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Abstract. We present a method for motion-based video segmentation and segment classification as a step towards
video summarization. The sequential segmentation of the video is performed by detecting changes in the dominant
image motion, assumed to be related to camera motion and represented by a 2D affine model. The detection is
achieved by analysing the temporal variations of some coefficients of the 2D affine model (robustly) estimated.
The obtained video segments supply reasonable temporal units to be further classified. For the second stage, we
adopt a statistical representation of the residual motion content of the video scene, relying on the distribution
of temporal co-occurrences of local motion-related measurements. Pre-identified classes of dynamic events are
learned off-line from a training set of video samples of the genre of interest. Each video segment is then classified
according to a Maximum Likelihood criterion. Finally, excerpts of the relevant classes can be selected for video
summarization. Experiments regarding the two steps of the method are presented on different video genres leading
to very encouraging results while only low-level motion information is considered.
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1. Introduction

Replacing a long video by a small number of representative segments provides a synthetic
description of the document, which can be exploited for numerous applications including
both home video and professional usages. However, the construction of video summary
remains an open problem at the source of active research activities. The main difficulty
obviously relies on the detection of semantic events from low-level information. Several
approaches have been developed involving different video information and different rep-
resentations. For instance, [21] proposed a strategy for video summarization and browsing
by selecting key-frames maximally distinct and which carry the more information, based
on the chrominance components of each pixel in the image. The video elementary unit
considered in this method is simply the frame, which can be restrictive when trying to
detect temporal semantic events. In [12], the authors present a generic method based on the
modelling of user attention. Visual as well as audio information are combined to provide
a user attention curve whose maxima define video segments likely to be of interest for the
viewer. The combination of audio and image information is also exploited in [14] for video
summarization. In this paper, we consider the task of selecting relevant temporal segments
in a video and we adopt an approach based on motion-content analysis. It is obvious that
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the use of complementary information, such as color or audio, would lead to better results.
The aim here is not to fully solve the problem but to explore the potentiality of motion
information for the specified task.

When dealing with video summarization, the first step usually consists in partitioning the
video into elementary temporal segments. Such elementary units can be shots [1, 3, 4, 13, 20]
which reveal the technical acquisition and editing processes of the video. We believe that a
content-based segmentation, relying on the analysis of the evolution of the motion content in
the sequence of images, should be more suited to the extraction of relevant dynamic events.
In a previous approach [16], we have exploited the global motion in a video and a distance
between probabilistic motion models to perform the video segmentation. In this paper we
propose a simpler method based on the camera motion only. Indeed, a single shot can involve
different successive camera motions and a camera motion change usually traduces a change
in the activity content of the depicted scene. This segmentation is performed by detecting
changes in the temporal evolution of coefficients of the 2D affine model representing the
dominant motion in the images, the latter being assumed to be due to camera motion. Such
a model has often been considered to estimate the camera motion, for instance in [13] using
the MPEG motion vector of compressed video stream.

In a second stage, we apply a supervised classification algorithm based on the characteri-
zation of the residual image motion. Indeed, if the dominant image motion is due to camera
motion, the residual motion (i.e., after subtracting the dominant motion in the global image
motion) can be related to the projection of the scene motion. Once temporal units of the
processed video are identified, one way to characterize their dynamic content would be to
consider again parametric motion models (e.g. 2D affine or quadratic motion models). How-
ever, the dynamic situations which can be described by such models are too restricted. They
are suitable for modelling camera motion but no more for modelling general scene motion.
Several motion characterizations have been investigated. In [1], motion-related features are
derived from the computation of the optical flow field. Based on these features, a method
for video indexing is proposed. The study described in [18] for the detection of a sequence
of home activities in a video relies on segmenting moving objects and detecting temporal
discontinuities in the successive optical flow fields. It involves the analysis of the evolution
of the most significant coefficients of the singular value decomposition (SVD) of the set of
successive flow fields. Still dealing with video content characterization but in the context
of video classification into genres, statistical models are introduced by [20] to describe two
components of the video structure: shot duration and shot activity. In [22], in order to clus-
ter temporal dynamic events, the latter are captured by the computed histograms of local
spatial and temporal intensity gradients at different temporal scales. A distance between
events is then built, based on the comparison of the empirical histograms of these features.
Recently in [11], the authors have proposed motion pattern descriptors extracted from mo-
tion vector fields and have exploited support vector machines (SVM) for classification of
video clips into semantic categories. For an objective very close to video summarization,
shots overview, the method in [5] relies on the nonlinear temporal modelling of wavelet-
based motion features. As [22], we propose to exploit low-level motion measurements but
conveying more elaborated motion information, while still easily computable compared to
the optic flow. These local measurements are straightforwardly extracted from the images
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intensities and are exploited with statistical motion models as introduced in [8]. These mod-
els are specified from the temporal co-occurrences of the quantized local motion-related
measurements and can handle a wide range of dynamic contents. Exploiting this statistical
framework, we propose to label each video segment according to learned classes of dy-
namic events, using a Maximum Likelihood criterion. Then, only the segments associated
to classes defined as relevant in terms of dynamic events are selected, and excerpts of these
significant segments could be further exploited for video summarization.

