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Abstract
Accurate demand prediction of bike-sharing is an important prerequisite to reducing the cost of scheduling and improving
the user satisfaction. However, it is a challenging issue due to stochasticity and non-linearity in bike-sharing systems. In
this paper, a model called pseudo-double hidden layer feedforward neural networks is proposed to approximately predict
actual demands of bike-sharing. Specifically, to overcome limitations in traditional back-propagation learning process, an
algorithm, an extreme learning machine with improved particle swarm optimization, is designed to construct learning rules
in neural networks. The performance is verified by comparing with other learning algorithms on the dataset of Streeter Dr
bike-sharing station in Chicago.

Keywords Demand prediction · Bike-sharing · pseudo-double hidden layer feedforward neural networks ·
Extreme learning machine · Particle swarm optimization

1 Introduction

With the development of sharing economy, bike-sharing
systems have rapidly emerged in major cities all over the
world. Bike-sharing can be described as a short-term bike
rental service for inner-city transportation providing bikes at
unattended stations. It has become one of the most important
low-carbon travel ways. Compared with traditional rental
service, bike-sharing will not be limited by the boxes at
bike-stations. It provides convenient services, but generates
complicated problems. For instance, the layout of bike-
sharing stations is flexible and the capacities of stations
is not fixed, leading to big fluctuate demands for stations.
Some new characteristics are exhibited, such as the uneven
distribution of user demands in time and space.

Accurate demand prediction of bike-sharing can effec-
tively improve user experience and enhance brand compe-
tence, which was elaborated in [2]. El-Assi et al. [3] and
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Ermagun et al. [4] elaborated the main problems and diffi-
culties in the demand prediction of bike-sharing. Solutions
can be mainly divided into two types. The traditional one is
based on statistical analysis. Yang et al. [5] proposed a semi-
parametric geographically weighted regression method to
estimate a bike-sharing trip using location-based social net-
work data. [6] proposed a method combining bootstrapping
and subset selection that utilized partially useful informa-
tion in each bike-sharing station. It can solve problems in
which data cleaning approaches failed due to the lack of
original data.

The other method is based on artificial neural networks.
Yang et al. [7] proposed convolutional neural networks to
predict daily demands of bike-sharing at both city and sta-
tion levels. Lin et al. [8] proposed graph convolutional neu-
ral networks with data-driven graph filter model. The het-
erogeneities of demands among different bike-sharing sta-
tions were also discussed. Xu et al. [9] developed a dynamic
demand prediction model based on a deep learning approach
with large-scale datasets. The comparison results suggested
that prediction accuracy of long-short term memory neural
networks was better than statistical models and advanced
machine learning methods. Chang et al. [10] developed a
prediction framework integrating artificial immune system
and neural networks. The performance is verified by com-
paring with other models. Feng et al. [11] discussed the
Markov chain population model to predict bike demands

/ Published online: 25 March 2021

Mobile Networks and Applications (2021) 26:2035–2045

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-021-01737-1&domain=pdf
http://orcid.org/0000-0003-2728-5619
mailto: x-shao@ieee.org


among different travel stations. Kim [12] studied the influ-
ence of weather conditions and time characteristics on
demands of bike-sharing. Furthermore, deep learning meth-
ods and comprehensive methods with heuristic algorithms
were applied in various engineering projects [13–16], but
rarely applied for the demand prediction of bike-sharing.

In addition, those methods have some limitations.
Increasing the number of hidden layers is a feasible
approach to achieve the certain prediction accuracy, which
may lead to overfitting phenomena and reduce the gen-
eralization performance of prediction models. In addition,
accelerating gradient descent can improve the convergence
rate, while it leads to an unstable generalization. Con-
sidering these limitations, a novel neural network model
is proposed, which is called pseudo-double hidden layer
feedforward neural networks. In this paper, an algorithm,
extreme learning machine with improved particle swarm
optimization, is proposed to tune weights and biases in
neural network to improve prediction accuracy. Finally,
experiments are performed on the dataset of Streeter Dr
bike-sharing station in Chicago to verify the effectiveness
of the model proposed.

