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Information-theoretic temporal segmentation of video

and applications : multiscale keyframes selection and

shot boundaries detection

Bruno Janvier (janvier@cui.unige.ch), Eric Bruno, Thierry Pun,
Stéphane Marchand-Maillet
Viper Group, Computer Vision and Multimedia Laboratory
Université de Genève

Abstract. The first step in the analysis of video content is the partitioning of a
long video sequence into short homogeneous temporal segments. The homogeneity
property ensures that the segments are taken by a single camera and represent a
continuous action in time and space. These segments can then be used as atomic
temporal components for higher level analysis like browsing, classification, indexing
and retrieval. The novelty of our approach is to use color information to partition
the video into segments dynamically homogeneous using a criterion inspired by
compact coding theory. We perform an information-based segmentation using a
Minimum Message Length (MML) criterion and minimization by a Dynamic Pro-
gramming Algorithm (DPA). We show that our method is efficient and robust to
detect all types of transitions in a generic manner. A specific detector for each type
of transition of interest therefore becomes unnecessary. We illustrate our technique
by two applications : a multiscale keyframe selection and a generic shot boundaries
detection.

Keywords: content-based video analysis, temporal segmentation, keyframe selec-
tion, detection of shot boundaries

1. Introduction

The increasing amount of video documents produced every day creates
a new need for the management and retrieval in multimedia information
systems. The first step to achieve in this research area is the temporal
partitioning of any video in sub-sequences that represent a continuous
action in time and space for the purpose of further indexing.

The problem of shot-boundary detection has been tackled by many
computer vision scientists without being completely solved. In the sur-
vey by Koprinska and Carrato [4], a number of techniques of tempo-
ral segmentation of uncompressed or compressed video are described.
Many methods are related to the detection of discontinuities using pair-
wise pixel, block based or histogram comparisons. In the compressed
domain, DCT coefficients are used instead of pixel values.

Whereas the detection of a discontinous camera cut (hardcut) in a
video sequence is relatively easy, a transition can also be gradual and
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2 Bruno Janvier et al.

due to a dissolve, fade or wipe special-effect transition. A transition in
the action may also be due to the fact that the camera shows one thing
at a given time and a completely different thing at another time ; the
transition can simply be a rotation or a zoom of the camera. Especially
for indexing purposes, it is important to detect these events. There are
plenty of different types of transitions that do not show any abrupt
discontinuities (due to the presence of special effects or not) and their
detection is therefore difficult as shown in the survey of Kasturi et al.
[1]. It is proposed in many articles to design a specific detector for each
type of special effect transitions [3], [5]. Here, we rather depart from
this solution in order to avoid ad-hoc techniques.

The novelty of our approach is to use color information to chop
the video into dynamically homogeneous segments using a criterion
inspired by compact coding theory. An information-based segmentation
using a Minimum Message Length (MML) criterion will be applied to
partition the video into segments where the evolution is homogeneous
by taking into account all the available information. In the literature,
many clustering-based segmentation methods exist that use, for ex-
ample, hierarchical clustering of frame dissimilarity. The approach we
have chosen is different. The segments are infered in order to max-
imize locally the homogeneity of the evolution but also to minimize
globally the complexity of the partitioning using a Dynamic Program-
ming algorithm. The optimization process is global and therefore more
satisfactory than greedy or agglomerative strategies.

This framework provides atomic temporal components for higher
level content-based video analysis. Many problems are simplified, we
will present two applications. The first application is about video overview-
ing. A multiscale segmentation and keyframe selection will be per-
formed in order to let the user of the application interactively adjust
the degree of coarseness of the keyframe representation. The second
application presented deals with the detection of shot boundaries. In
television or cinema, the base unit is the shot. Shots are separated
by abrupt or gradual transitions. We detail a simple and generic tech-
nique to detect these transitions disregarding the kinds of special-effects
involved.

