
28/04/2024 20:26

A Framework for the Evaluation of Trainee Performance in Cyber Range Exercises / Andreolini, M.;
Colacino, V. G.; Colajanni, M.; Marchetti, M.. - In: MOBILE NETWORKS AND APPLICATIONS. - ISSN 1383-
469X. - 25:1(2020), pp. 236-247. [10.1007/s11036-019-01442-0]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:

Noname manuscript No.
(will be inserted by the editor)

A framework for the evaluation of trainee performance in
cyber exercises

Mauro Andreolini · Vincenzo Giuseppe Colacino ·
Michele Colajanni · Mirco Marchetti

the date of receipt and acceptance should be inserted later

Abstract This paper proposes a novel approach for

the evaluation of the performance achieved by trainees

involved in cyber security exercises implemented through

modern cyber ranges. Our main contributions include:

the definition of a distributed monitoring architecture

for gathering relevant information about trainees ac-

tivities; an algorithm for modeling the trainee activ-

ities using directed graphs; novel scoring algorithms,

based on graph operations, that evaluate different as-

pects (speed, precision) of a trainee during an exercise.

With respect to previous work, our proposal allows to

measure exactly how fast a user is progressing towards

an objective and where he does wrong. We highlight

that this is currently not possible in the most popular

cyber ranges.

Keywords Cyber range · Cyber exercise · graph

algorithms · Monitoring framework

1 Introduction

Current products and services are almost exclusively

made available through Internet-based systems that al-

low for a wide reach through high performance and

scalability [12], and ubiquitous fruition through a wide

range of devices (smartphones, desktops, laptops) [9].

Security of the underlying subsystems and protocols has

become of uttermost importance to managers, design-

ers, programmers, administrators and end users, since a

breach might have unforeseen and critical consequences,

leading often to business disruption [7]. This growing

attention to cyber security clearly arises from exter-

nal threats, which mainly exploit outdated, vulnerable

University of Modena and Reggio Emilia, Italy
{mauro.andreolini, vincenzogiuseppe.colacino,
michele.colajanni, mirco.marchetti}@unimore.it

systems and weak security controls. Moreover, inexpe-

rienced and insufficiently trained staff often constitutes

the greatest hindrance to security in the area of com-

puter crimes. Previous studies [11,5,1] show that most

cyber security incidents result from human errors, mis-

interpretation of system policies and posture. Experi-

ence shows that security is best learned by practice on

existing systems. However, on the one hand practicing

on production systems is risky at best, and on the other

hand, building a testing replica of a large enterprise net-

work might prove too much of a burden for an already

overworked staff.

To increase the resilience of their infrastructures,

both military and civilian organizations have started

to train security personnel on cyber ranges that is, pre-

arranged virtual environments connectable via a VPN

through which it is possible to effectively simulate real-

istic attacking scenarios (nation-state red teams, cyber

criminals, hacktivists) on a system architecture closely

resembling the original one. Training goals are many

and diverse in nature: to discover vulnerabilities in ex-

isting systems, to harden existing systems, to evalu-

ate the security of a soon-to-be deployed component,

to teach secure programming practices, to perform in-

cident response on a compromised system. The most

popular cyber ranges [4,8,14,6] offer a prearranged, re-

alistic environment on which to perform blue team vs.

red team exercises. Here, red teams are external enti-

ties brought in to test the effectiveness of a security

program. They are hired to emulate the behavior and

techniques of likely attackers to make it as realistic

as possible. On the other side lies the blue team, the

internal security team that is charged with stopping

these simulated attacks. A growing number of compa-

nies, however, are not using formal blue teams in their

exercises. The idea is to get a more realistic evaluation

2 Mauro Andreolini et al.

of their true defensive capabilities by seeing how their

security teams react to the simulation without formal

preparation. The ultimate goal of red vs. blue team en-

gagements is to test organization security maturity as

well as its ability to detect and respond to an attack.

Red team goals, which may be diverse in nature, all tes-

tify the ability of an attacker to violate confidentiality,

integrity or availability of a vulnerable system. Typical

objectives are service disruption, exfiltration of sensi-

tive data, stealthy movement across systems. The blue

team tries its best to thwart these attacks and attribute

them to the red team.

Besides the virtual environment, cyber ranges also

typically provide support for “cyber awareness” in the

form of a dashboard that constantly displays how many

of the stated goals have been fulfilled by the red team.

The dashboard provides a rough measure of how well

the teams are behaving. While useful, this approach has

a severe limitation: being focused exclusively on goal

achievement, it cannot measure the performance of a

single player and, more generally, the reasons behind

success or failure. For example, let’s consider a single

red team player who has successfully escalated privi-

leges to those of an administrator. Was this the result of

a perfect attack, achieved in the quickiest and stealthi-

est fashion? Or was this the result of repeated trial and

error (increasing the risk of being detected)? Or, even

worse, was the result due to pure chance (random guess-

ing, exploiting traces left by a previous player)? The

dashboard, lacking any information about user activ-

ity, cannot give any useful feedback in this respect, and

thus cannot make a real distinction between more or

less competent players. However, we think that, besides

reaching the desired training goals in a single engage-

ment, an instructor should monitor the performance of

every student on multiple engagements, pointing out

improvement, stall, regression and tuning the learning

material accordingly. It is worth noting that is no uni-

versal model capturing all learning objectives. Lab ex-

ams related to introductory courses should evaluate the

ability of a student to reproduce basic techniques pre-

cisely. Penetration testers should be evaluated on the

ability to find all known vulnerabilities in a system and

exploit them systematically. Red teamers should dis-

play quickness and stealthiness in penetrating systems.