2 Pseudo-double hidden layer feedforward
neural networks

2.1 Network structure

Pseudo-double hidden layer feedforward neural networks
(PDLFNs) are biologically inspired computational models,
which consist of processing elements (or neurons) and
connections between them with coefficients. The structure
of PDLFNs is different from the single hidden layer
feedforward neural networks (SLFNs) and the double
hidden layer feedforward neural networks (DLFNs). As
shown in Fig. 1, it contains one input layer, pseudo-double
hidden layers, and one output layer. The hidden layers
consist of layer V and layer B. In SLFNs and DLFNs, the
hidden layer is the collection of neurons with activation
functions as well as provides one or two intermediate layers
between the input layer and the output layer. While in
PDLFNs, layer V is a special hidden layer. There is only one
neuron with a smooth function in this layer. Thus, PDLFNs
can directly process original sample data to produce the
final results.

Fig. 1 PDLFNs structure
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The design consideration of V layer mainly comes from
the following two results. In the first place, multiple hidden
layers can reach high prediction accuracy even by setting
fewer neurons in each hidden layer [17]. In addition, there
is some noise disturbance in sample data, which can be
reduced by smooth processes [18].

Without loss of generality, assume that the numbers of neu-
rons in the input layer, layer B and output layer are I , J andK ,
respectively. There are N samples inputted into PDLFNs,
commonly in the shape of means of multivariate time series.
Each sample contains I -dimensional data. Mathematically,
the n-th (1 ≤ n ≤ N) sample is represented by the vector
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The rest part of PDLFNs is similar to traditional
feedforward neural networks, where each neuron is assigned

a bias and the output of each neuron is an activation
function. The summation in each neuron includes a bias for
lowering or raising its input to the activation function such
as linear function, sigmoid function and hard limit function.
It is worth mentioning that the activation functions for the
neurons in the same layer are always the same. The weight
vector between layer V and layer B is denoted as W(VB) =
(w

(VB)
1 , w

(VB)
2 , ..., w(VB)

J )T, where w
(VB)
j (1 ≤ j ≤ J ) is

the weight of the connection between the neuron in layer
V and the j -th neuron in layer B. The bias for the j -th
neuron in layer B is denoted as b

(B)
j . The output of the j -th

neuron in layer B is denoted as Bj

(
X(n), W(VB)

)
in Eq. 2,

where AB (x) is the activation function for the neurons in
layer B.
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Finally, the outputs of PDLFNs can be represented by the
vector in Eq. 3.Ok

(
X(n), W(BO)

)
(1 ≤ k ≤ K) is the output

of the k-th neuron in the output layer from Eq. 1, where
W(BO) is the weight matrix between layer B and the output
layer in Eq. 4, w(BO)

jk the weight of the connection between
the j -th neuron in layer B and the k-th neuron in the output
layer, b

(O)
k the bias for the k-th neuron in the output layer,

AO (x) the activation function for the neurons in the output
layer.
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2.2 Learning algorithm

The traditional learning algorithms in the feedforward
neural networks are mainly based on the gradient descent
methods. The back-propagation (BP) learning algorithm
is a representative one, where gradients can be computed
efficiently by propagation from the output to the input.
It is one of the most successful and widely popular
learning algorithms for training neural networks in recent
years. However, several limitations arise, such as not
easy to determine network structures and learning rates,
unstable convergence results, and time-consuming learning.

To resolve the issues above related with gradient-based
algorithms, Guangbin Huang [19] proposed an efficient
learning algorithm called extreme learning machine (ELM)
for feedforward neural networks, especially for SLFNs.
ELM is equipped with several salient features different from
traditional popular gradient-based learning algorithms.

1. Ease of use. No parameters need to be manually tuned
during the iterative procedure except for the predefined
network architecture. The number of neurons in the
hidden layer is equal to or approximately equal to the
number of samples by default.
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2. Fast learning speed. Most training can be completed
usually in within minutes.

3. High generalization performance. It obtains better gen-
eralization performance than gradient-based learning
algorithms in most cases.

4. Suitable for nonlinear activation functions. Almost
all piecewise continuous functions can be used as
activation functions.

