Multimed Tools Appl (2008) 36:89-113
DOI 10.1007/s11042-006-0075-6

Personalization on a peer-to-peer television system

Jun Wang - Johan Pouwelse - Jenneke Fokker -
Arjen P. de Vries - Marcel J. T. Reinders

Published online: 13 January 2007
© Springer Science + Business Media, LLC 2007

Abstract We introduce personalization on Tribler, a peer-to-peer (P2P) television system.
Personalization allows users to browse programs much more efficiently according to their
taste. It also enables to build social networks that can improve the performance of current
P2P systems considerably, by increasing content availability, trust and the realization of
proper incentives to exchange content. This paper presents a novel scheme, called
BuddyCast, that builds such a social network for a user by exchanging user interest profiles
using exploitation and exploration principles. Additionally, we show how the interest of a
user in TV programs can be predicted from the zapping behavior by the introduced user-
item relevance models, thereby avoiding the explicit rating of TV programs. Further, we
present how the social network of a user can be used to realize a truly distributed
recommendation of TV programs. Finally, we demonstrate a novel user interface for the
personalized peer-to-peer television system that encompasses a personalized tag-based
navigation to browse the available distributed content. The user interface also visualizes the
social network of a user, thereby increasing community feeling which increases trust
amongst users and within available content and creates incentives of to exchange content
within the community.

Keywords Tribler - BuddyCast - Peer-to-peer (P2P) television system - Personalization -
Collaborative filtering - Recommender system

J. Wang (<) - J. Pouwelse * M. J. T. Reinders

Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, Delft, The Netherlands

e-mail: jun.wang@tudelft.nl

J. Fokker
Faculty of Industrial Design Engineering, Delft University of Technology, Delft, The Netherlands
e-mail: j.e.fokker@tudelft.nl

A. P. de Vries
CWI, Amsterdam, The Netherlands
e-mail: arjen@acm.org

@ Springer

90 Multimed Tools Appl (2008) 36:89—113

1 Introduction

Television signals have been broadcast around the world for many decades. More flexibility
was introduced with the arrival of the VCR. PVR (personal video recorder) devices such as
the TiVo further enhanced the television experience. A PVR enables people to watch
television programs they like without the restrictions of broadcast schedules. However, a
PVR has limited recording capacity and can only record programs that are available on the
local cable system or satellite receiver.

This paper presents a prototype system that goes beyond the existing VCR, PVR, and
VoD (Video on Demand) solutions. We believe that amongst others broadband, P2P, and
recommendation technology will drastically change the television broadcasting as it exists
today. Our operational prototype system called Txribler [20] gives people access to all
television stations in the world. By exploiting P2P technology, we have created a
distribution system for live television as well as sharing of programs recorded days or
months ago.

The Tribler system is illustrated in Fig. 1. The basic idea is that each user will have a
small low-cost set-top box attached to his/her TV to record the local programs from the
local tuner. This content is stored on a hard disk and shared with other users (friends)
through the Tribler P2P software. Each user is then both a program consumer as well as a
program provider. Tribler implicitly learns the interests of users in TV programs by
analyzing their zapping behavior. The system automatically recommends, records, or even
downloads programs based on the learned user interest. Connecting millions of set-top
boxes in a P2P network will unbolt a wealth of programs, television channels and their
archives to people. We believe this will tremendously change the way people watch TV.

The architecture of the Tribler system is shown in Fig. 2 and a detailed description can
be found in [20]. The key idea behind the Tribler system is that it exploits the prime social
phenomenon “kinship fosters cooperation” [20]. In other words, similar taste for content can
form a foundation for an online community with altruistic behavior. This is partly realized by
building social groups of users that have similar taste captured in user interest profiles.

The user interest profiles within the social groups can also facilitate the prioritization of
content for a user by exploiting recommendation technology. With this information, the

Fig. 1 An illustration of Tribler,

a personalized P2P television .

Implicit Interest
Learning

Local Tuner,
Hard Drive

i A &,

@ Springer

Multimed Tools Appl (2008) 36:89—113 91

My social Geography My download My Rec. My similar
friend list map List list peer list
1 —

Eininted togennt filan A%

My
profiles
Ed

Swarm list

Implicit
Indicator

My torrent
files

DLUL poef B51

helped
download

Recommendation I
engine

Similarity rark

]
Bittorrent downloading

My social Frieed Pref. Similarity |-
tHends gorsonal |0 astimator Function
n ! m Trust value
Wmport 1 Friend st fuslon Samilurity rank
nocial I_'_l P
MSN, Gmail, Buddycast Peer cache
F"?:-:;zt:;rm peer selection

Selected Peer

‘
s

Fig. 2 The system architecture of Tribler

available content in the peer-to-peer community can be explored using novel personalized
tag-based navigation.

This paper focuses on the personalization aspects of the 7ribler system. Firstly, we
review the related work. Secondly, we describe our system design and the underlying
approaches. Finally, we present our experiments to examine the effectiveness of the
underlying approaches in the 7ribler system.