Section 2 describes the temporal video segmentation stage based on camera motion,
and the behaviour of the resulting algorithm is illustrated on videos of different genres. In
Section 3, we present the classification stage relying on a probabilistic motion modelling,
and the global two-step method is applied for the recognition of relevant events in two sports
videos. Section 4 contains concluding remarks.

2. Temporal video segmentation

In this section, we present the first stage of our method for selecting relevant segments
in a given video. It consists in performing a sequential segmentation of the video into
homogeneous segments in terms of camera motion. Its performance is illustrated on three
real video documents. In particular, we compare the results with those obtained with other
types of segmentation (segmentation into shots or based on global motion content) to confirm
the suitability of the segmentation presented in this paper for the objective in sight, i.e., the
detection of particular dynamic events in a video.

2.1. Camera motion modelling and estimation

The video segmentation relies on the analysis of the dominant image motion computed
between two successive frames of the video. The dominant image motion is assumed to
correspond to the apparent motion of the background induced by the 3D camera motion. It
is possible to represent the projection of the 3D motion field (relative to the camera) of the
static background by a 2D parametric motion model (assuming a shallow environment, or
accounting for its main part if it involves different depth layers). For example, we can deal
with the affine motion model defined at image point p = (x, y) by:

wθ (p) =
(

a1 + a2x + a3 y

a4 + a5x + a6 y

)
, (1)

where θ = (a1, a2, a3, a4, a5, a6) is the motion model parameter vector. Such a model can
handle different camera motions: panning, zooming, tracking (including of course static
shots). For more complex situations, a quadratic model can be used but we will restrict
ourselves here to the affine model. It forms a good trade-off between the relevance of the
motion representation and the complexity of the estimation. The model parameters θ of the
dominant image motion are then estimated using the gradient-based robust multiresolution
algorithm designed in [15]. More precisely, the robustness is ensured by the minimization
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of a M-estimator criterion. The constraint is derived from the assumption of brightness
constancy and the parameter estimator of the affine motion model between frame I (k) and
frame I (k + 1) is defined as:

θ̂ = arg min
θ

∑
p∈R

ρ(DF Dθ (p)),

where DF Dθ (p) = I (p + wθ (p), k + 1) − I (p, k)) is the Displaced Frame Difference and
R is the spatial image grid. The M-estimator ρ is chosen as a hard-redescending func-
tion. The minimization takes advantage of a multiresolution framework and an incremental
scheme based on the Gauss-Newton method. It is implemented as an iteratively reweighted
least-squares technique. This method yields an accurate estimation of the dominant motion
between two images even if other secondary motions are present.

2.2. Detection of camera motion changes

In order to detect changes in the camera motion, we analyse the temporal evolution of the
two translation coefficients a1 and a4 of the affine model (1). In general, a change in camera
motion induces a jump in the evolution of these two signals. To detect such ruptures we
propose to apply a Hinkley test on each signal, a1(k) and a4(k). This statistical test is issued
from likelihood ratio tests, evaluating the “no change hypothesis” (no change between
frames k − 1 and k) versus the “change hypothesis”. It provides a simple and efficient
means to detect jumps in the mean of a signal and it is known to be robust since cumulative
(see [2]). Since the direction of the change in the mean of the signal is unknown, in practice,
two tests are performed in parallel, to look for respectively a decrease and an increase in
the mean. Let us consider first the signal a1(k) and the case of testing for a decrease. Let µ0

be the value of the mean before the change occurs and jmin

2 the, a priori chosen, minimum
jump magnitude. The sequence Dn defined as follows:

D0 = 0, Dn =
n∑

k=1

(
a1(k) − µ0 + jmin

2

)

represents the cumulative sum of the differences between signal a1 and µ0 − jmin

2 . A jump
is detected when dn − Dn > λ, with dn = max0≤k≤n Dk and λ a predefined threshold.
Intuitively, it means that a change in the mean is detected when a value of a1 is significatively
smaller than µ0− jmin

