  the 

curve (AUC) 

Curve generated by plotting TPR 

against FPR. The curve above the 

diagonal line and approaching 1 

represents good performance. 

It is the area under the ROC 

curve. The value approaching 1 

represents good performance. 

 
 

 

 

 
with false data is simulated and the performance of the 

detection mechanism is evaluated. 

 
Simulation settings The network of 20 nodes is simulated 

in a 200 × 200 × 200 m3 space. The simulator used is 

AquaSim1, which is a tool used  for  UASN  simulation 

and research [10]. Table 3 lists out the various simulation 

parameters. As UASN nodes exhibit group mobility 

behavior, reference point group mobility model [30] is 

applied to map the mobility behavior. The UASN network 

is simulated in such a way that the A-Node sends packet to 

all S-Nodes every 50 s. Anomalies are modeled as follows: 

– A packet with location data as (100,100) is sent to all 

S-Nodes after 500 s 

– A packet with location data as (200,200) is sent to all 

S-Nodes after 600 s 

We considered the location data up to 250 s for learning 

process of the predictor algorithm in the assumption that the 

probability of occurrence of anomalies at the initial stage of 

network deployment is less. After 250 s, abnormal behavior 

of each packet reception is examined. To find the order of an 

AR model, the auto-correlation and partial auto-correlation 

functions of the A-Node data are observed, and AR model 

with order 1 is selected. The least square method is used to 

implement the AR model. 

Let tP is the true positive count, tN is the true negative 

count, f P is false positive count, and f N is false negative 

count. The performance metrics used for the analysis of 

detection  schemes  are  listed  in  Table  4.  We  considered 

 

 
 

1http://obinet.engr.uconn.edu/wiki/index.php/Aqua-Sim 

detection at S-Node 2 as a test case and analyzed the 

performance at S-Node 2. Table 5 displays the results of 

detection. To optimize the false negatives, the thresholds δX 

and δY are set as 10. Observing the results of detection in 

all packet reception cases, an accuracy of 90%, precision of 

66.6%, and true positive rate of 100% are obtained when δy 

and δx are set as 10. 

 

5.1.1 The impact of δy 

 

δy has a significant impact on the processing overhead 

associated with anomaly detection at an S-Node. The 

detection algorithm progresses only when the estimated 

variation is greater than δy . Even though lower δy ensures 

an accurate trusted detection system, it increases the 

processing power. A low δy value increases false positives 

without affecting true positives. We analyzed the impact 

of δy on accuracy, precision, and sensitivity of detection. 

Table 6 depicts the variation in performance of the 

detection system with different values of δy . Figure 11 

represents the ROC (receiver operating characteristics) 

curve obtained for different values of δy . The computational 

complexity of an AR(1) model with n members is O(n). 

The energy utilization in each detection phase depends on 

the complexity of running the AR(1)model. So, energy 

utilization linearly depends on data storage. Since we 

designed the system without specifying the storage limit, the 

processing overhead increases with time, which means pro- 

cessing overhead is linearly dependent on network lifetime. 

 
5.1.2 The impact of δx 

 

As the horizontal movement of nodes with respect to the 

ocean wave is less compared to the vertical variation, the 

displacement of x with time is less. Thus, even if the small 

http://obinet.engr.uconn.edu/wiki/index.php/Aqua-Sim


 

 

 

Table 5  Results of anomaly detection at S-Node 2 
 

Time (S) Received A-Node coordinates Predicted Y σy Predicted X σx Result 1-Anomaly 0-Normal 

300 (173.04, 137.25) 126.8736948 21.38053 126.8736948 32.644507 1 

350 (134.47, 193.66) 135.6120027 16.12406 135.6120027 0.8075179 0 

400 (125.45, 168.76) 129.8952341 10.35466 129.8952341 3.1432552 0 

450 (131.17, 173.46) 129.0838737 7.031253 - - 0 

500 (127.36, 134.2) 129.5552317 21.06258 129.5552317 1.5522632 0 

550 (100, 100) 126.9827525 24.4018 126.9827525 26.9827525 1 

550 (122.43, 71.98) 126.9827525 37.06783 126.9827525 3.2192822 0 

600 (118.19, 18.4) 127.8613525 24.98678 27.8613525 6.8386789 0 

650 (200, 200) 127.5414826 180.7961 127.5414826 72.4585174 1 

650 (103.45, 19.55) 127.5414826 0.244753 - - 0 

 

 

value of δx requires more processing power, to ensure a 

trusted detection system, the value of δx should be as small 

as possible. We analyzed the impact of δx . Table 6 depicts 

the variation in performance of the detection system with 

different values of δx . Figure 12 represents the ROC curve 

obtained for different values of δx . Results show 90% as 

accuracy, 0.94 as AUC value, and 0.8 as F-Score for (δx , δy) 

combinations like (10, 10), (10, 20), and (20, 10). 

 

5.2 Anomaly detection at A-Node 
 

To evaluate the performance of an anomaly detection scheme 

at an A-Node, we conducted simulation experiments by 

modeling anomaly behavior as transmitting packets from 

S-Nodes with random coordinate values. 

 

5.2.1 Simulation settings 

parameters used. Generally, an S-Node sends data to A- 

Node only when an unexpected event occurs. Hence, the 

UASN network is simulated in such a way that S-Nodes 

send packets to A-Node randomly. Anomalies are modeled 

as random packet transfers from random locations. 