2 Related work
2.1 Recommendation

We adopt recommendations to help users discover available relevant content in a more
natural way. Furthermore, it observes and integrates the interests of a user within the
discovery process. Recommender systems propose a similarity measure that expresses the
relevance between an item (the content) and the profile of a user. Current recommender
systems are mostly based on collaborative filtering, which is a filtering technique that
analyzes a rating database of user profiles for similarities between users (user-based) or
programs (item-based). Others focus on content-based filtering, which, for instance, based
on the EPG data [2].

The profile information about programs can either be based on ratings (explicit interest
functions) or on log-archives (implicit interest functions). Correspondingly, their differences
lead to two different approaches of collaborative filtering: rating-based and log-based. The
majority of the literature addresses rating-based collaborative filtering, which has been
studied in depth [16]. The different rating-based approaches are often classified as memory-
based [3, 10] or model-based [11].

In the memory-based approach, all rating examples are stored as-is into memory (in
contrast to learning an abstraction). In the prediction phase, similar users or items are sorted

@ Springer

92 Multimed Tools Appl (2008) 36:89-113

based on the memorized ratings. Based on the ratings of these similar users or items, a
recommendation for the query user can be generated. Examples of memory-based colla-
borative filtering include item correlation-based methods [21] and locally weighted
regression [3]. The advantage of memory-based methods over their model-based
alternatives is that they have less parameters to be tuned, while the disadvantage is that
the approach cannot deal with data sparsity in a principled manner.

In the model-based approach, training examples are used to generate a model that is able
to predict the ratings for items that a query user has not rated before. Examples include
decision trees [3], latent class models [11], and factor models [4]. The ‘compact’ models in
these methods could solve the data sparsity problem to a certain extent. However, the
requirement of tuning an often significant number of parameters or hidden variables has
prevented these methods from practical usage.

Recently, to overcome the drawbacks of these approaches to collaborative filtering,
researchers have started to combine both memory-based and model-based approaches [19,
23, 25]. For example, [25] clusters the user data and applies intra-cluster smoothing to
reduce sparsity. Wang et al. [23] propose a unified model to combine user-based and item-
based approaches for the final prediction, and does not require to cluster the data set a
priori.

Few log-based collaborative filtering approaches have been developed thus far. Among
them are the item-based top-N collaborative filtering approach [6] and Amazon’s item-based
collaborative filtering [15]. In previous work, we developed a probabilistic framework that
gives a probabilistic justification of a log-based collaborative filtering approaches [22] that
is also employed in this paper to make TV program recommendation in 7ribler.

2.2 Distributed recommendation

In P2P TV systems, both the users and the supplied programs are widely distributed and
change constantly, which makes it difficult to filter and localize content within the P2P
network. Thus, an efficient filtering mechanism is required to be able to find suitable
content.

Within the context of P2P networks there is, however, no centralized rating database,
thus making it impossible to apply current collaborative filtering approaches. Recently, a
few early attempts towards decentralized collaborative filtering have been introduced [1,
17]. In [17], five architectures are proposed to find and store user rating data to facilitate
rating-based recommendation: (1) a central server, (2) random discovery similar to
Gnutella, (3) transitive traversal, (4) Distributed Hash Tables (DHT), and (5) secure
Blackboard. In [1], item-to-item recommendation is applied to TiVo (a Personal Video
Recorder system) in a client-server architecture. These solutions aggregate the rating data in
order to make a recommendation and are independent of any semantic structures of the
networks. This inevitably increases the amount of traffic within the network. To avoid this, a
novel item-buddy-table scheme is proposed in [24] to efficiently update the calculation of
item-to-item similarity.

Jelasity and van Steen [13] introduced newscast an epidemic (or gossip) protocol [7] that
exploits randomness to disseminate information without keeping any static structures or
requiring any sort of administration. Although these protocols successfully operate dynamic
networks, their lack of structure restricts them to perform these services in an efficient way.

In this paper, we propose a novel algorithm, called BuddyCast, that, in contrast to
newscast, generates a semantic overlay on the epidemic protocols by implicitly clustering
peers into social networks. Since social networks have small-world network characteristics

@ Springer

Multimed Tools Appl (2008) 36:89-113 93

the user profiles can be disseminated efficiently. Furthermore, the resulting semantic
overlays are also important for the membership management and content discovery,
especially for highly dynamic environments with nodes joining and leaving frequently.

2.3 Learning user interest

Rating-based collaborative filtering requires users to explicitly indicate what they like or do
not like [3, 9]. For TV recommendation, the rated items could be preferred channels, favorite
genres, and hated actors. Previous research [5, 18] has shown that users are unlikely to
provide an extensive list of explicit ratings which eventually can seriously degrade the
performance of the recommendation. Consequently, the interest of a user should be learned
in an implicit way.