2 and the phenomenum is not isolated. The mean µ0 is estimated on-line
and reinitialised after each jump detection. In the case of testing for an increase, the test
performed is defined by:

U0 = 0, Un =
n∑

k=1

(
a1(k) − µ0 − jmin

2

)
un = min

0≤k≤n
Uk, alarm if Un − un > λ
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When a change is detected, the jump location is given by the last k satisfying dk − Dk = 0
or Uk − uk = 0, the variable Dn is reinitialised to 0 and the next search starts from the
instant (image) following the detected jump location.

Similarly and in parallel, the Hinkley test is performed for detecting ruptures in signal
a4, corresponding to the two detection rules:

M0 = 0, Mn =
n∑

k=1

(
a4(k) − µ0 + jmin

2

)
mn = max

0≤k≤n
Mk, alarm if mn − Mn > λ,

R0 = 0, Rn =
n∑

k=1

(
a4(k) − µ0 − jmin

2

)
rn = min

0≤k≤n
Rk, alarm if Rn − rn > λ

Note that for (perfect) zooming and for a static shot, the coefficients a1 and a4 are supposed
to be zero. Thus, if two successive shots are two static shots, two pure zooming motions
or one is a static shot and the other one involves a pure zooming motion, no change would
occur in a1 and a4 values. In practice, if the two shots are separated by a cut transition,
(high) erroneous measures of a1 and a4 are observed at the cut location and the motion
change is detected all the same. Besides, the method could be completed by the analysis
of the temporal evolution of other parameters of model (1). More precisely, in the case of
a pure zoom, the two diagonal coefficients a2 and a6 are supposed to be equal in theory
and they often exhibit a rather constant slope over the time interval corresponding to the
zooming motion. Consequently, performing a Hinkley test on the temporal derivate of the
signal a2(t) should allow us to detect changes between two zooms or between a zoom and
a static shot. In practice, it seems more reasonable to work with the divergence parameter
div = 1

2 (a2 + a6) for stability reasons.

2.3. Results

We have carried out experiments on three real video documents of different genres (a
movie, a documentary and a sport program). For each example, we compare the result of
the automatic segmentation based on camera motion with a manually-made segmentation
according to the same criterion. We compare also with a manual segmentation into shots
and with the method proposed in [16]. With the latter, homogeneous video segments are
built in a sequential way by analysing the temporal variations of the global motion (i.e.,
residual plus dominant motion) in the sequence of images. The global motion of successive
temporal units of the video is described by a statistical motion model as introduced in
[8] (see also Section 3.1). Then, a merging decision criterion is considered, relying on a
distance between the involved statistical motion models, to sequentially decide whether
the successive temporal video units should be merged into an homogeneous segment or
not.
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Figure 1. Irisa video. Representative images of the video.

2.3.1. Irisa video. The first document, the Irisa video, is an excerpt of a video document
presenting the institute IRISA. Some representative images of this video are displayed on
figure 1. The processed excerpt contains 710 frames and involves different camera motions
and several cuts and dissolves. The manually-made ground truth segmentation in terms
of camera motion changes is given in figure 2 (top ribbon). The goal of the proposed
video segmentation method is only to detect changes in camera motion and not to identify
the nature of this motion. However, the latter can help understanding the behaviour of the
segmentation method. The successive camera motions observed in the Irisa video are the
following: static, (dissolve transition), left pan, static, (dissolve transition), static, (cut),
complex motion, (cut), static, left pan, combined left pan and down tilt, left pan, (dissolve
transition), left pan, left pan, right pan, (cut), static, left pan, static. Results of our temporal
video segmentation method are displayed on figure 2. The three cuts and most of the camera
motion changes within a shot have been recovered. The dissolve transitions (indicated by
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Figure 2. Irisa video. Bottom: temporal evolution of the translation parameters a1 (dot line) and a4 (full line).
Top: Automatic Segmentation based on these parameters (with jmin = 1 and λ = 10) (AS ribbon) and Ground
Truth (manually derived) segmentation of the video in terms of camera motion (GT ribbon) with localisation of
the dissolve transitions (DT).
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the mark “DT” in figure 2) are poorly recovered due to the particularly slow evolution in
parameters a1 and a4 they lead to. Wrong values are observed around image 650. This
corresponds to a passage with majoritary black images where the dominant motion model
(1) is poorly estimated.