2. Dissimilarity profile

In order to perform a temporal segmentation of the video stream, we
need a distance measure between two successive frames. The analysis
will be done on the resulting temporal profile of the frame-by-frame
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distances. At the very least, the similarity measure between two frames
should satisfy the following properties :

− it should be stable with respect to changes that are common during
a segment representing a continuous action in time and space such
as small affine transformations, lighting changes, deformations,
appearance of objects, etc.

− it should give an accurate quantitative information about the amount
of change that has taken place.

The color histogram has proven to be a very stable representation
in the content-based image retrieval research field. The distribution of
color is invariant and stable for frames representing a similar content.
We will compute the histogram in the YUV color space, because it
gives the best performance/speed ratio when dealing with MPEG video
streams.

The Jeffrey divergence is used to measure the distance between the
color histograms. It measures how compactly one histogram can be
coded using the other as a codebook and gives better quantitative
results in our experiments than the L1, L2 or chi-square metrics. If Hi

and Hj are two histograms containing N bins, the Jeffrey divergence
between Hi and Hj is defined by :

Dcol(i, j) =
N
∑

k=1

(Hi(k) log

(

Hi(k)

m(k)

)

+ Hj(k) log

(

Hj(k)

m(k)

)

) (1)

where m(k) =
Hi(k)+Hj(k)

2 .
By computing the Jeffrey divergence for the pairwise computation

of histogram differences for the complete video stream, we obtain a
frame-by-frame dissimilarity profile Dissinfo that will be used in the
next sections :

Dissinfo(i) = Dcol(i, i + 1) (2)

Note that, in our framework, video information is abstracted by its
features. In this respect, it is possible to replace color information, for
example by motion or sound, and get a partitioning that will hold a
different interpretation than that obtained with the methods that will
be presented next. The problem of deriving a set of features that leads
to a potential semantic interpretation of the content is out of the scope
of this article.
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3. Information-based partitioning of ordered data

We present here how the video is partitioned into a series of homoge-
neous segments. We first define and model what we mean by “homo-
geneous”. Then, we will present a criterion based on compact coding
theory that we will minimize in order to infer the number and the
location of change-points within the video document. Finally, we also
give simplifying heuristics chosen in order to make the algorithm more
efficient.

3.1. Properties and modeling of the color dissimilarity

profile

The partitioning of our video is done by considering that a video seg-
ment has been generated by a given model. The choice of the model is
constrained by the following criteria :

− it should be able to fit the data during a homogeneous segment;

− it should show an excellent detection performance in order to cap-
ture when dynamic of the video has significantly changed : the
model should not fit discontinuities nor any major changes in the
temporal evolution;

− it should be generic enough so that it stays valid for any type of
video document.

We will use the cumulative sum of the dissimilarity profile for the
information-based segmentation because it measures the trend defined
as the accumulated effect of the fluctuations of a time series. If the
evolution of the colors is homogeneous and the frame-by-frame dis-
similarity is roughly constant, the trend is expected to have a linear
behavior.

The model that we will use for a segment is thus :

yθ
m(t) = a1t + a0 + et (3)

The additive error terms, et, are assumed to be i.i.d and the error
density N(0, σ) for unknown σ. We use least square estimates of the
linear coefficients.

This model is interesting because the grouping by similarity will take
into account the static (parameter a0), but also the dynamic properties
(slope a1 and variance σ) of the color content of the video.

The trend of the whole video will then be modelled as a changing
linear regression model with piecewise constant parameters. We need
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to estimate the number of segments G and the sequence of changing
points s = (s1, ..., sG).

3.2. Partitioning

The segmentation problem is about finding the partitioning that best
explains the data assuming a model yθ

m(t) with different parameters
θ = (a0, a1, σ) in each segment.

Recently, a Minimum Message Length (MML) criterion has been
used by L. J. Fitzgibbon et al. [7] to infer the number of segments
and the location of the cut-points from univariate temporal data using
Fisher’s DPA. The MML criterion has been experimentally proven by
the authors to be more powerful to accurately locate the boundaries
of the segments than other criteria such as the Minimum Description
Length (MDL), the Bayesian Information Criteria (BIC) or Akaike’s
Information Criteria (AIC) . The MML is based on the compact coding
theory [9]. The idea is that the best explanation of the data is the one
that provides the briefest encoding of a two-part message. The first
part contains the information about the statistical model while the
second part contains the remaining information needed about the data
assuming the model. This is a quantification of the trade-off between
the model complexity and the goodness of fit. The idea is that the
partitioning to be preferred is the one that best fits the data using
a model as simple as possible. The code length of the messages are
computed using Shannon’s theory where the length of the string coding
an event E in an optimally efficient code is given by −log(p(E)).