This paper learns these interests from TV watching habits such as the zapping behavior.
For example, zapping away from a program is a hint that the user is not interested, or,
alternatively, watching the whole program is an indication that the user liked that show. This
mapping, however, is not straightforward. For example, it is also possible that the user likes
this program, but another channel is showing an even more interesting program. In that case
zapping away is not an indication that the program is not interesting. In this paper we intro-
duce a simple heuristic scheme to learn the user interest implicitly from the zapping behavior.

3 System design

This section describes a heuristic scheme that implicitly learns the interest of a user in TV
programs from zapping behavior in that way avoiding the need for explicit ratings.
Secondly, we present a distributed profile exchanger, called BuddyCast, which enables the
formation of social groups as well as distributed content recommendation (ranking of TV
programs). We then introduce the user-item relevance model to predict interesting programs
for each user. Finally, we demonstrate a user interface incorporating these personalized
aspects, i.e., personalized tag-based browsing as well as visualizing your social group.

3.1 User profiling from zapping behavior

We use the zapping behavior of a user to learn the user interest in the watched TV programs.
The zapping behavior of all users is recorded and coupled with the EPG (Electronic Program
Guide) data to generate program IDs. In the Tribler system different TV programs have
different IDs. TV series that consists of a set of episodes, like “Friends” or a general “news”
program, get one ID (all episodes get the same ID) to bring more relevance among
programs.

For each user u; the interest in TV program i, can be calculated as follows:

_ WatchedLength(m, k)
k™" OnAirLength(m) - freq(m)

(1)

WatchedLength(m,k) denotes the duration that the user u; has watched program i,, in
seconds. OndirLength(m) denotes the entire duration in seconds of the program i,,, on air
(cumulative with respect to episodes or reruns). Freq(m) denotes the number of times
program i,, has been broadcast (episodes are considered to be a rerun), in other words
OndAirLength(m)/freq(m) is the average duration of a ‘single’ broadcast, e.g., average

@ Springer

94 Multimed Tools Appl (2008) 36:89-113

duration of an episode. This normalization with respect to the number of times a program
has been broadcast is taken into consideration since programs that are frequently broadcast
also have more chance that a user gets to watch it.

Experiments (see Fig. 10) showed that, due to the frequent zapping behaviors of users, a
large number of x}'’s have very small values (zapping along channels). It is necessary to
filter out those small valued x}'’s in order to: (1) reduce the amounts of user interest profiles
that need to be exchanged, and (2) improve recommendation by excluding these noisy data.
Therefore, the user interest values xj' are thresholded resulting in binary user interest
values:

v =1if x > T and y;' = 0 otherwise (2)

Consequently,)} indicates whether user u; likes program i, (y}' = 1) or not (y{" = 0).
The optimal threshold 7 will be obtained through experimentation.

3.2 BuddyCast profile exchange

BuddyCast generates a semantic overlay on the epidemic protocols by implicitly clustering
peers into social networks according to their profiles. It works as follows. Each user
maintains a list of top-N most similar users (a.k.a. taste buddies or social network) along
with their current profile lists. To be able to discover new users, each user also maintains a
random cache to record the top-N most fresh “random” IP addresses.

Periodically, as illustrated in Fig. 3a, a user connects either to one of his/her buddies to
exchange social networks and current profile list (exploitation), or to a new randomly
chosen user from the random cache to exchange this information (exploration). To prevent
reconnecting to a recently visited user in order to maximize the exploration of the social
network, every user also maintains a list with the K most recently visited users (excluding
the taste buddies).

Different with the gossip-based approaches, which only consider exploration (randomly
select a user to connect), BuddyCast algorithm considers exploration as well as exploitation.
Previous study has shown that a set of user profiles is not a random graph and has a certain
clustering coefficient [24]. That is the probability that two of user A’s buddies (top-N similar
users) will be buddies of one another is greater than the probability that two randomly
chosen users will be buddies. Based on this observation, we connect users according to
their similarity ranks. The more similar a user, the more chance it gets selected to exchange
user profiles. Moreover, to discover new users and prevent network divergence, we also add
some randomness to allow other users to have a certain chance to be selected.

To find a good balance between exploitation (making use of small-world characteristics
of social networks) and exploration (discovering new worlds), as illustrated in Fig. 3b, the
following procedure is adopted. First, 6N random users are chosen, where § denotes the
exploration-to-exploitation ratio and 0 < §N < number of users in the random cache. Then,
these random users are joined with the N buddies, and a ranked list is created based on the
similarity of their profile lists with the profile of the user under consideration. Instead of
connecting to the random users to get their profile lists, the random users are assigned the
lowest ranks. Then, one user is randomly chosen from this ranked list according to a
roulette wheel approach (probabilities proportional to the ranks), which gives taste buddies
a higher probability to be selected than random users.