2.3.2. Athletics video. The second document, the Athletics video, is part of a TV sport
program corresponding to an athletics meeting. The second example is an excerpt of 1416
frames. This video is composed of five main successive activities: a long jump event (A1), a
TV program advertisement (A2), a pole vault (A3), a high jump (A4) and again a pole vault
(A5). In addition, each event contains several camera motion changes. This succession of
events can be recovered from the analysis of the two signals a1(t) and a4(t) (see figure 3,
bottom). For instance, during each pole vault the camera follows the athlet motion: the
run-up, the ascent and then the descent after getting over the bar. The camera motion is thus
successively a backward zooming motion, and an upward and a downward tilt. The two
pole vaults appear clearly around image 2400 and image 2750, with successively a plateau
around zero and then a fast increase and a fast decrease of a4. In the case of the high jump,
the camera motion is not that large. High or very noisy values of the two parameters are
estimated during the TV program advertisement, due to many special effects which make
difficult the estimation of the camera motion within the corresponding images. During the
long jump (activity A1), the camera is first static the instants before the athlet starts running,
then the camera motion is a pan while following the run-up. During the jump, the camera
motion is successively a backward and a forward zooming. Then, the camera follows the
athlet in a right and a left pan. These two successive pans can be recovered from the evolu-
tion of signal a1(t) before and after image 1800 approximatively. However, because of light

1400 1600 1800 2000 2200 2400 2600 2800 3000
−10

−5

0

5

10

15

20

25
A1 A2 A3 A4 A5 

GT 

AS 

Figure 3. Athletics video. Bottom: temporal evolution of the translation parameters a1 (dot line) and a4 (full line).
Top: Automatic Segmentation based on these parameters (with jmin = 1 and λ = 20) (AS ribbon) and Ground
Truth (manually derived) segmentation of the video in terms of camera motion (GT ribbon) with localisation of
the successive main activities, long jump event (A1), TV program advertisement (A2), pole vault (A3), high jump
(A4) and pole vault (A5).
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variations, the parameters a1 and a4 are poorly estimated in the beginning of the activity.
Globally, one can observe that most of the camera motion changes are recovered by the
automatic segmentation method (low rate of non-detection). This is not the case however
for the part A2 of the video, for the reason previously mentioned. The automatic method
tends to oversegment the video in parts A3, A4, and A5, compared to the manually-made
segmentation. However, it corresponds to the very moment when the athlets accomplish
their jump and thus to a complex and quite fast camera motion. Besides, let us point out
that building a ground-truth segmentation of the camera motion is also not straightforward
and might be questionable in complex situations.

2.3.3. Avengers video. The last video processed, the Avengers video, is a sequence of
images from the TV series “Avengers”. The example contains 3496 frames. Three types
of scenes form the excerpt: corridor scenes (T1), balcony scenes (T2) and street and cars
scenes (T3). The manually-made segmentation in terms of camera motion as well as the
automatic segmentation are plotted in figure 4 (respectively ribbon c1 and c2). Here again,
most of the ruptures are detected. The automatic segmentation leads to an oversegmentation
in the first third of the video, probably due to the successive slight increases and decreases
in the velocity of the camera following the actors in the corridor scenes. Such changes are
difficult to detect manually.

2.3.4. Comparison and conclusion. With Figures 4–6, we are able to compare the content
structure of a video recovered when segmenting according to shot changes, global image
motion changes and camera motion changes. These examples illustrate the fact that a

T1 T2 T3 T2 T3 T2 T1 T2 T3 T2 T3 T2 
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Figure 4. Avengers video. (a) manually-made segmentation into shots with successive scenes types (corridor
scenes (T1), balcony scenes (T2) and street and cars scenes (T3)), (b1) and (b2) respectively manually-made
and automatic segmentation based on global motion, (c1) and (c2) respectively manually-made and automatic
segmentation based on camera motion ( jmin = 1 and λ = 10).
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Figure 5. Irisa video. (a) manually-made segmentation into shots, (b1) and (b2) respectively manually-made
and automatic segmentation based on global motion, (c1) and (c2) respectively manually-made and automatic
segmentation based on camera motion ( jmin = 1 and λ = 10).
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Figure 6. Athletics video. (a) manually-made segmentation into shots, (b1) and (b2) respectively manually-made
and automatic segmentation based on global motion, (c1) and (c2) respectively manually-made and automatic
segmentation based on camera motion ( jmin = 1 and λ = 20).