Vulnerability researchers, on the other hand, should

prove to be able to find not previously known paths

of exploitation. In the end, different learning objectives

call for different models and scores.

A trainee is anyone who wants/needs to improve

his/her skills in one or more cyber security fields (at-

tack, defense, source code auditing, cryptography) and

is currently subject to evaluation. An exercise is a chal-

lenge (deployed on an hw/sw infrastructure called lab

network) through which an instructor evaluates a trainee.

A learning objective is a specific ability that a trainee

will nurture through an exercise. In this paper we in-

troduce the following contributions.

1. We propose a novel, modular, extensible framework

that supports collection of all pieces of information

needed to model the activity of a trainee involved

in an exercise.

2. We define a model of trainee activity through di-

rected graphs, built from collected data. These mod-

els are at the basis of performance evaluation. Mod-

els can be built online (for live exercises) or offline

(for post-mortem analysis).

3. Given specific learning objectives, we propose novel

scores that measure the proficiency of a user in reach-

ing them. A score is defined as a scalar function over

a set of graphs. We provide experimental evidence

that the ability of a trainee is often correlated to a

well-chosen score.

We consider three distinct, realistic exercises of varying

difficulty. Each exercise is carried out by three trainees

with different levels of experience. The trainees are eval-

uated with four different scores aimed at measuring dif-

ferent learning objectives. We show how the graphs re-

lated to user activities pinpoint inefficiencies (repeated

trial and errors, falling into rabbit holes, halting with-

out pursuing the objective) and merits (follow strictly

a single intended path, find all intended paths, discov-

ering unintended paths). We also show how the score

computed from the graphs can be used to effectively

build a ranking amongst users.

The paper is organized as follows. Section 2 dis-

cusses related work in the fields of attack modeling and

performance scores. Section 3 introduces oriented graph

models to represent both an ideal conduct and actual

behavior exhibited by a trainee during an exercise. Sec-

tion 4 introduces several scores that capture different

learning objectives. Section 5 briefly describes the archi-

tecture of the monitoring framework and some imple-

mentation details. Section 6 presents an experimental

evaluation of scores. Finally, Section 7 concludes the

paper with some final remarks.

2 Related work

The activities connected to a cyber attack are often

achieved through a complex sequence of intermediate

stages, in which a user gradually acquires privileges up

to being able to carry out the required operations. In

such circumstances, it can be very complicated to recon-

struct the complete attack path and identify the con-

A framework for the evaluation of trainee performance in cyber exercises 3

catenation of techniques and tools. An attack model is a

formal representation aimed at describing an attacker’s

activities in terms of techniques used and vulnerabilities

exploited in systems and configurations. The purpose of

an attack model is to identify the most probable routes

within this sequence and make them impractical, if not

impossible.

An attack tree [16] represents the attacks to a sys-

tem and related countermeasures as a tree structure.

The root node is the ultimate goal of the attack. In-

termediate nodes represent intermediate stages of an

attack. Intermediate siblings can be combined in AND

or OR mode; AND nodes represent the different steps

in achieving a goal, while OR nodes represent differ-

ent ways to achieve the same goal. Leaf nodes are at-

tacks; they can be labelled to enrich the context of the

attack. Typical labels are “possible/impossible”, “le-

gal/illegal”, “cost”, “probability of success”. Label val-

ues of siblings combine and propagate to the parent

node; for example, if reaching an intermediate stage re-

quires two tasks with costs c1 and c2, the total cost is

c = c1 + c2. Figure 1 shows an example attack tree,

labeled by cost.

Fig. 1 An example attack tree labeled by cost

The notion of attack tree has been extended in lit-

erature. Kordy et al. [10] introduce attack-defense trees

that also include possible counteractions of a defender.

Since interactions between an attacker and a defender

are modeled explicitly, this extended formalism allows

for a more thorough and accurate security analysis com-

pared to regular attack trees. Zonouz et al. [18] in-

troduce the attack-response tree, basically an attack-

defense tree that also includes intrusion detection un-

certainties due to false positives and negatives in de-

tecting successful intrusions.

Attack trees can quickly become complex as the

number of vertexes and edges increases; in particular,

it becomes increasingly expensive to identify all paths

from a leaf node to the root node. Keep in mind that in

realistic scenarios the number of nodes and interconnec-

tions can easily exceed thousands. In these conditions

the addition of a single node is sufficient to cause a

significant increase in the number of arcs, with a con-

sequent increase in the new possible attack paths. Fur-

thermore, since the root node represents the ultimate

goal of the attack, it may be necessary to resort to

multiple attack trees to model a complex multi-stage

attack.

The attack graph [13] is another popular model of

cyber attacks that is able to represent the infrastructure

to be protected. An attack graph combines information

related to network topology, eligible vulnerabilities and

exploits available on the assets of an IT infrastructure,

by providing a visual representation of the attack paths

that an attacker must undertake to achieve specific ob-

jectives. An attack graph allows the analyst to highlight

the structure of a network and to quickly identify the

critical paths most subject to attacks. These activities

are essential and preparatory to the subsequent phases

of hardening and remediation.

An extension of the traditional attack graph is the

Bayesian attack graph [15], which introduces the prob-

abilities on the edges for modeling uncertainty in state

transitions between nodes. In particular, edges include

the probability of exploitation by an attacker. There-

fore, the overall probability of reaching the last state is

computed based on the combinations of these probabil-

ities.