Once a user has been selected, the two caches are updated. In random cache, the IP
address is updated. In the buddy cache, the buddy list of the selected user is merged. The

@ Springer

Multimed Tools Appl (2008) 36:89-113 95

ROULETTE WHEEL Buddies of v,

Ids| Profiles
—w

social network
(your buddies)

Exploitation
Frequently exchange
profiles between buddies

i Buddies of ¢,
S| Exploration Ids | Profiles
poradically exchange

rofiles with others Create) [M|(B,]

step 1 roulette

Select
random

Choose peer
D, according to B
Random peers [/ roulette u,
Ids - s,(u, B, (N) wheel: u, step 4
[6N] Join buddylists, rank and
'\ create new buddies for ¢

Ids | Profiles

peers

‘ 5: Exploitation/Exploration ratio

(a) (b)

Fig. 3 The illustration of the BuddyCast algorithm

buddy cache is then ranked (according to the similarity with the own profile), and the top-N
best ranked users are kept.

3.3 Recommendation by relevance models

In the Tribler system, after collecting user preferences by using the BuddyCast algorithm,
we are ready to use the collected user preferences to identify (rank) interesting TV programs
for each individual user in order to facilitate taste-based navigation. The following
characteristics make our ranking problem more similar to the problem of text retrieval than
the existing rating-based collaborative filtering. 1) The implicit interest functions introduced
in the previous section generate binary-valued preferences. Usually, one means ‘relevance’ or
‘likeness’, and zero indicates ‘non-relevance’ or ‘non-likeness’. Moreover, non-relevance
and non-likeness are usually not observed. This is similar to the concept of ‘relevance’ in text
retrieval. 2) The goal for rating-based collaborative filtering is to predict the rating of users,
while the goal for the log-based algorithms is to rank the items to the user in order of
decreasing relevance. As a result, evaluation is different. In rating-based collaborative
filtering, the mean square error (MSE) of the predicted rating is used, while in log-based
collaborative filtering, recall and precision are employed.

This paper adopts the probabilistic framework developed for text retrieval [14] and
proposes a probabilistic user-item relevance model to measure the relevance between user
interests and TV programs, which intends to answer the following basic question:

What is the probability that this program is relevant to this user, given his or her
profile?

To answer this question, we first define the sample space of relevance: ®. It has two
values: ‘relevant’ r and ‘non-relevant’ 7. Let R be a random variable over the sample space
@p. Likewise, let U be a discrete random variable over the sample space of user id’s:
&y ={w,...,ux} and let / be a random variable over the sample space of item id’s:
&p = {i1,...,im}, where K is the number of users and M the number of items in the
collection. In other words, U refers to the user identifiers and / refers to the item identifiers.

We then denote P as a probability function on the joint sample space @y x @; X Pp. Ina
probability framework, we can answer the above basic question by estimating the
probability of relevance P(R|U,I). The relevance rank of items in the collection &, for a
given user U = u; (i.e., retrieval status value (RSV) of a given target item toward a user)
can be formulated as the odds of the relevance:

@ Springer

96 Multimed Tools Appl (2008) 36:89-113

im? {us}

Target Item |:>

Target Item

Other users who liked
the target item

Query ltems:
other ltems that
the target user liked

Target User

— Target User

Item Representation

(a) (b)

Fig. 4 Two different models in the user-item relevance model

 log P(rlug,in)

R u, .m - — .
SV (im) log P(F|uk, im)

(3)
For simplicity, R=r, R = 7, U=uy, and /=i, are denoted as r, 7, u; and i,,, respectively.
Hence, the evidence for the relevance of an item towards a user is based on both the

positive evidence (indicating the relevance) as well as the negative evidence (indicating the

non-relevance). Once we know, for a given user, the RSV of each item 7 in the collection

(excluding the items that the user has already expressed interest in), we sort these items in

decreasing order. The highest ranked items are recommended to the user.

In order to estimate the conditional probabilities in (3), i.e., the relevance and non-
relevance between the user and the item, we need to factorize the equation along the item or
the user dimension. We propose to consider both item-based generation (i.e., using items as
features to represent the user) and user-based generation (i.e., treating users as features to
represent an item). This is illustrated in Fig. 4.

3.3.1 Item-based generation model

By factorizing P(g|u, i) with

P(uglin: 8)P(8lin)
Plulim)

the following log-odds ratio can be obtained from (3):

RSV, (i)
= log i

()
= log ‘};E"”’”“r; + log

Uy ‘i,,, N

(4)
Pinlr)P(r)
Plin[P)PF)

Equation (4) provides a general ranking formula by employing the evidences from both
relevance and non-relevance cases. When there is no explicit evidence for non-relevance,
following the language modeling approach to information retrieval [14], we now assume
that: (1) independence between u; and i, in the non-relevance case (7), i.e.,
P(uk|im,7) = P(uk|7); and, (2) equal priors for both u; and i, given that the item is non-

@ Springer

Multimed Tools Appl (2008) 36:89-113 97

relevant. Then the two terms corresponding to non-relevance can be removed and the RSV
becomes:

RSV, (in) = log P(ugin, r) + log P(in|r) (5)

Note that the two negative terms in (5) can always be added to the model, when the
negative evidences are captured.