segmentation into shots is usually at a coarser level than a segmentation in terms of motion.
Generally, the segmentation based on global image motion seems to be at an intermediate
level between segmentation into shots and segmentation based on camera motion. The two
methods for video segmenting according to motion variations allow us to recover most of
the cuts in an indirect way since, as mentioned before, a cut will cause erroneous motion
measurements interpreted like a motion change. However, whatever the method, special
effects in videos are imperfectly interpreted and there is still some progress to do at this
stage. With the method based on camera motion, we cannot guarantee the detection of all
scene motion changes and in particular in the case of a static background with a moving
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scene (as illustrated in figure 4 with the four breakings indicated by the arrows). However, the
segmentation method based on global motion seems to suffer more from non-detection than
the one based on camera motion. Furthermore, it can lead to substantial oversegmentation
(blank spaces in ribbon b2 of Figures 4–6 represent blocks of images where the method has
detected a change every three images). All this validates our choice for the method based
on camera motion.

More generally, we observed for the proposed segmentation method, based on camera
motion, few non-detected changes and reasonable oversegmentation. Since the result of the
segmentation is used as a preliminary step to initialise the classification, oversegmentation
will not be a drawback. In all our experiments, the ability of the method to provide homoge-
neous segments in terms of camera motion has been proved, which is the main requirement
to carry on with the second step.

3. Classification of the video segments

The second step consists in classifying and selecting the segments, supplied by the segmen-
tation step, according to their dynamic content. We deal now with the real motion content
of the scene depicted by the video: the residual image motion. We adopt a statistical repre-
sentation of the residual motion content as presented below. The efficiency of the proposed
method is evaluated on two sports videos about which categories of relevant events can be
explicitly defined.

3.1. Statistical motion model

To extract meaningful dynamic events, we rely on the probabilistic modelling of the residual
motion content of a video. In order to handle a wide range of dynamic situations (outdoor
and indoor scenes, sports scenes, . . . ), we resort to a general notion of motion activity
and we exploit the statistical motion models recently introduced in [8]. The motion-related
measurements considered are low-level measurements related to the normal flow. They
convey a more elaborated local motion information than the local histograms of the spatio-
temporal intensity gradient proposed in [22], while still locally and easily computable
contrary to the full optic flow. These measurements can indeed be efficiently and reliabily
computed for any video whatever its genre and content. This framework for motion activity
modelling has already been successfully applied to motion recognition [7] and motion-based
video retrieval [8]. In this section, we outline its main characteristics.

The motion activity model is identified from the analysis of the distribution of local
motion-related measurements. More specifically, for a given pixel p and at a given time k,
the residual normal flow vn(p, k) is computed as follows:

vn(p, k) = −DF Dθ̂k
(p, k)

||∇ I (p, k)|| · ∇ I (p, k)

||∇ I (p, k)|| ,

where θ̂k is the estimated parameter of the 2D affine camera motion model, DFDθ̂k
(p, k)

is the Displaced Frame Difference (see Section 2.1) and ∇ I (p, k) is the spatial intensity
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gradient. Then, a continuous local motion measure is computed as a weighted mean, over
a small spatial window, of the residual normal flow magnitude in order to obtain a more
reliable motion information. Indeed, the accuracy of the evaluation of the residual normal
flow is highly dependent on the norm of the spatial intensity gradient, and this accuracy
increases with ||∇ I (p, k)||. Thus, the continuous local motion measure considered is:

v(p, k) =
∑

q∈F(p) ||∇ I (q, k)||2.|vn(q, k)|
NF(p) max

(
G2

min, G2
moy(p)

) , (2)

where F(p) is a local window centered in p and of size NF(p) (typically 3 × 3 pixels),
G2

moy(p) is the normalization factor and the constant Gmin avoids a null denominator in
uniform areas. This measure can a priori be computed for any video type.

The continuous (positive) local motion-related measure (2) is then quantized on a set �

of discrete values, leading to the measure y(p, k). A causal Gibbs probabilistic distribution
[9] can represent the temporal co-occurrences of the quantized local motion measurements
{y(p, k), p = 1 . . . |R|, k = 1 . . . K }, where R is the spatial image grid and K is the length
of the sequence. More precisely, given an image sequence, we compute the associated
sequence y = {y(k), k = 1 . . . K } of local motion quantities maps (one motion map
y(k) = {y(p, k), p = 1 . . . |R|} is computed from two successive images).