Although very useful, attack trees and graphs offer a

static view of attacks and mitigations to a system; they

do not model the actions an attacker actually carries

out on a live system. Furthermore, research on scoring

systems for cyber ranges seems to be currently in its in-

fancy; current approachs are limited do signaling goal

completion [3,17,2] rather than measuring trainee per-

formance. To the best of our knowledge, this paper is a

first step in these two directions.

3 Modeling trainee activities

In this paper, we model trainee activities through ori-

ented graphs. Vertices represent intermediate states that

are reached by a trainee during an exercise, while edges

represent the actions performed by a trainee to move

from a particular state to the next one. Both vertices

and edges may be labelled with additional information

(timestamps on vertices and edges to track progress

4 Mauro Andreolini et al.

over time, or command options on edges to better dis-

cern useful from useless commands).

A reference graph is meant to model ideal behav-

ior of a trainee during an exercise. It is prepared by an

instructor and input into the framework. Every refer-

ence graph has a start vertex that models the begin-

ning of trainee actions, and an end vertex that models

the final goal of the exercise. These two nodes are not

taken into account during actual calculations; they only

serve to frame a sequence of actions. Figure 2 shows a

very simple reference graph. Here, the trainee is sup-

posed to reach states Sj (j=1, 2, 3) through simple ac-

tions (for example, shell commands) ak (k=1, 2, 3) in

that specific order. Model granularity may vary from

Fig. 2 Reference graph - fine granularity

single command outcomes to entire sub-goals per ver-

tex, according to the learning objectives of the exer-

cise. For example, introductory course exams evaluate

strict adherence of trainees to standard attack proce-

dures. The underlying reference graph must therefore

be as detailed as possibly (ideally, at the level of sin-

gle trainee commands and interactions). On the other

hand, in red team/blue team exercises the attackers are

usually free to choose their attacking strategy and are

driven by goals rather than adherence to standard tech-

niques. In this scenario, a reference graph should model

intermediate mission goals rather than single command

outcomes. Figure 3 shows such a reference graph, where

the attacker has clear mission subgoals SGi (i=1, 2,

3, 4, 5) carried out through operation campaigns ok
(k=1, 2, 3, 4, 5, 6, 7). Finally, vulnerability research

activities might not even be represented by a clear ref-

erence graph, since the path is unknown a priori. In this

case, the instructor might just build a reference graph

out of a single vertex and a labelled edge indicating a

possible event in case of successful exploitation (typi-

cally, command execution, information leak or service

disruption). The framework provides an initial set of

Fig. 3 Reference graph - coarse granularity

uniform and standardized events at different granular-

ities that represent the most common actions (or even

entire campaigns) performed by a trainee during an en-

gagement. Edges in a graph are represented through

these events. A reference graph might grow quickly in

terms of vertices and edges as its granularity increases

or as the lab network grows in terms of machines and

reachable goals. To reduce graph complexity, several

reference graphs can be defined (one for every interme-

diate goal).

Fig. 4 Incremental update of the trainee graph

A trainee graph tracks the actions performed by a

trainee during an exercise. It is built automatically by

the framework from two elements: a set of reference

graphs and a set of metrics collected on the game net-

work. The latter ones capture trainee activity (com-

mand history, Web browsing history, GUI interaction),

network events, OS process activity, service and appli-

cation availability. More specifically, the framework ini-

tializes the trainee graph with a start vertex. Then, it

collects all metrics relevant to a specific trainee on a

specific engagement, maps them into pre-defined events

and builds an event timeline. Finally, it tries to match

the intermediate states of a reference graph with the

events in the timeline. Whenever an event in the time-

line matches an edge (Vi, Vj) in the reference graph,

the trainee graph is updated as follows:

– vertex Vj is added to the trainee graph;

A framework for the evaluation of trainee performance in cyber exercises 5

– vertex Vi is located in the trainee graph;

– an edge (Vi, Vj) is added to the trainee graph.

Figure 4 shows the incremental update of a trainee

graph with vertex S2 and edge e2. Matching of timeline

events with trainee actions is done in ordered fashion

on all nodes of the reference graph.

If, on the other hand, a timeline event e cannot be

matched against any edge in the reference graph, the

trainee graph is updated as follows:

– the current vertex Vi in the trainee graph is located;

– the next expected vertex Vj in the reference graph is

identified (such a vertex always exists, be it “start”

if the trainee hasn’t yet followed the recommended

solution, or an intermediate one if the trainee has

followed some steps of the exercise);

– the label Nj of the vertex Vj is identified;

– a new dummy vertex Vj is added to the trainee

graph with label Nj err (if it already exists, omit

vertex insertion);

– an edge (Vi, Vj) is added with label set to e.

Figure 5 shows the insertion of a dummy node in a

trainee graph with event e. Here, the current node is

Start and not S1, since the specific visit order of ver-

texes in the reference graph is Start, S1, S2, S3, End

and the framework is expecting completion of S2. To

Fig. 5 Insertion of a dummy node in the trainee graph

prevent an excessive growth of edges in the trainee

graph due to repeated, irrelevant trainee actions, the

framework holds a per-engagement event black list that

allows to filter them (for example, the UNIX clear

command that clears the terminal display).