The message length used to calculate the expected length of a mes-
sage which transmits the model and the data of the jth segment con-
taining the time series y = (y1, ..., yn) can be approximated according
to [8] by :

ML(θ)j = C(θ)j + D(θ)j (4)

where C(θ)j is a penalty term and D(θ)j is the data fitting term.
D(θ)j corresponds to the ML (Maximum-likelihood) estimator for

i.i.d Gaussian errors. The minus log-likelihood is minimized when the
model best fits the data. D(θ)j corresponds to the code length of
specifying the data assuming the model.

D(θ)j = n log(
√

2πσj) +
1

σ2
j

n
∑

t=1

(yt − a1jt − a0j)
2 (5)

As it stands, this quantity will be minimized for the degenerated solu-
tion where each sample is a an independent segment. There is therefore
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a need for a second term for our solution to follow the parcimonious
principle.

C(θ)j is a penalty term that takes into account a priori information
Pr and a code length on the cost of specifying the model on the given
set of data of length n. This code length is related to the uncertaincy
of the estimation of each of the model parameters. The standard error
in the estimated variance is ± 1√

n−2
and the associated code length

is 1
2 log(n − 2) assuming an uniform distribution. The standard error

in the estimated linear coefficients is ± σ√
n−2

with an associated code

length of 1
2 log(n − 2) − log(σ) for each coefficient.

C(θ)j = − log(Pr) +
3

2
log(n − 2) − 2 log(σ) (6)

Pr is a prior information that we will design in order to meet our
requirements. The a priori information will depend on the length of
the segment to penalize the creation of too small partitions.

Pr =

λ(k)
∑

w=0

αw

w!
e−α. (7)

The parameter α is chosen such that the prior reaches a non-informative
value after a given number of frames ; we chose 5 for example. The
associated code length is the negative log of the probability.

The partitioning s = (s1, ..., sG) containing G segments that maxi-
mizes the homogeneity of the data according to the model yθ

m is also
the one that minimizes the total message length :

MLtotal = log∗(G) + log(

(

K − 1

G − 1

)

) +
G
∑

j=1

ML(θ)j (8)

where G is the number of partitions and K is the total number of
frames of the video, log∗(G) and log(

(K−1
G−1

)

) are the code length needed
to specify the number of segments and which particular partitioning
has been chosen assuming that all of them had the same probability.

3.3. Minimization

The problem is now to conduct the optimization in order to get the best
partitioning of the ordered set of K numbers into G contiguous groups.
This is a combinatorial problem and there are

(K−1
G−1

)

possibilities to
explore.

This problem has been solved in polynomial time by W. D. Fisher
[6] using a Dynamic Programming Algorithm (DPA). The search algo-
rithm is based on the optimality principle that states that in an optimal
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sequence of decisions, each subsequence must also be optimal. The
time complexity of the DPA is reduced because the optimal solution
is a combination of optimal solutions of subinstances. For a set of K

numbers and a maximum number of groups Gmax, the time complexity
is O(Gmax.K2).

The MML/DPA strategy presents two very interesting advantages
over other segmentation techniques like agglomerative or greedy clus-
tering strategies :

− Global approach : every possible partitioning is taken into account
during the minimization process and there is no risk to end in a
local minima.

− Parameter free : no threshold is needed to stop the clustering
process and no need to specify the final number of partitions. This
is theoretically more satisfactory.

The number G of partitions and the locations of the boundaries are
then computed, and we know that this partitioning and this number of
partitions will maximize the homogeneity of the data in each partition
according to our model. However, the computational complexity is
still too high to analyse globally entire real life videos. We will use
simplifying assumptions in order to restrict the search when necessary
and to make it as efficient as possible.