The temporal co-occurrences distribution �(y) of the sequence y is a matrix {�(ν,

ν ′|y)}(ν,ν ′)∈�2 defined by:

�(ν, ν ′ | y) =
K∑

k=2

∑
p∈R

δ(ν, y(p, k)) · δ(ν ′, y(p, k − 1)), (3)

where δ(i, j) is the Kronecker symbol (equal to 1 if i = j and to zero otherwise). Given
a temporal Gibbsian model M specified by its potentials �M = {�M(ν, ν ′)}(ν,ν ′)∈�2 , the
likelihood of the sequence y under the model M is simply evaluated from the dot product

�M • �(y) =
∑

(ν,ν ′)∈�2

�M(ν, ν ′) · �(ν, ν ′|y), (4)

between the potentials �M and the matrix of the temporal co-occurrences �(y) [8]:

PM(y) = 1

Z
exp [�M • �(y)] , (5)

with the normalization constraint
∑

ν∈� exp[�M(ν, ν ′)] = 1 to ensure unicity of the po-
tentials.

The appealing characteristic of these models is that, due to their causal aspect, the nor-
malization constant Z is explicitly known and tractable. Furthermore, it is independent of
the model M. Thus, the probability (5) can be exactly determined and available for any
sequence y and model M. The model estimation is achieved according to the Maximum
Likelihood criterion. It is easy to see that the temporal model (5) is actually equivalent
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to a product of R independent and identically distributed Markov chains defined by the
transition matrix T = {exp(�M(ν, ν ′))}(ν,ν ′)∈�2 . Thus, the Maximum Likelihood estimate
is given by the empirical estimate of T , and for an observed sequence y, the estimated
potentials �M̂ are deduced from the co-occurrences distribution �(y) as follows:

�M̂(ν, ν ′) = ln

(
�(ν, ν ′|y)∑

ν ′′∈�
�(ν ′′, ν ′|y)

)
. (6)

The use of these statistical motion activity models appears simple and efficient. The com-
putation of the temporal co-occurrences �(y) can be realised in a parallel scheme. Once the
temporal co-occurrences distribution is available, the model estimation is straightforward.
Besides, the evaluation of the likelihood (5) requires only the computation of dot products
between the model potentials and the co-occurrences matrix coefficients, which is of low
computation time.

The number of coefficients of this model, equal to |�|2, is large (usual choices for � are
quantization in 16 or 32 levels). In practice, it is possible to reduce the model complexity
by selecting the more informative potentials, based on the computation of likelihood ratios
[8]. However, it is still an open issue to evaluate its impact in terms of motion recognition.

3.2. Supervised classification and selection

For a given type of video document, a training step is performed off-line. It implies to
manually define the different classes of motion content present in the video genre (and thus
their number G), to extract, in each video of the training base, segments homogeneous in
terms of motion activity and to manually label each segment. The choice of G remains
a difficult task since there is never an obvious true set of classes but rather a hierarchical
structure of classes and sub-classes. For the study presented in this article the extraction, as
the labeling of the homogeneous segments of the training base, have been made manually
in order to have a training set as perfect as possible. However, this is very tedious and time
consuming. Ideally, one would expect an unsupervised classification method (i.e. automatic
extraction of homogeneous segments in the training set and clustering, the naming of the
different resulting classes being still manually-made) but this remains a difficult objective.
An intermediate solution could be to use the automatic segmentation method presented in
the previous section to extract homogeneous segments from the video base and then to
manually label them.

In our supervised scheme, the probabilistic models are trained as follows. Once the G
classes are defined, for each class g the Maximum Likelihood estimators �̂g of the potentials
of the causal Gibbs model Mg describing the class g are evaluated according to

�̂g = arg max
�

∏
s∈g

PM�
(ys),

ys being the quantized motion-related measurements associated with the segment s in
class g. It is equivalent to compute the Maximum Likelihood estimates of the potentials
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according to Eq. (6), with � = �g , �g being the sum of the co-occurrence matrices of all
the segments belonging to class g.

Let us consider now the task of extracting meaningful events in a video test. Given the
partition {s0, . . . , sN } of the video test into homogeneous segments and {y0, . . . , yN } the
corresponding motion-related measurements, each video segment is labeled with one of
the learned classes of dynamic events according to the Maximum Likelihood criterion, as
follows:

ln = arg max
1≤g≤G

PMg (yn),

= arg max
1≤g≤G

�̂g • �(yn) (7)

where ln is the label of segment sn . Then, only the segments associated to classes defined
as relevant in terms of dynamic event are selected. Excerpts of these significant segments
could be further exploited for video summarization.