Figure 6 shows an excerpt trainee graph showing a

correct evolution (using the hydra network login cracker

to crack SSH credentials) and failed attempts (using the

telnet and zcat commands). Here, events are detailed

with metadata such as “event type” (UNIX command),

“action” (the actual command given) and “status” (in-

dicating whether the result allows to make progress or

not). At the end of the matching process, a trainee

graph reflecting the activities of a trainee during the

Fig. 6 Example of dummy node and correct node with event
labels

whole exercise has been produced. Figure 7 shows (top)

a reference graph related to a SQL database dump ac-

tivity performed through the sqlmap command, and

the correspondent trainee graph (bottom) with mis-

takes represented as dummy nodes. A trainee graph

Fig. 7 Trainee and reference graph compared

may be computed offline (at the end of an exercise)

for a post-mortem performance analysis. It may also be

computed online (during an engagement) to track live

trainee progress on a dashboard. In the latter case, the

matching algorithm operates on a subset of events col-

lected during a specific time window, and the starting

vertex will be the first one recognizable in the event

timeline.

It may happen that a trainee finds an unintended

path that is, a sequence of actions that has not been

considered by the instructor and allows to reach the

end goal. In this case, the matching algorithm detects

reaching the end vertex and operates backwards to re-

construct a sequence of events that includes a valid (yet

unforeseen) solution. The following operations are car-

ried out:

– the dummy vertex Sj err in the trainee graph con-

taining the latest trainee events is identified (this

must exist, otherwise the trainee would be follow-

ing an intended path);

6 Mauro Andreolini et al.

– all events ej pointing to Sj err are removed from

the trainee graph and ordered temporally;

– for each event ej , a new unintended vertex Uej is

created;

– the unintended vertexes are connected through the

corresponding events in an ordered fashion.

This approach does not identify the exact sequence of

actions leading to an unintended path; the sequence

will also include failed attempts, which the framework

cannot distinguish from correct ones. However, it serves

as a basis to pinpoint alternative solutions which could

be analyzed by an instructor and aid in building more

precise reference graphs, rather than computing actual

scores.

Figure 8 illustrates a trainee graph after the recon-

struction of an unintended path involving events ex and

ey. The dashed edges have been removed and added

back as links to the unintended vertexes Uex and Uey .

Fig. 8 Reconstruction of an unintended path in a trainee
graph

4 Scoring algorithms

A score is a function f : Gn → R that takes as input a

set of n oriented graphs (including at least one trainee

and a reference graph), and outputs a real number s

in a specified interval [a, b]. In this paper, we consider

the [0, 1] interval, but any other one can be chosen. No

single score is capable of capturing every single ability

learned in cyber exercises; different learning objectives

call for different scores. In this section, we introduce

some scores to measure the progress of specific abilities

such as:

– reproduce basic attack/defense techniques precisely

to exploit/remediate all known vulnerabilities in a

system according to a defined plan;

– penetrate a system quickly and stealthily (both in

operating steps and time);

– discover unknown vulnerabilities in a system in the

least amount of operative steps.

4.1 Basic scores

Score s1. Let Gu be a trainee graph and Gr a reference

graph. Let l be the length of the shortest path from the

start vertex to the end vertex. We have:

s1(Gu, Gr) =

{
1
l if the end node is reached

0 otherwise
(1)

This score rewards trainees who are able to reach the

final goal of an exercise in as few operative steps as pos-

sible. If no paths are present, a null score is given. This

is a good candidate for vulnerability research activities,

where trainees are asked to find unknown vulnerabilities

and reproduce them in the conceptually fastest possible

way. The score is very lightweight, being computable in

(O(|E| + |V |log|V |) steps (G = (V,E)) through Dijk-

stra’s shortest path algorithm. Unfortunately, s1 suffers

two drawbacks. First, it lacks a notion of “wall time”

that might make it useless in exercises where wall time

is paramount (for example, red teaming). Second, it

doesn’t track the actual actions performed by a trainee

during an exercise, so it can’t judge whether he is fol-

lowing the right path or not. For this reason, s1 is not

well suited for teaching labs and penetration tests (that

require following a precise plan).

Score s2. Let Gu be a trainee graph and Gr a refer-

ence graph. Let lu and lr be the length of the shortest

path from the start vertex to the end vertex in the

trainee and reference graph, respectively. We define the

efficacy ν as following:

ν =
lu
lr

(2)

If the trainee completes the exercise, we have lu = lr,

thus ν = 1 and the highest possible score. On the other

hand, if the trainee can’t complete any step of the ex-

ercise, we have lu = 0, thus ν = 0 and the lowest possi-

ble score. Intermediate performance produces scores in

the [0, 1] interval. Efficacy measures the progress of a

trainee towards the exercise goal.

Similarly, let tu be the wall time taken by a trainee

to complete the exercise (this can be easily computed if

the trainee graph has timestamp labels on its vertexes).

Let tmax be the maximum wall time interval allotted to

an exercise (this information may be inserted as a label

of the end node in the reference graph). If the trainee

A framework for the evaluation of trainee performance in cyber exercises 7

withdraws from the challenge, tu = tmax. We define the

efficiency η as following:

η = 1− tu
tmax

(3)

The same observations hold for η. A trainee that com-

pletes the exercise in a shorter time is assigned a higher

score, while a trainee that doesn’t complete the exercise

in time is penalized with the lowest score. Intermediate

performance produces scores in the [0, 1] interval.