ELM avoids some difficulties in gradient-based learning
algorithms, such as to determine stopping criteria, learning
rates and the number of learning epochs, and to find
local minima. However, it is also found that ELM tends
to require more hidden neurons than traditional gradient-
based learning algorithms as well as result in ill-condition
problems due to random determination of the input weights
and hidden biases. Considering these limitations of ELM, an
improved particle swarm optimization (IPSO) is proposed
to optimize input weights and hidden biases.

2.2.1 Improved particle swarm optimization

Particle swarm optimization (PSO) is one of the most repre-
sentative meta-heuristic optimization algorithms. It mimics
the social behavior of organisms, such as birds in a flock or
fish in a school, which grants them surviving advantages.

Considering a swarm with M particles in a D-
dimensional search space, there is a position vector Zt

m =
(zt

m1, z
t
m2, ..., zt

mD)T (1 ≤ m ≤ M) and a velocity vector
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)T for the m-th particle after
the t-th iteration. Z0

m and V 0
m are the initial position

and velocity of the m-th particle, respectively. The best
position of the m-th particle is denoted as PBESTm =
(pbestm1, pbestm2, ..., pbestmD)T , and the best position of
all particles as GBEST = (gbest1, gbest2, ..., gbestD)T.
In classical version of PSO, the position and velocity vectors
are updated according to Eqs. 6 and 7.
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where 1 ≤ d ≤ D; w, c1, c2, rt
1 and rt

2 are respectively
inertia weight constant, two acceleration constants with
positive values, and two uniform random parameters within
[0, 1]. The final solution of PSO is sensitive to these control
parameters.

The focus of the improved approaches has revolved
around adapting the inertia weight w. It is important for
balancing the global search, also known as exploration, and
local search, known as exploitation.

In order to make the algorithm converge to the
global optimal values more quickly and effectively, a
comprehensively improved method is proposed. It is an
adaptive PSO algorithm combined with the compression

factor. The velocity vectors are updated according to Eq. 5,
where λ = 2/

∣∣2 − β − √
β (β − 4)

∣∣ is the compression
factor given β = c1 + c2. Tmax, wmax and wmin are the
maximum iteration number, the initial inertial weight and
the final inertial weight, respectively.We can ensure that this
algorithm is equipped with a strong global search ability in
the early iterative stage by the adaptive inertia weight in the
first part in Eq. 5. Correspondingly, we can also ensure that
this algorithm is equipped with a local sophisticated search
ability by the compression factor in the second part.

2.2.2 Improved extreme learningmachine

In this paper, ELM combining with IPSO (IPSO-ELM) is
proposed as the learning algorithm of PDLFNs in Fig. 2. It

Fig. 2 IPSO-ELM learn process
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applies IPSO to optimize input weights and hidden biases to
improve generalization abilities.

3 Demand predictionmodel

3.1 Prediction periods

Self-regulating abilities in bike-sharing systems can gener-
ally meet users’ rental demands during flat hump periods
and low peak periods. However, it does not hold for peak
periods. Meanwhile, the users’ rental during peak periods
is one of the main factors influencing scheduling schemes.
Thus, we only discuss the demand prediction problem dur-
ing peak periods in this paper.

3.2 Demand PredictionModel

The demand prediction model of bike-sharing is shown in
Fig. 3. In this model, the numbers of neurons in the input
layer, layer B and output layer are 3, 29 and 1, respectively.
The bike rental demands from the (n − 3)-th day to the
(n − 1)-th day are inputted into the input layer. Weighted

moving average function (WMA) in Eq. 8 is applied as the
smooth function for neurons in layer V.
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Hyperbolic tangent sigmoid function in Eq. 9 and linear
function in Eq. 10 are applied as the activation functions for
neurons in layer B and the output layer, respectively.
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There is only one neuron in the output layer. Thus,
W(BO), the weight matrix of layer B to the output
layer, is degenerated to the weight vector in this model.
O

(
X(n), W(BO)

)
, from the neuron in the output layer of

PDLFNs, is the prediction demand in the n-th day.

Fig. 3 Demand prediction model of bike-sharing based on PDLFNs
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3.3 Evaluation criteria

In order to verify the effectiveness of the proposal, mean
square errorMSE and square correlation coefficientR2, are
selected as the evaluation criteria.