3.4. Restricting the search for the solution

In practice, we use two simple ideas in order to significantly speed-up
our segmentation by reducing the number K involved in the computa-
tional complexity of the Dynamic Programming algorithm. The main
idea is that we should perform an information-based segmentation only
when necessary, between two abrupt transitions and only if something
is going on. It makes it usable for partitioning of large video collections.

3.4.1. Hardcut detection

An abrupt transition between two different shots is relatively easy to
detect in the dissimilarity profile. It is likely to correspond to a strong
peak. The hardcut detection can be formulated as a binary-hypothesis
test problem. We introduce two hypotheses :

− Hypothesis S : there is an abrupt transition present between frames
k and k + 1

− Hypothesis S̄ : there is no transition present between frames k and
k + 1
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The test can fail if we make a false detection (i.e. S is chosen when
S̄ is true) or a missed detection (i.e. S̄ is chosen when S is true).

A well-known result in hypothesis testing is that the following deci-
sion rule is equivalent to the minimum risk of error :

p(z|S)

p(z|S̄)

S̄

<

>

S

1 − Pk(S)

Pk(S)
. (9)

In the recent paper from A. Hanjalic [2], the likelihood functions
p(z|S) and p(z|S̄) and Pk(S), the probability for the validity of S, have
been specifically modelled for video hardcut detection. We follow a
similar modeling.

As we know for sure that these strong transitions will be present
in our final solution when using the DPA, the minimization can then
only be performed within these hardcuts. It makes our optimization
less dependent on the total length of the document, but simply on the
typical length separing two hardcuts. For a video containing K frames
and containing X sub-sequences separated by abrupt transitions of
length (K1, ..., KX), the time complexity is reduced from O(GmaxK2)
to :

X
∑

x=1

O(GmaxK2
x) (10)

with each Kx ≪ K.

3.4.2. Greedy grouping

The second preprocessing uses the fact that it seems unnecessary to
perform our minimization when it is obvious that nothing happens in
the video stream.

We will group together sub-sequences of the video where nothing
significant is happening using a very sensitive greedy algorithm and a
threshold. Groups of “still” frames will be regarded as one frame. A
significant speed-up is then obtained by starting the minimization of
our criteria on a new set of Kover sub-sequences such that Kover ≪ Kx.
The oversegmentation is found in a very sensitive way such that it does
not reduce the optimality of the segmentation, but avoid not useful
computations.
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4. Applications

Using the algorithm presented, some knowledge about the structure
of the raw video has emerged. In this section, we use this temporal
segmentation for two applications.

An application of video overviewing is presented using a multiscale
keyframe selection technique. The coarseness of the video overview is
chosen by the user who has the possibility to adjust a scale parameter.

The second application presented is the detection of shot boundaries.
We show a simple and generic technique to detect abrupt or gradual
transitions separating shots irrespective of the kinds of special-effects
involved.

4.1. Multiscale keyframe selection

For video overviewing, we would like to let the user choose the level
of accuracy of the keyframe representation of the video. We perform a
multiscale temporal segmentation of the video followed by an informa-
tive keyframe selection that has the property to be persistent through
different scales.

4.1.1. Multiscale segmentation

In a similar manner as the Scale-Sets representation of images of Guigues
et al. [10], we build a hierarchy of coarser and coarser segmentation of
the video by grouping contiguous segments.

Considering a partition a, a generalization of the criteria of the
equation (4) is to add a real and positive parameter λ that we will
call the scale parameter such that :

MLa = λCa + Da (11)

As λ is increasing, we constrain more and more the penalty term of
the criteria, the number of found partitions G is then decreasing. We
thus obtain a progressive simplification of the segmentation until only
one segment remains. Hence, λ can be seen as a scale parameter as in
regularization algorithms.