Score s2 is defined as a linear combination of ν and

η:

s2(Gu, Gr) = αν + (1− α)η (4)

In this paper, we choose α = 0.5, but the score may

be tuned to weigh more efficacy or efficiency, according

to the specific learning objective. This score rewards

trainees who are able to reach the final goal of an ex-

ercise in the shortest time possible within the allotted

time frame. Trainees who could not reach the goal at

tmax are penalized with a null efficiency. This is a good

candidate for red teaming exercises, since it takes into

account the most important factor in this kind of en-

gagement (wall time). Score s2 shares the same problem

as score s1: it doesn’t track trainee actions during the

exercise. For this reason, s2 might not be well suited

for pointing out technical inefficiences in teaching labs

and penetration tests.

Score s3. Let Gu = (Vu, Eu) be a trainee graph

and Gr = (Vr, Er) a reference graph. We consider the

symmetric difference of two sets A, B:

A4B = (A \B) ∪ (B \A) (5)

In other words, A4B contains all members of A not in

B and all members ofB not inA. We use two interesting

propert̀ıes of symmetric difference:

– if two sets A and B coincide, A4B = ∅;
– if two sets A and B are disjoint, A4B = A ∪B.

We define the efficacy ν as following:

ν = 1− |Vu4Vr|
|Vu ∪ Vr|

(6)

If the trainee and reference graph coincide, we have

Vu4Vr = ∅, thus ν = 1; the trainee has followed exactly

the sequence of intermediate states modeled by the ref-

erence graph, and obtains the highest possible score.

On the other hand, if the trainee and reference graph

are completely disjoint, we have Vu4Vr = Vu ∪ Vr,

thus ν = 0; the trainee hasn’t reached one single in-

termediate state of those in the reference graph, and

obtains the lowest possible score. Intermediate perfor-

mance produces scores in the [0, 1] interval. Efficacy

measures the ability of a trainee to follow the paths of

a solution described in the reference graph.

Similarly, we define the efficiency η as following:

η = 1− |Eu4Er|
|Eu ∪ Er|

(7)

The same observations hold for η. A trainee that per-

forms the exact actions modeled in the reference graph

is assigned the highest score, while a trainee that misses

every action is assigned the lowest score. Intermediate

performance produces scores in the [0, 1] interval.

Score s3 is defined as a linear combination of ν and

η:

s3(Gu, Gr) = αν + (1− α)η (8)

In this paper, we choose α = 0.5, but the score may

be tuned to weigh more efficacy or efficiency, according

to the specific learning objective. This score rewards

trainees who are able to reach the final goal of an exer-

cise following the path defined by the reference graph.

Trainees who could not reach the goal or make many

mistakes are penalized with a low score. This is a good

candidate for teaching exercises, since it tracks trainee

actions during the exercise, taking into account the abil-

ity to follow the taught path to reach a goal. Score s3
might not be well suited for red teaming exercises, since

strict adherence to a particular technique is not as im-

portant as execution speed.

4.2 Aggregating scores

The aforementioned scores are intended as basic build-

ing blocks that aid in the construction of more elabo-

rate trainee evaluation models. On different occasions

it makes sense to compute n sub-scores ss1, ss2, . . . , ssn
and aggregate them into a new one s. For example, an

instructor might want to evaluate both accuracy and

execution speed, so he might want to consider aggregat-

ing scores s2 and s3. Alternatively, an exercise might

be so complex to consider splitting it in several sub-

exercises, each one with its own sub-goal. An instructor

might then want to aggregate n instances of the same

score (one for every sub-exercise considered).

Given n sub-scores ss1, ss2, . . . , ssn, we use the fol-

lowing aggregating function that restricts the final score

in the [0,1] interval:

s4 =

√
ss21 + ss22 + · · ·+ ss2n√

n
(9)

5 Implementation details

Figure 9 shows the high level design of the proposed

framework. The system architecture includes the fol-

lowing main components: a collection cluster, a compu-

tation cluster and a dashboard. The early decisions that

8 Mauro Andreolini et al.

Fig. 9 High level architecture of the framework

inspired the design of the proposed architecture share

the following important goals.

Scalability. The system must monitor a copious

amount of data concerning multiple actions by differ-

ent trainees in potentially large systems. These pieces

of information must be collected, analyzed, stored and

transmitted to system operators (or even displayed at

real-time during an exercise), without loss of perfor-

mance. Thus, the system must be designed from the

ground up to be scalable to increasing workloads in

terms of trainees, nodes in a lab, host, process and net-

work metrics.

Fault tolerance. Hardware and software failures

might compromise the computation of scores in an ir-

reversible fashion. This might have bad consequences

especially in a live exercise, where it disrupts cyber

awareness. Framework components should thus be de-

signed with redundancy and replication in mind.

Ease of use. The system should be easily accessible

through standard Web interfaces and provide support

for graphical visualizations of trainee behavior (mainly

graphs and scores).

Each trainee node in the lab network runs a number

of probes that monitor host, process, network, trainee

activities during an exercise. The collection cluster is

responsible for:

– storing these probes and making them available to

compute graphs and scores;

– storing already computed graphs and scores;

– storing reference graphs.

Depending on the type of exercise performed, collected

data will be in different formats, so the choice of a

document-based storage backend is the most suitable.

We rely on ElasticSearch as a scalable, fault-tolerant,

document-based storage backend. We have also imple-

mented a Firefox extension to intercept all HTTP re-

quests by a trainee and log them to a file in the browser

sandbox. Logs are collected with Filebeat, a light weight

node agent (part of the ElasticSearch suite) for forward-

ing and centralizing log data to the collection cluster.

Network probes are collected and filtered with tshark.