MSE = 1

N

N∑
n=1

(rn − pn)
2 ,

R2 =
(∑N

n=1 (pn − p) (rn − r)
)2

∑N
n=1 (pn − p)2

∑N
n=1(rn − r)2

,

where pn, rn, p and r are predicted bike rental demands
in the n-th day, recorded demands in the n-th day,
average demands throughout the whole period, and recorded
demands throughout the whole period, respectively.

4 Demand prediction of streeter dr
bike-sharing station

4.1 Load and prepare data

The dataset in this paper is from the official website of
Streeter Dr bike-sharing station in Chicago. We split the
data into two sets, one for training and the other for testing.
The recorded bike rental demands during 92 days from
March 1st, 2017, to May 31st, 2017 are aggregated as the
training set. And the recorded demands during the next 30
days are aggregated as the test set.

Fig. 4 The number of rental bikes in March

According to the regularities in the dataset, we can find
that the peak periods of renting bikes are always in the same
interval. Taking March for instance, the number of rental
bikes is shown in Fig. 4. The peak periods of renting bikes
are mainly distributed from 13 p.m. to 17 p.m.

4.2 Prediction results

To verify the performance of IPSO, MSEs before and after
the improvement are shown Fig. 5. The global search ability
of particle swarm is effectively improved by optimizing the
particles’ velocities, by adjusting inertia weight in the early
iterative stage and adding a compression factor in the later

Fig. 5 Mean square errors of two learning algorithms
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Fig. 6 Prediction results of PDLFNs with IPSO-ELM

stage. IPSO-ELM is capable of jumping out of local optima
and finding a solution in the final stage. The prediction
results are shown in Fig. 6.

Table 1 MSE and R2

SLFNs DLFNs PDLFNs

ELM MSE 535.049 327.241 48.057

R2 0.829 0.908 0.907

PSO-ELM MSE 459.260 272.223 41.867

R2 0.883 0.913 0.984

IPSO-ELM MSE 373.145 204.323 33.025

R2 0.902 0.935 0.992

4.3 Comparison and discussion

In order to verify the effectiveness of the prediction model
in this paper, comparative experiments are conducted,
considering 3 different network structures (SLFNs, DLFNs
and PDLFNs) with 3 different learning algorithms (ELM,
PSO-ELM and IPSO-ELM). The evaluation criteria are
MSE and R2 proposed in the preceding section. The
experiment results of 9 prediction models are shown in
Table 1.

The longitudinal comparison is among the same network
structure with different learning algorithms. MSE and R2

in IPSO-ELM are always the minimum and maximum in
LSFNs, DLFNs and PDLFNs. It suggests that IPSO-ELM
is the best learning algorithm among these 3 algorithms.
The neural networks with IPSO-ELM can obtain the
most accurate prediction results. The horizontal comparison
among different network structures with the same learning
algorithm shows that PDLFNs can obtain the most accurate
prediction results. From the perspective of MSE and R2,
PDLFNs with IPSO-ELM is the best prediction model
among 9 models, and the prediction accuracy improved by
changing the network structure is greater than changing the
learning algorithm. The effectiveness in other experiment
results is shown in Figs. 7 and 8.

5 Conclusion

Aiming at predicting the demands of bike-sharing, this
paper constructs the PDLFNs model consisting of “input
layer - V layer - B layer - output layer”and improves ELM
combining with IPSO as learning algorithm. This model
has two advantages verified by the comparative experiments
on predicting the demands of Streeter Dr bike-sharing
station. In the first place, a simple network structure is
equipped with stable generalization and high accuracy. In
addition, improved ELM is an effective learning algorithm
of feedforward neural networks besides SLFNs, which

2041Mobile Netw Appl (2021) 26:2035–2045



Fig. 7 Prediction results in different models

optimizes the selection process of the input weights and
hidden biases. From the comparative experiments, we have
verified effectiveness on the prediction accuracy.

In this paper, we have predicted the demands of bike-
sharing during peak periods, which are main factors

influencing scheduling schemes. Nevertheless, optimal
scheduling schemes are still influenced by the demands
during flat hump periods and low peak periods. We will
consider this issue in the future and predict 24-hour
demands in the bike-sharing system.
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Fig. 8 Normalized MSE in different models
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