To estimate the conditional probability P(u/|in,r) in (5), consider the following: Instead
of placing users in the sample space of user id’s, we can also use the set of items that the
user likes (denoted L,, or {i,}) to represent the user (i) (see the illustration in Fig. 4a). This
step is similar to using a ‘bag-of-words’ representation of queries or documents in the text
retrieval domain. This implies: P(ug|in,r) = P(Ly, |im, 7). We call these representing items
the query items. Note that, unlike the target item i,, the query items do not need to be
ranked since the user has already expressed interest in them.

Further, we assume that the items {i,} in the user profile list L, (query items) are
conditionally independent from each other. Although this naive Bayes assumption does not
hold in many real situations, it has been empirically shown to be a competitive approach (e.g.,
in text classification [8]). Under this assumption, (5) becomes:

RSV, (im) (6)

= log P(Ly, |im,) + log P(im|r)

= > logP(iplin,7) | +logPlin|r)

Vipiiy €Ly,
where the conditional probability P(ip|i,,) corresponds to the relevance of an item i, given
that another item i, is relevant. This probability can be estimated by counting the number of
user profiles that contain both items i, and i,,, divided by the total number of user profiles in
which i, exists:

Pt = Pl 7

Using the frequency count to estimate the probability corresponds to using its maximum
likelihood estimator. However, many item-to-item co-occurrence counts will be zero, due to
the sparseness of the user-item matrix. Therefore, we apply a smoothing technique to adjust
the maximum likelihood estimation.

A linear interpolation smoothing can be defined as a linear interpolation between the
maximum likelihood estimation and background model. To use it, we define:

P(iplim,) = (1 — A:)Ppui(ip|im,) + AiPi(ip|r)

where P,,; denotes the maximum likelihood estimation. The item prior probability P, (ip|r)
is used as background model. Furthermore, the parameter 4; in [0,1] is a parameter that
balances the maximum likelihood estimation and background model (a larger A; means
more smoothing). Usually, the best value for 4; is found from a training data by using a
cross-validation method.

@ Springer

98 Multimed Tools Appl (2008) 36:89-113

Linear interpolation smoothing leads to the following RSV:
RSV, (in) = | Y log (1 = A)Pui(iplim, 7) + AiPous(ib]r)) | + log Pu(imlr) — (8)
Vl’[,:ibELH/C

where the maximum likelihood estimations of the item prior probability densities are given
as follows:

. c(ip,r) . C(im,r)
Py = s Pt (i = 9
1(in|r)) 1(im|r)) 9)
3.3.2 User-based generation model
Similarly, by factorizing P(g|ux, in) with
Plim|ux, g)P(glux)
Pim|us)
the following log-odds ratio can be obtained from (3) :
. Plim|ug, 7) P(u|r)P(r) P(im |, 7)
RSV, (i) =1 - — —— 1 - — 1
SVulin) =108 5) T 1 Bl 71PF) & 8 Blin e, 7) (10)

When the non-relevance evidence is absent, and following the language model in
information retrieval [14], we now assume equal priors for i, in the non-relevant case.
Then, the non-relevance term can be removed and the RSV becomes:

RSV, (i) = 10g P iy |ug, 7) (11)

Instead of using the item list to represent the user, we use each user’s judgment as a
feature to represent an item (see the illustration in Fig. 4b). For this, we introduce a list ;
for each item i,, where m={1,...,M}. This list enumerates the users who have expressed
interest in the item i,,. L;, (ux) = 1 (oru; € L;,) denotes that user u; is in the list, while
L; (ux) =0 (oru ¢ L;,) otherwise. The number of users in the list corresponds to |L;,|.

Replacing i,, with L, , after we assume each user’s judgment to a particular item is

independent, we have:

RSV, (in) = log P(Li, Jug,r) = Y log P(up|us, 7) (12)

Yup:up€li,

'm >

Similar to the item-based generation model, when we use linear interpolation smoothing
to estimate P(up|uy, r), we obtain the final ranking formula:

RSV, (in) = log P(L;, |uk,r) = Z log ((1 = Ay) Py (up|ug, 7) + Ay Py (up|)) (13)

Yup:up €L,

where 4, € [0, 1] is the smoothing parameter.
3.4 Statistical ranking mechanisms

Our models provide a very intuitive understanding of the statistical ranking mechanisms
that play a role in log-based collaborative filtering. More formally, from (8) and (13), we

@ Springer

Multimed Tools Appl (2008) 36:89-113 99

can obtain the following ranking functions for the user-based generation and item-based
generation models, respectively (see [22] for the detailed information):

Item-based Generation Model:

Rank,, (i,) = 3 log (1 L a —Ai)Pml(z'bhm,r))

Vipip €Ly, NCip i) >0 APt (i)
+ log P(im|r) (14)

User-based Generation Model:

. (1 = A) Pt (up e, 7)
Rank,, (i,,) = 1 1
anky in) > og 1+ (L]

Yy up €L, Oe(up,uy

+ |L;, |log Ay (15)

Im

From the item-based generation model (14), we can see that: (1) The relevance rank of a
target item i,, is the sum of its popularity (prior probability P(i,|r)) and its co-occurrence
(first term in (14)) with the items i, in the profile list of the target users. The co-occurrence
is higher if more users express interest in target item (i,,) as well as item i,. However, the
co-occurrence should be suppressed more when the popularity of the item in the profile of
the target user (P(ip|r)) is higher. (2) When A; approaches 0, smoothing from the
background model is minimal. It emphasizes the co-occurrence count, and the model
reduces to the traditional item-based approach [5]. When the A; approaches 1, the model is
more smooth, emphasizing the background model. When the parameter equals 1, the
ranking becomes equivalent to coordination level matching, which is simply counting the
number of times for which c(ip, i,,) > 0.

From the user-based generation model (15), we can see that the relevance rank is
calculated based on the opinions of other similar users. For a target user and target program,
the rank of their relevance is basically the sum of the target user’s co-occurrence with other
similar users who have liked the target program. The co-occurrence is higher if there are
more programs the two users agree upon (express interest in the same program). However,
the co-occurrence should be suppressed more when the similar user has liked more
programs, since he or she is less discriminative.

3.5 Personalized user interfaces

When designing a user interface for a distributed system like Tribler, it is important to reach
and maintain a critical mass since the users are the decisive factors of the system’s success
[9]. Therefore, several usability aspects have to be dealt with: (1) the wealth and complexity
of content, (2) the lack of trust among users, (3) no guarantee of system or content integrity,
and (4) the need for voluntary cooperation among users. Here we only addresses and
illustrates the first two aspects.

A user is unable to deal with an unlimited number of programs to choose from. Our
distributed recommender system helps to filter according to the implicitly learned interests.
Subsequently it becomes important to communicate the results in a way that makes sense to

@ Springer

100 Multimed Tools Appl (2008) 36:89-113

a user and allows for exploration and exploitation of the available content in spite of the
lack of trust amongst users.

In Fig. 5 we illustrate our thoughts on a user interface for a decentralized recommender
system, as applied in Tribler. Figure 5a is Tribler’s opening screen. In Fig. 5b we show a
user’s social network in which relations are expressed in social distances: friend, friend-
of-a-friend, or taste buddy (which is obtained by running our BuddyCast algorithm).
With this the exploitation of the community is stimulated because users can look into each
other’s hard disks directly, thus rewarding the risks users take when allowing taste
buddies to communicate with them. Figure 5c shows the personalized tag-based
navigation, which is a popular way of displaying filtered results or recommendations,
as in http://www.Flickr.com or http://www.CiteULike.org. The font size of each tag
reflects its relevance towards user. The relevance rank of each tag can be calculated by
summing up all the relevance ranks from its attached programs. This feature incorporates
a reflection on the origins, and trustworthiness of the recommended content. We believe
this will reduce the uncertainty about the quality and integrity of the programs and lack of
trust among users. Moreover it stimulates users to explore new content in a natural way.
Figure 5d demonstrates content descriptions of recommended programs. As with the tag-
based navigations, it incorporates a reflection on the origins, quality, and integrity.
Furthermore, it provides more background information on items, like in http:/www.
IMDb.com.

4 Experiments and results

We have conducted a set of experiments with the Tribler system on a real data set
containing the TV zapping behavior of users to address the following questions:

1. What zapping behaviors do we observe and what can be learned from these behaviors
to implicitly derive the interest of users in TV programs?

2. How sensitive is the recommendation of TV programs as a function of the user interest
threshold 7 and what is the optimal value taking into account the efficiency of
exchanging interest between users?

3. How efficient is our proposed BuddyCast algorithm compared to the newscast
algorithm when we want to exchange user interest profiles?

4.1 Data set

We used a data set that contained the TV zapping behavior of 6,000 Dutch users over 19
channels from the SKO foundation.! The remote controls actions were recorded from
January 1 to January 31, 2003. Some basic characteristics of this data set are shown in
Fig. 6. We employed the EPG data set obtained from http://Omroep.nl (an online TV
program guide) to find TV program IDs.? This resulted in 8,578 unique programs and
27,179 broadcasting slots over the 19 Channels in that period (this includes reruns and
episodes of the samne TV program). Figure 9 shows statistics about the number of times

! http://www.kijkonderzoek.nl
2 http://omroep.nl

@ Springer

http://www.Flickr.com
http://www.CiteULike.org
http://www.IMDb.com
http://www.IMDb.com
http://Omroep.nl
http://www.kijkonderzoek.nl
http://omroep.nl

Multimed Tools Appl (2008) 36:89-113 101

(© (d)

Fig. 5 User interface of Tribler

TV programs are broadcast. For instance, news is broadcast several times a day. Series have
different episodes and are broadcast for example weekly.