The computation cluster is responsible for the com-

putation of graphs and scores. Following an operator re-

quest, this component initially checks whether a graph

or a score has already been computed and, if that is

the case, it returns it. Otherwise, it runs a three-staged

pipeline. In the first stage, the collection cluster receives

a query for the necessary metrics obtained from lab

nodes and for reference graphs and responds with the

requested data. In the second stage, based on the data

extracted and on the type of exercise performed, a set

of relevant trainee graphs is built and the desired scores

are computed. In the third stage, all computed trainee

graphs and scores are indexed back in ElasticSearch and

made available for future requests. We rely on Apache

NiFi as a scalable, loss-tolerant solution for dataflow

computations.

A framework for the evaluation of trainee performance in cyber exercises 9

The dashboard component provides visualizations

of graphs and scores stored in the collection cluster. We

rely on Kibana, a component of the ElasticSearch suite

used to build visualizations from indexes in an Elastic-

Search cluster. Several visualizations are possible; we

use the graph API (designed to display relations among

documents) to plot trainee and reference graphs, and

we define metrics to display scores read from indexes.

Kibana also makes it possible to filter collection data

based on exercise, trainee and node name.

6 Experimental evaluation

In Section 6.1 we define the experimental testbed in

terms of exercises, trainees and reference graphs de-

scribing final goals. We also introduce several scores

aimed at evaluating learning outcomes. In Section 6.2

we compare different scores used in every exercise, dis-

cussing strenghts and weaknesses. The main goal is to

identify the adequateness of scores to exercise cate-

gories.

6.1 Testbed

In this paper we consider the following three exercises.

Web attacks lab. This exercise models a lab ses-

sion in an introductory course on Web attacks. Fig-

ure 10 shows its reference graph. It provides a sequence

of Web-based challenges that a trainee should solve by

following exactly the steps provided in the course:

– bypass a login form with a SQL Injection;

– exploit a local file inclusion to read a textual flag;

– submit the flag on a verification page.

The lab is implemented through a Docker container

hosting an Apache Web server with a vulnerable, cus-

tom made PHP application.

Fig. 10 Reference graph for the Educational Lab

Penetration testing lab. This exercise models a

lab session in an introductory course on penetration

testing. Figure 11 shows its reference graph. For rea-

sons of space we have condensed the two privilege es-

calation paths into a single graph with two end ver-

texes and we have reduced labels to a bare minimum.

The exercise provides a sequence of common activities

(enumeration, remote-to-local and local-to-root privi-

lege escalation) that a trainee should solve by following

exactly the steps provided in the course:

– enumerate remote services;

– find a username via Apache userdir enumeration;

– brute force SSH passwords and log into the host;

– find two different ways to escalate to root (weak

sudo permissions, vulnerable Python2 script).

The lab is implemented through a single VirtualBox

guest hosting SSH, Apache, Python2, a vulnerable sudo

configuration and a custom-made Python2 vulnerable

script.

Fig. 11 Reference graph for the Penetration Test Lab

Red team engagement. This exercise models a

red team engagement on a Windows infrastructure. Fig-

ure 12 shows its reference graph. Here the goal is to

reach as many sub-goals as possible in the allotted time

frame, regardless of the techniques used. For this rea-

son, the granularity of the reference graph is lower than

in the previous two examples (at the level of sub-goals,

rather than individual commands). The exercise pro-

vides a sequence of common red teaming goals (enumer-

ation, remote code execution through services, lateral

movement, privilege escalation and data exfiltration)

that a trainee should reach with the tools of choice, in

no particular order (other than that indicated in the ref-

erence graph). The lab is implemented through two Vir-

Fig. 12 Reference graph for the Red Teaming exercise

10 Mauro Andreolini et al.

tualBox guests, one hosting Microsoft SQL Server and

Internet Information Services, the other hosting Active

Directory Services. Both machines have been misconfig-

ured and populated with intermediate documents and

flags required to prove reaching of a particular interme-

diate state.

We model three trainees with different background.

Trainee 1 is a Computer Science major with an in-

terest in Cyber Security, basic knowledge on attacks on

UNIX and Web-based systems, and no formal training

on penetration testing or red teaming.

Trainee 2 is a junior pentester with formal training

on attacks (UNIX, Windows and web-based systems)

and penetration testing. He lacks training on red team-

ing.

Trainee 3 is a senior penetration tester with formal

training on attacks (UNIX, Windows and web-based

systems), defense, penetration testing and red teaming.

We consider the following scores for evaluation of

trainee performance: s1, s2 (α = 0.5, tmax = 60m for

Web attacks and Penetration Testing Labs, tmax = 12h

for Red Teaming), s3 (α = 0.5), s4 (an aggregation

over s3). In the Education Lab and Red Teaming exer-

cise, only one trainee graph is computed, and s4 coin-

cides with s3. In the Penetration Testing exercise, two

trainee graphs are computed, and s4 aggregates the cor-

responding s3 sub-scores.

6.2 Evaluation

In this section we briefly present the results of our ex-

perimental evaluation of scores for all trainees and all

exercises. We outline merits and deficiencies of different

scores and try to point out lessons learned.