3.3. Results

The proposed method for the selection of relevant dynamic events is evaluated on two sport
videos about which classes of relevant events can be explicitly defined.

3.3.1. Albertville video. The first video processed corresponds to a (dance) figure skating
TV program. The first 23 minutes of the video (displaying two shows) form the training
set and the last 9 minutes of the video (one show) form the test set. Each video segment
supplied by the camera motion-based segmentation method is then classified according to
the Maximum Likelihood criterion (7). This is a good example to evaluate the potentiality
of a motion-based video analysis, or more specifically to answer the question: how close to
the semantic level can we hope to come starting from a low-level motion information? We
will see that the classification specification is an important factor in the performance of a
recognition method.

We first considered a classification in two categories, corresponding to play and no play
events. Category play corresponds to all skating motions and category no play includes
scenes of the skaters waiting for their scores, scenes of persons in the audience, and all
quasi static scenes. This remains at a coarse level in terms of semantic meaning but can still
be of interest for the creation of a video summary. The results of this sorting are reported
in Tables 1(a) and (b). Table 1(a) shows that 82% (resp. 87%) of play segments (resp. no
play segments) are correctly detected. With Table 1(b), we can see that among the segments
classified as play by our algorithm, only 3% are no play segments (false alarms). According
to the high rates of good classification obtained, a strategy for summarization could then
be in a first stage to apply a sorting into play and no play categories based on the residual
motion, and in a second stage to select the pertinent segments within those labeled as play
based on additional information (such as camera motion, color, audio information, . . . ).
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Table 1. Albertville video. (a) Classification matrix for two pre-defined classes of motion content (the row labels
stand for true labels and the column labels stand for detected labels), (b) number of detected segments and false
alarms for the class play.

Play No play

Play 0.82 0.18

No play 0.13 0.87

Play

Total number 319

Detected 261 (82%)

False alarms 5 (3%)

(a) (b)

We then considered a finer level of classification, with five classes of dynamic content
defined as: scores (Sc, skaters and coach moving in the stand, waiting for the scores),
no motion (No, static or quasi static scenes), performance (Pe, all skating motions), slow
motion (Sl, replay) and audience (Au, persons in the audience moving on the terraces). The
corresponding classification results are given in Table 2(a). The discrimination power of
the method remains satisfactory, in particular for class performance (83% of the segments
in this class are detected). Here again we could imagine to build a video summary from
segments associated to this class, in particular if considering the low rate of false alarms
(see Table 2(b)). Note that category play is formed of classes performance and slow motion,
and category no play is composed of classes scores, no motion and audience.

Finally, we considered the case of seven classes of dynamic content which are closer
to semantic classes than to motion classes: scores (Sc, skaters and coach moving in the
stand, waiting for the scores), static (St, static scene), waving (Wa, skaters waving to the
audience), figure (Fi, artistic effects, mainly dance movements), skating (Sk, only simple
skating motions), slow motion (Sl, replay) and audience (Au, persons in the audience moving
on the terraces). Class no motion has been split into classes static and waving and class
performance has been split into classes figure and skating. The numbers of segments of each
class in the test set are reported in Table 3 and the full classification results are gathered
in Tables 4(a) and (b). We observe a null recognition rate for the class waving (which
nevertheless is not really significant since this class is represented by a very small number

Table 2. Albertville video. (a) Classification matrix for five classes of motion content (the row labels stand for
true labels and the column labels stand for detected labels), (b) number of detected segments and false alarms for
the class performance.

Sc No Pe Sl Au

Sc 0.61 0.22 0.17 0 0

No 0 0.80 0.10 0 0.10

Pe 0.025 0.10 0.83 0.045 0

Sl 0 0.33 0.17 0.50 0

Au 0.33 0 0.33 0 0.33

Pe

Total number 313

Detected 261 (83%)

False alarms 7 (2.6%)

(a) (b)
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Table 3. Albertville video. Number of segments in each of the seven classes of motion content in the test set.

Sc St Wa Fi Sk Sl Au

18 7 3 30 283 6 6

Table 4. Albertville video. (a) Classification matrix for seven classes of motion content (the row labels stand for
true labels and the column labels stand for detected labels) and (b) number of detected segments and false alarms
for the class skating.