The values of parameters D and Di  are estimated and 

given to the fuzzy intelligence system to generate the 

anomaly index, η. To optimize false negatives, the value 

of η is taken as  0.5.  Table  7  presents  the  results  of 

the detection system. The detection system showed 100% 

TPR with 72% accuracy and 41.66% precision when η 

is 0.5. 

 
5.2.2 The impact of η 

 
As the value of η plays an important role in the performance 

of  the  detection  system,  we  analyzed  the  performance 
 

A network of 10 nodes is simulated in a 500 × 500 × 500 

m3  space using AquaSim [1]. Table 3 lists the simulation 

 

 
 

Table 6  Performance  comparison  of  anomaly  detection  system  at 

S-Node 2 with different δy and δx combinations 

 

 

 

 
1    . 2 

 
 

1 

 
 

0    . 8 

 
 

 
ROC Curve 

 

0    . 6 

 

0    . 4 

 

0    . 2 

 
 

0 

 
 
 

 
0 0    . 2 0    . 4 0    . 6 0    . 8 1 

FPR 

 
10 30 80 50 50 0.5 0.69 

 

Fig. 11   ROC curve of anomaly detection at S-Node 2 with different 

   δy values 

T
P

R
 δy δx Accuracy 

(%) 

Precision 

(%) 

TPR (%) F-Score AUC 

5 10 80 50 100 0.66 0.88 

10 10 90 66.6 100 0.8 0.94 

20 10 90 66.6 100 0.8 0.94 

30 10 80 50 50 0.5 0.69 

10 5 80 50 100 0.66 0.88 

10 20 90 66.6 100 0.8 0.94 
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ROC Curve Table 8  Performance  comparison  of  anomaly  detection  system  at 

A-Node with different η values 
 

1 η Accuracy (%) Precision (%) TPR (%) F-Score AUC 
 

 

0    . 8 
 

0    . 6 
 

0    . 4 
 

0    . 2 

0.2 68 38.46 100 0.55 0.8 

0.3 68 38.46 100 0.55 0.8 

0.4 68 38.46 100 0.55 0.8 

0.5 72 41.66 100 0.58 0.82 

0.6 76 44.44 80 0.57 0.77 

0.7 80 50 80 0.61 0.8 
 

0 
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Fig. 12   ROC curve of anomaly detection at S-Node 2 with different 

δx values 

 

 

 

 
 

Table 7  Results of anomaly detection at A-Node 

 
variation and behavior of the detection system with respect 

to η. We analyzed accuracy, precision, TPR, F-Score, and 

the ROC curve of the detection system for different η 

values. Table 8 shows the performance variation of detection 

algorithm with respect to η. Figure 13 shows the ROC curve. 

Even though higher η gives good accuracy, it has least TPR. 

The maximum AUC value is obtained when η=0.5 with 

F-Score 0.58. 

The whole concept of anomaly detection is derived based 

on the spatial correlation property of underwater objects. 

In the anomaly detection system at A-Node, the anomaly 

index η depends on the input parameters, D and Di , 

which are derived directly. As S-Nodes do not show a 

periodic nature in the packet transfer, normalized D and 

Di with respect to packet interval time, can provide more 

robust results. Moreover, the complexity level analysis of 

detection schemes help to observe the variations in network 

performance. 
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490 S1 (134.379, 74.6605) 0.45 Fig. 13   ROC curve of anomaly detection at A-Node with different η 

   values 

ROC Curve 

T
P

R
 

T
P

R
 

Time (s) Sender S-node id Location (x, y) η 

50 S1 (64.2689, 60.3963 0.1737 

90 S8 (65.6001, 165.793) 0.1745 

100 S0 (158.702, 160.919 ) 0.1737 

110 S2 (71.7167, 69.7725) 0.1737 

150 S1 (88.7677, 69.2657) 0.1737 

150 Pretending S1 (200, 200) 0.8573 

170 S9 (383.257, 224.097) 0.5 

200 S3 (19.3594, 79.8404) 0.8755 

250 S2 (36.6057, 81.3597) 0.1806 

250 Pretending S2 (100, 100) 0.8759 

260 Pretending S4 (250, 250) 0.5 

300 S7 (95.2372, 130.8) 0.65 

310 S2 (27.9219, 79.5283) 0.1737 

330 S3 (21.2074, 79.4102) 0.1737 

360 Pretending S5 (200, 200) 0.8722 

400 S4 (52.8232, 66.9643) 0.1828 

410 S3 (27.2177, 108.976) 0.174 

420 S9 (216.231, 238.912) 0.8615 

440 S0 (107.455, 103.68) 0.8598 

440 S5 (78.8085, 108.997) 0.65 

450 S6 (48.0862, 64.3274) 0.7479 

460 S7 (70.5413, 97.5305) 0.1737 

470 Pretending S3 (100, 150) 0.8759 

480 S2 (25.117, 114.204) 0.1847 

 



 

 

 

6 Conclusion 
 

We proposed the first novel anomaly detection scheme for 

UASN localization. The detection scheme is implemented 

in all nodes so that multiple, and duplicate anomalies can be 

detected at their origin. The statistical time series prediction 

principles are applied to identify an anomaly at S-Node. 

Anomaly index is derived using the fuzzy inference system 

to identify the presence of anomalies at A-Node. Detection 

schemes offered good accuracy with less false alarms. The 

inherit domain properties of UASN is considered in the 

design of algorithms so that it become scalable enough to 

build a trusted secure UASN platform in future. 
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