Figures 13, 14 and 15 show the trainee graphs com-

puted by the framework during all engagements. For

reasons of space, each figure condenses all graphs for

Trainee 1, Trainee 2, Trainee 3, and labels are reduced

to a minimum. Dashed labels named TraineeX (X=1,

2, 3) indicate where Trainee X has got stuck in an exer-

cise. Dummy nodes are labelled with TraineeX S Err

to collect inaccuracies made by a specific trainee X to-

wards intermediate node S (inaccuracies shared by sev-

eral trainees could be placed in an appropriate dummy

node). The start and end node have been labelled with

timestamps indicating the start and end time of activ-

ities for the trainee that has completed the challenge

(Trainee 3). If more trainees complete the challenge,

more timestamps are added accordingly. Correct paths

are highlighted in green, mistakes in red. Each graph

confirms the abilities of Trainee 1, Trainee 2, Trainee

3. Trainee 1 (enthusiastic but not trained and inexpe-

rienced) is able to bring only elementary tasks to com-

pletion (service enumeration, login bypass through a

basic SQL injection) and cannot make any progress in

more advanced exercises. On the other hand, Trainee

2 (formally trained on penetration testing, but still in-

experienced) manages to complete the Education Lab

(the simplest exercise), makes halfway progress in the

Penetration Testing Lab (not being able to figure out

sneakier privilege escalation paths) and struggles in the

Red Teaming engagement (where he only reachs the

first sub-goal). Finally, Trainee 3 (formally trained on

penetration testing and red teaming, with a lot of ex-

perience on the field) completes all exercices almost ef-

fortlessly.

Table 1 shows the performance of Trainee 1, Trainee

2 and Trainee 3 through scores s1, s2, s3 (including ν

and η) and s4 in all the considered exercises. It can be

immediately seen that different scores provide different

views of performance. We outline merits and deficien-

cies of the considered scores, starting with s1. Score s1

Exerc. Trn. s1 s2/ν/η s3/ν/η s4
Web Tr. 1 0 0.17/0.33/0 0.16/0.2/0.13 0.16
Web Tr. 2 0.33 0.81/1/0.62 0.51/0.6/0.42 0.51
Web Tr. 3 0.33 0.94/1/0.87 0.75/0.75/0.75 0.75
Pentest Tr. 1 0 0.21/0.42/0 0.27/0.27/0.27 0.34
Pentest Tr. 2 0 0.36/0.71/0 0.47/0.45/0.5 0.58
Pentest Tr. 3 0.17 0.65/1/0.3 0.87/0.9/0.83 0.84
Red Tr. 1 0 0/0/0 0/0/0 0
Red Tr. 2 0 0.08/0.17/0 0.14/0.14/0.13 0.14
Red Tr. 3 0.17 0.92/1/0.83 0.87/0.86/0.87 0.87

Table 1 Trainee performance for the considered scenarios

offers a simplistic evaluation and is not very indicative

of trainee performance in the considered exercises. The

reasons are manyfold; first, s1 returns a non zero value

only if a trainee completes a challenge, thus making it

impossible to evaluate progress towards a goal, which is

often paramount in teaching and training activities. For

example, in the Penetration Testing exercise, Trainee 1

and Trainee 2 are evaluated in the same way, although

Trainee 2 progresses a bit more towards the final goal

and makes less mistakes. Second, by definition of s1, a

deeper reference graph implies a longer shortest path

and a smaller top score, which makes it very difficult

to compare scores across different graphs. Indeed, in

Table 1 the lowest top s1 score is as low as 0.17. The

only scenario where s1 might be applicable is one where

speed in terms of operation steps has to be evaluated

(such as, for example, in vulnerability research, where

one is interested in finding the shortest path to exploita-

tion). In other scenarios, shortest path to completion

alone cannot be the only evaluation criterium.

A framework for the evaluation of trainee performance in cyber exercises 11

Fig. 13 Trainee graphs condensed - Web attacks lab

Fig. 14 Trainee graphs condensed - Penetration testing lab

Fig. 15 Trainee graphs condensed - Red Teaming engagement

On the other hand, score s2 allows to track goal

progress through efficacy (ability to reach the final goal)

and efficiency (speed). It does overall a pretty good

job in differentiating trainee performance, especially in

the Education Lab where both Trainee 2 and Trainee 3

complete the challenge in different times. Score s2 also

allows to precisely estimate sub-goal completion in the

Red Team engagement (Trainee 2 completes one assign-

ment over six, or ≈ 0.17). However, in other exercises

that evaluate strict adherence to procedures s2 tends to

overestimate efficacy. Compare for example s2 and s3
for Trainee 2 and Trainee 3 in the Education Lab and

Penetration Testing exercises; s2 consistently outweighs

s3 in terms of ν.

Score s3 shares the same structure as s2. However,

here efficacy measures the ability to follow a specific

12 Mauro Andreolini et al.

sequence of intermediate steps (not only the ability to

complete the challenge), and efficiency measures the

ability to give a specific sequence of commands (rather

than being fast). s3 is a better score than s2 with re-

spect to adherence to specific paths. In the Education

Lab, both Trainee 2 and Trainee 3 are rewarded by s2
with ν = 1, since they both complete the exercise; how-

ever, Trainee 2 makes many more mistakes than Trainee

1. Score s3 captures this aspect, showing different ef-

ficacy values (ν = 0.6 vs. ν = 0.75, respectively) and

different efficiency values (η = 0.42 vs. η = 0.75, respec-

tively). On the other hand, s3 fails to assign the highest

possible efficacy value to Trainee 3 in the Red Teaming

engagement (it only rewards ν = 0.86), despite com-

pletion of all assignments. This might not be ideal if

the primary evaluation criterium is sub-goal completion

percentage.