Sc St Wa Fi Sk Sl Au

Sc 0.61 0.11 0.11 0 0.17 0 0

St 0 0.86 0 0 0 0 0.14

Wa 0 0.67 0 0 0.33 0 0

Fi 0 0.07 0.20 0.20 0.50 0.03 0

Sk 0.03 0.01 0.07 0.23 0.62 0.046 0

Sl 0 0 0.33 0.17 0 0.50 0

Au 0.33 0 0 0 0.33 0 0.33

Sk

Total number 283

Detected 175 (62%)

False alarms 21 (10.7%)

(b)

(a)

of segments in the processed video), segments of this type being in majority misclassified
in class static. These classes are indeed too similar in terms of motion content. The motion
of the skaters waving corresponds to a too small part of the image to be highlighted by the
model. It appears also that the two classes figure and skating tend to be mixed up. Since
the skaters present a dance show (as opposed to shows with jumps and spins), the artistic
movements performed by the skaters are rather smooth and similar to their regular skating
motion. This is confirmed by the recognition rate obtained in class performance (83%) in
the previous experiment, and by the rate obtained in the two classes figure and skating when
considering the two best maximizers of the likelihood (more than 80% in both classes). As
a consequence, it seems that the last classification problem is too ambitious, regarding the
available and computable motion information. This example points out the difficulty to find
the level of semantic meaning effectively reachable, the classification specification being
very important.

3.3.2. Athletics video. The second example processed is another excerpt of the Athletics
video previoulsy presented in Section 2.3. We have chosen a different sequence in order to
have a training set large enough for each class of motion content (which was not the case
for long jump and high jump). Six different motion classes are observed on this sample:
interview shots (Int), large views of the stadium (LV), pole vault (PV), replay of pole volt
(Sl, including not only the jump but also the run-up), wide-shots of track race (WR) and
close-up of track race (CR). We have selected 10 minutes of the video as a training set and 5
minutes as a test set. The distribution of the segments supplied by the segmentation method
among the six motion classes is given in Table 5. The classification results are provided
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Table 5. Athletics video. Number of segments in each of the six classes of motion content in the test set.

Int LV PV Sl WR CR

9 1 13 18 45 25

Table 6. Athletics video. Classification matrix for the six classes of motion content.

Int LV PV Sl WR CR

Int 0.11 0 0.22 0.11 0.56 0

LV 0 1 0 0 0 0

PV 0 0 0.77 0 0.23 0

Sl 0 0 0 1 0 0

WR 0.25 0 0.02 0.02 0.69 0.02

CR 0 0 0.16 0 0.16 0.68

by Table 6. Apart for class Int, the obtained results are satisfactory (about 80% in average
for the five other classes). Some misclassifications correspond to segments of few images
(less than 10), which is probably too short to capture the scene motion. We observe also
some misclassifications between class WR and CR, for segments including a progressive
transition between a wide shot and a close-up. Let us note that we generally observe an
increase of the recognition rate when considering the two first maximisers of the likelihood:
for instance we reach 0.92% (resp. 0.98%) for the class pole vault, (resp. wide-shot of track
race). These results ensure that a relevant motion information has been extracted with the
causal Gibbs models.

4. Concluding remarks

We have presented a two-stage approach for extracting meaningful dynamic events in a
video, based on motion-content analysis. The first stage, the temporal segmentation step, is
based on the detection of changes in camera motion. This segmentation method is simple and
generic. The experiments show that the video segments obtained form reasonable temporal
units within which to apply, in a second step, a recognition and selection algorithm. At this
stage, our evaluation is purely visual and a quantitative evaluation could be envisaged as
the protocol proposed in [10] in the context of content-based image retrieval. The second
stage, the classification step, is supervised. The experimental results are encouraging, since
the method involves only a low-level video analysis, and confirm the ability of the Gibbsian
probabilistic motion models to recognise distinct dynamic activities. At this level, the main
difficulty seems to determine a pertinent classification structure of the dynamic content
in a video, the trap being to be too ambitious and to look for semantic classes more than
motion-related classes. The proposed classification method remains improvable while being
flexible. First, no a priori knowledge on the classes has been considered yet, but it can be
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easily introduced by considering a Maximum a Posteriori criterion instead of the Maximum
Likelihood criterion. Moreover, only the residual image motion (related to scene motion)
is exploited during the classification step. The dominant image motion (related to camera
motion) could be reintroduced at this stage, these two sources of motion carrying important,
different but complementary information. A first probabilistic model has been explored
in [17] for characterizing the camera motion and improvements are currently at work.
The potential of the approach could also be overpassed by considering not only motion
information but other features such as dominant color and audio information, as investigated
in [6]. The integration of this information within the proposed statistical framework is quite
tractable as presented in [19] for instance. Investigations in this direction are currently in
progress.
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