We will build a binary tree to represent the progressive merging of
contiguous segments when the scale λ grows to infinity. Considering
two contiguous partitions a and b, the scale of appearance of a node x

in the tree to group these partitions together is defined as λ+ which is
the unique solution of the affine function :

MLx(λ+) = MLa(λ
+) + MLb(λ

+) (12)

λ+ =
Da + Db + Dx

Ca + Cb + Cx

(13)
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10 Bruno Janvier et al.

Considering all the partitions obtained for the complete video with
λ = 1, we compute the scales of appearance of all possible grouping of
contiguous segments and choose to group together the pair of segments
having the minimum scale of appearance. We iterate with the newly
formed set of partitions until only one segment remains. The hierar-
chy is progressively built by augmenting the regularization constraint
and we get at each scale the partitioning that minimizes globally our
criterion. We show an example of such a tree in Figure 1.

Groups

la
m

bd
a

Figure 1. Binary tree showing the hierarchical grouping of contiguous segments
when λ grows.

4.1.2. Keyframe selection

In our framework, the most informative level is found by choosing
one keyframe per homogeneous partition for λ = 1. Considering every
homogeneous partition, the keyframe is selected as the frame having a
color histogram which is the centroid of the segment.

When the scale parameter λ grows, we decimate our set of keyframes
by choosing the most informative ones. For every merging of two homo-
geneous partitions, we choose the keyframe that is the closest to the cen-
troid of the newly merged segment. This way guarantee a persistency
of the keyframes throughout the different scales.

There are many further possible ways to use the hierarchy we have
built. The user can interactively change the scale parameter and see the
progressive simplification of the keyframe representation of the video.
The user may also specify the number of keyframes K (s)he wants to
see ; the associated scale parameter λ can then be deduced.

The different overviews obtained at different scales are interesting
because the segments that have the most similar dynamic behavior
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(eg. measured by the slope and the variance of the linear model) will
be grouped together first. It does also exhibit interesting semantic prop-
erties. For example, in news videos, the static studio settings with the
anchor person segments will be unlikely to be merged together with
dynamic outdoor segments as can be seen in Figure 5. The user may
skip several levels of details, but still preserve the global structure of
the news report with the successive apparitions of the anchor person.

4.2. Detection of shot boundaries

4.2.1. Problem statement

The temporal segmentation into homogeneous segments already dis-
closed important information about the structure of the video, but
there are still too many segments in comparison to the number of
shots that correspond to the reverse-engineering of the video production
process. It is important to make it correctly not to negatively influence
higher-level analysis like video summarization.

Within our framework, the detection of shot boundaries is reduced to
the merging of the segments that are not due to a transition between
shots. We essentially face two kinds of artefacts : signal level noise
(MPEG or optic of the camera artefacts) and noise that has a semantic
meaning (for example when someone passes just in front of the camera).
In order to perform a reasonable detection of the transitions, we use
the following assumptions :

− the lifetime in number of frames of a transition is included in a
range between 1 and 20 frames

− the visual content of the video before and after a transition sepa-
rating two different shots is usually significantly different

4.2.2. Statistical detection framework

We consider the frames content similarity before and after the bound-
aries of the homogeneous segments. If k is the index of the frame that
separates the segments i and i + 1, we use different windows of com-
parisons k − l and k + l for l = 1, 2, 4, 8. This informs us as to whether
the transition is abrupt or gradual and gives an estimate of the length
of the transition.

We measure the similarity in a very discriminative way and we take
into account differences in color and spatial distribution of pixels infor-
mation. We define the distances Dseg(l) between the frames k − l and
k + l as a vector containing the Jeffrey divergences of the color block
histograms in the YUV color space and 4 rectangular blocks.
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12 Bruno Janvier et al.

According to statistical detection theory, we formulate the detection
problem as a binary hypothesis test by introducing :

− Hypothesis M : there is a transition between segments i and i + 1

− Hypothesis M̄ : there is no transition present between segments i

and i + 1

The decision will be taken according to the minimum risk of error :

p(z|M)

p(z|M̄)

M̄

<

>

M

1 − Pk,l(M)

Pk,l(M)
(14)

Using training data, we plot the shape of the distribution of the
values of the distances when a transition is present and the likelihood
function p(z|M) can be found to be correctly approximated in the
family of Gaussian functions :

p(z|M) =
1√
2πσ

e
−

(z−µ)2

2σ2 (15)

Using the same method with the distribution of the values when no
transition is present, the likelihood function p(z|M̄) is found to belong
to the family of Exponential functions :

p(z|M̄) = e−hz (16)

Pk,l(M) is then defined as a conditional probability Pk,l(M |Dseg(l))
that depends of the dissimilarity of the frames before and after the
transition.