Score s3 is the most expensive to compute, and it

rapidly degenerates with increasing graph complexity

in terms of vertexes and edges. In very large scenarios

it makes more sense to split a single, big reference graph

in several, smaller ones (each one sharing a distinct sub-

goal), compute sub-scores and aggregate them. This is

precisely the purpose of s4, which is reported in Ta-

ble 1 for sake of completeness. Score s4 is identical to

s3 in Education Lab and Red Teaming (only one trainee

graph is used). On the other hand, in Penetration Test-

ing it is a normalized average of s3 sub-scores for two

different trainee graphs. As can be seen, s4 isn’t far

away from s3 scores in Penetration Testing exercise,

thus making it a good candidate for score aggregation.

7 Conclusions

Cyber ranges are becoming a viable alternative for large-

scale training of personnel involved in security at dif-

ferent levels (attack, defense, incident response, vulner-

ability research). However, current cyber range infras-

tructures lack the ability to monitor the performance of

a player, and only report on exercise completion (or lack

thereof). This paper addresses the problem by propos-

ing a novel scoring framework and comparing candidate

scores. Preliminary experimental results show how dif-

ferent scores may capture different abilities (execution

speed and precision above all).

One interesting research direction is the classifica-

tion of errors (which is not performed in the current

prototype), that would allow an instructor to under-

stand what a user is doing instead of following the in-

tended path. Introducing new user probes and events

to handle different types of user activities is another di-

rection which is currently in the works. Finally, we are

investigating new scores to evaluate team activities.

References

1. Bowen, B.M., Devarajan, R., Stolfo, S.: Measuring the
human factor of cyber security. In: 2011 IEEE Interna-
tional Conference on Technologies for Homeland Security
(HST). pp. 230–235. IEEE (2011)

2. Carlisle, M., Chiaramonte, M., Caswell, D.: Using ctfs for
an undergraduate cyber education. In: 2015 {USENIX}
Summit on Gaming, Games, and Gamification in Secu-
rity Education (3GSE 15) (2015)

3. Čeleda, P., Čegan, J., Vykopal, J., Tovarňák, D.: Kypo–
a platform for cyber defence exercises. M&S Support to
Operational Tasks Including War Gaming, Logistics, Cy-
ber Defence. NATO Science and Technology Organiza-
tion (2015)

4. CISCO Cyber Range. https://www.cisco.com/c/dam/

global/en_au/\solutions/security/pdfs/cyber_range_

aag_v2.pdf (2016)
5. Evans, M., He, Y., Maglaras, L., Janicke, H.: Heart-is:

A novel technique for evaluating human error-related in-
formation security incidents. Computers & Security 80,
74–89 (2019)

6. Ferguson, B., Tall, A., Olsen, D.: National cyber range
overview. In: 2014 IEEE Military Communications Con-
ference. pp. 123–128. IEEE (2014)

7. Huang, K., Siegel, M., Stuart, M.: Systematically under-
standing the cyber attack business: A survey. ACM Com-
puting Surveys (CSUR) 51(4), 70 (2018)

8. IXIA Cyber Range. https://www.ixiacom.com/solutions/
cyber-range (2014)

9. Jameel, A., Shahzad, K., Zafar, A., Ahmed, U., Hussain,
S.J., Sajid, A.: The users experience quality of responsive
web design on multiple devices. In: Proceedings of the
2nd International Conference on Future Networks and
Distributed Systems. p. 69. ACM (2018)

10. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: Adtool:
security analysis with attack–defense trees. In: Interna-
tional conference on quantitative evaluation of systems.
pp. 173–176. Springer (2013)

11. Kraemer, S., Carayon, P., Clem, J.: Human and orga-
nizational factors in computer and information security:
Pathways to vulnerabilities. Computers & security 28(7),
509–520 (2009)

12. Lampesberger, H.: Technologies for web and cloud service
interaction: a survey. Service Oriented Computing and
Applications 10(2), 71–110 (2016)

13. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable ap-
proach to attack graph generation. In: Proceedings of the
13th ACM conference on Computer and communications
security. pp. 336–345. ACM (2006)

14. Pernik, P.: Improving cyber security: Nato and the eu.
International Centre for Defense Studies (2014)

15. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security
risk management using bayesian attack graphs. IEEE
Transactions on Dependable and Secure Computing 9(1),
61–74 (2011)

16. Schneier, B.: Attack trees. Dr. Dobb’s journal 24(12),
21–29 (1999)

17. Vykopal, J., Vizváry, M., Oslejsek, R., Celeda, P., Tovar-
nak, D.: Lessons learned from complex hands-on defence
exercises in a cyber range. In: 2017 IEEE Frontiers in
Education Conference (FIE). pp. 1–8. IEEE (2017)

18. Zonouz, S.A., Khurana, H., Sanders, W.H., Yardley,
T.M.: Rre: A game-theoretic intrusion response and re-
covery engine. IEEE Transactions on Parallel and Dis-
tributed Systems 25(2), 395–406 (2013)

https://www.cisco.com/c/dam/global/en_au/\solutions/security/pdfs/cyber_range_aag_v2.pdf
https://www.cisco.com/c/dam/global/en_au/\solutions/security/pdfs/cyber_range_aag_v2.pdf
https://www.cisco.com/c/dam/global/en_au/\solutions/security/pdfs/cyber_range_aag_v2.pdf
https://www.ixiacom.com/solutions/cyber-range
https://www.ixiacom.com/solutions/cyber-range

	Introduction
	Related work
	Modeling trainee activities
	Scoring algorithms
	Implementation details
	Experimental evaluation
	Conclusions