Another dataset we used to evaluate our recommendation method is called Audio-
scrobbler dataset. The data set is collected from the music play-lists of the users in the
Audioscrobbler community® by using a plug-in in the users’ media players (for instance,
Winamp, iTunes, XMMS etc). Plug-ins send the title (song name and artist name) of every
song users play to the Audioscrobbler server, which updates the user’s musical profile with
the new song. That is, when a user plays a song in a certain time, this transaction is
recorded as a form of {userID, itemID, t} tuple in the database.

4.2 Observations of the data set

This SKO TV data set can be used to analyze the zapping behavior of users for particular
TV programs. In Fig. 7 this is shown for a more popular movie, “Live and Let Die” (1973),
and a less popular movie, “Someone she knows” (1994).

For example, when we look at the beginning of the two programs, it clearly shows the
difference of the user attention for the less popular film, i.e., the number of watching users
drops significantly for the first 5 min or so. Probably, these users first zapped into the
channel to check out the movie and realized that it was not interesting movie for them and
zapped away. Contrarily, the number of watching users steadily increasing in the first
minutes for the more popular.

Another interesting observation in both figures is that during the whole broadcasting
time, there were some intervals of about 5—10 min, in which the number of watching users

3 https://last.fim
@ Springer

https://last.fm

102 Multimed Tools Appl (2008) 36:89-113

Fig. 6 SKO data set of user A plot of number of watched program per user
actions on remote controls 250 T T T T T T T T T

i o N
o o o
S o S
T T T

Number of watched program per user

<]
o
T

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Users
(a)

A plot of number of users per program
1000 T T T T T T T T T

Number of users per program

0 100 200 300 400 500 600 700 800 900 1000
Item

(b)

dropped. This is because some users left the channel when commercials began and zapped
back again when they had supposedly ended.

Figure 8 shows the number of users with respect to their percentages of watching times
(WatchLenght(k,m)/OnAirlength(m)) for programs with different number of times that they
are broadcast (on-air times of 1, 5 and 9).

This shows clearly two peaks: the larger peak on the left indicates a large number of
users who only watched small parts of a program. The second smaller peak on the right
indicates that a large number of users watched the whole programs once regardless of the
number of times that the program was broadcast. That is, the right peak happens in 20% of
the programs that are broadcast five times (one fifth), and in 11% of the programs that are
broadcast nine times (one ninth), etc. There is a third peak which happens in 22% in the

@ Springer

Multimed Tools Appl (2008) 36:89-113 103

programs which are broadcast nine times. This indicates that there are still a few users who
watched the entire program twice, for example to follow a series.

These observations motivated us to normalize the percentage of watching time by the
number of broadcastings of a program as explained in (2), in order to arrive at the measure
of interest within a TV program. This normalized percentage is shown in Fig. 10. Now all
the second peaks are located at the 100% position.

4.3 Learning the user interest threshold

The threshold level, 7, above which the normalized percentage of watching time is
considered to express interest in a TV program (3) is determined by evaluating the
performance of the recommendation for different setting of this threshold.

The recommendation performance is measured by using precision and recall of a set of
test users. Precision measures the proportion of recommended programs that the user truly

Fig. 7 Program attention 400
350

300 |

200

150

Number of Watching Users

100

0 L L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

Minutes

(a)

500 r

200

Number of Watching Users

0 s s s s s s s s L

0 20 40 60 80 100 120 140 160 180
Minutes

(b)

@ Springer

104

Multimed Tools Appl (2008) 36:89-113

Fig. 8 Percentage of watching
time for programs with different
on-air times

@ Springer

Count

Count

Count

35 x 10

2.5 H

9000

10 20 30 40 50 60 70 80 90 100
Watch Time (Percentage)

(a)

8000

7000 H

6000 H

5000

4000

3000

2000

1000

s —_ L o L L L

18000

10 20 30 40 50 60 70 80 90 100
Watch Time (Percentage)

(b)

16000

14000 H

12000

10000

8000

6000

4000

2000

10 20 30 40 50 60 70 80 90 100
Watch Time (Percentage)

(c)

Multimed Tools Appl (2008) 36:89-113 105

Fig. 9 Program on-air times dur- 4 T T T T
ing Jan. 1 to Jan 30, 2003

35 4

log(count)

L

100 150 200 250
On-air Times

likes. Recall measures the proportion of the programs that a user truly likes that are
recommended. In case of making recommendations, precision seems more important than
recall. However, to analyze the behavior of our method, we report both metrics on our
experimental results.

Since we lack information on what the users liked, we considered programs that a user
watched more than once (x;,,>1) to be programs that the user likes and all other programs
as shows that the user does not like. Note that, in this way , only a fraction of the programs
that the user fruly liked are captured. Therefore, the measured precision underestimates the
true precision [12].