Pk,l(M) = Pk,l(M |Dseg(l)) (17)

The conditional probability Pk,l(M |Dseg(l)) (see figure 2) is com-
puted using the similarity measure before and after the boundaries of
the segments. The conditional probability should not be too sensitive
when Dseg(l) has extreme values. Between these values, the transition
should be smooth to avoid the rejection of good candidates and this is
the reason why Pk,l(M |Dseg(l)) can be chosen as :

Pk,l(M |Dseg(l)) =
1

2

(

1 + erf

(

Dseg(l) − dc

σc

))

(18)

The estimation of an approximate value for the length of the tran-
sition is found by finding the minimum l such that the detection of a
transition is positive.
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Figure 2. Plot of the function used to design the conditional probability
Pk,l(M |Dseg(l)).

Using training data (see next paragraph), the parameters h, µ, σ are
estimated and dc and σc are chosen in order to maximize performances.

4.2.3. Results

We have experimented this method with 70 videos of the TREC Video
Retrieval Evaluation (TRECVID) 2003 corpus using the evaluation
framework of [11]. We used 35 hours of news programs coming from
CNN and ABC. The ground truth has been obtained using a collab-
orative effort of the TRECVID community [12]. Each video contains
around 400 transitions of every kind. There are many types of special-
effects involved because the videos come from television. The results
are given in percentage in Table I. We chose to accept a tolerance of
12 frames for the accuracy of the location of the transitions.

Table I. Performances of the shot boundaries detection
algorithm

Performances Our algorithm Hardcut detection alone

Recall 86.2 67.6

Precision 77.2 78.8

A better recall means there are a fewer number of missed detections
while the better precision means that there are a fewer number of false
detections.

The comparison in the Table I shows the advantage of using the
information-based segmentation over the simple “hardcut” detection
which misses all the gradual transitions. It will be interesting to com-
pare our results with the results of the active participants of the TRECVID
2003 Workshop as soon as they will be publicly available.
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14 Bruno Janvier et al.

5. Conclusion

In this paper, we have described an offline temporal segmentation al-
gorithm based on the minimization of an information-based criterion.
Our framework offers the advantages to be global and parameter free.
We first abstract the video content by a color dissimilarity profile which
is then divided into dynamically homogeneous segments. The minimum
message length (MML) criterion efficiently constrains the maximum-
likelihood estimation and offers the possibility to incorporate a priori

knowledge. The minimization process is global and fast by using the
characteristics of video data like the presence of hardcuts and redun-
dancies. The segments can then be used as atomic components and
reduce significantly the complexity of further analysis.

We then presented an original multiscale keyframe selection sys-
tem that enables a user to interactively adjust the coarseness of the
video representation. We have also shown that the detection of shot
boundaries is highly simplified by disregarding the type of special effects
involved during abrupt or gradual transitions and performs well using
our methodology.

Future works includes the use of these atomic temporal segments for
video representation and characterization. A better characterization of
the video segments is, in our view, the only way to improve the accuracy
of the results shown in Table I. We will also be interested in analysing
frequent patterns through a video database for summarization and
categorization of video collections.
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Figure 3. Keyframes extracted from the ’ariel’ sequence where the transitions are
very smooth dissolve effects.
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Figure 4. (a) Dissimilarity profile of the ’ariel’ sequence. (b) Trend of the dissimi-
larity profile and partitioning of the ’ariel’ sequence.
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(a)

(b)

(c)

Figure 5. Keyframe selection at different scales. The 60 minutes news report is
summarized by (a) 394 keyframes (b) 197 keyframes (c) 98 keyframes.
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