For cross-validation, we randomly divided this data set into a training set (80% of the
users) and a test set (20% of the users). The training set was used to estimate the model.
The test set was used for evaluating the accuracy of the recommendations on the new users,

Fig. 10 Normalized percentage 5.2 - - - - - - - - -
of watching time

log(Count)

3'20 10 20 30 40 50 60 70 80 90 100

Watch %

@ Springer

106

Multimed Tools Appl (2008) 36:89-113

Fig. 11 Recommendation perfor-
mance Vv.s. threshold 7'

Recommendation Precision

Recommendation Recall

12r

0 L L L L

0.4% T

—6— Top-1 return
—— Top-10 return
—*— Top-20 return
—+— Top—40 return
Top-60 return
—*— Top-80 return
—&4— Top-100 return

0.4 0.5 0.6

Threshold (Percentage)

(a)

—©6— Top-1 return
»— Top-10 return
—— Top-20 return
—+— Top—40 return
Top—60 return
—*— Top-80 return
—4=A— Top-100 return

0.3 >

0.2

0.1

0 ! ! 1 I

1 1
0.4 0.5 0.6

Threshold (Percentage)

(b)

whose user profiles are not in the training set. Results are obtains by averaging five
different runs of such a random division.

We plotted the performance of recommendations (both precision and recall) against the
threshold on the percentage of watching time in Fig. 11. We also varied the number of
programs returned by the recommender (top-1, 10, 20, 40, 80 or 100 recommended TV
programs). Figure 11a shows that in general, the threshold does not affect the precision too
much. For the large number of programs recommended, the precision becomes slightly
better when there is a larger threshold. For larger number of recommended programs, the
recall, however, drops for larger threshold values (shown in Fig. 11b). Since the threshold
does not affect the precision too much, a higher threshold is chosen in order to reduce the

@ Springer

Multimed Tools Appl (2008) 36:89-113 107

Fig. 12 Convergence of our !

BuddyCast algorithm
09

buddycast| |
— — newscast

Percentage of overlap
o
o

L L L L
20 40 60 80 100 120 140 160
Iterations

length of the user interest profiles to be exchanged within the network. For that reason we
have chosen a threshold value of 0.8.

4.4 Convergence behavior of BuddyCast

We have emulated our BuddyCast algorithm using a cluster of PCs (the DAS-2* system).
The simulated network consisted of 480 users distributed uniformly over 32 nodes. We
used the user profiles of 480 users. Each user maintained a list of ten taste buddies (N=10)
and the 10 last visited users (K=10). The system was initialized by giving each user a
random other user. The exploration-to-exploitation J was set to 1.

Figure 12 compares the convergence of BuddyCast to that of newscast (randomly select
connecting users, i.e., §— o). After each update we compared the list of top-N taste buddies
with a pre-compiled list of top-N taste buddies generated using all data (centralized
approach). In Fig. 12, the percentage of overlap is shown as a function of time (represented
by the number of updates). The figure shows that the convergence of BuddyCast is much
faster than that of the Newscast approach.

4.5 Recommendation performance

We first studied the behavior of the linear interpolation smoothing for recommendation. For
this, we plotted the average precision and recall rate for the different values of the
smoothing parameter A; in the Audioscrobbler data set. This is shown in Fig. 13.

Figure 13a and b show that both precision and recall drop when A, reaches its extreme
values zero and one. The precision is sensitive to 4;, especially the early precision (when
only a small number of items are recommended). Recall is less sensitive to the actual value
of this parameter, having its optimum at a wide range of values. Effectiveness tends to be
higher on both metrics when 4; is large; when 4; is approximately 0.9, the precision seems

* http://www.cs.vu.nl/das2

@ Springer

http://www.cs.vu.nl/das2

108 Multimed Tools Appl (2008) 36:89-113

Fig. 13 Recommendation perfor-
. . . —g— Top-1relum
mance of the linear interpolation 06k —s— Top-10relum
. % —w»— Top-20return|
SmOOthmg —+— Top—40return|
e 05
S
B
8
o
=3
S 04
8
e
@
E
£
t=1
g 0.3
(1
0.2
0.1 . . : A : : . . i ;
01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
lambda
(a)
—&— Top=1relumn
—— Top-10 return
—+w— Top-20return
o5l —+— Top—40return
Eo4l
i
g -P’"A_ e S
b
503
E
E
1=
&
0.2 [—
0.1 f, —s— S
o le—2— ' 2 s " T 5 & -
0 01 0z 03 0.4 05 0.6 0.7 08 0.9 1
lambda

optimal. An optimal range of A; near one can be explained by the sparsity of user profiles,
causing the prior probability P,,(ip|7) to be much smaller than the conditional probability
P (ip|im, 7). The background model is therefore only emphasized for values of 4; closer to
one. In combination with the experimental results that we obtained, this suggests that
smoothing the co-occurrence probabilities with the background model (prior probability
P,y (ip|r)) improves recommendation performance.

Next, we compared our relevance model to other log-based collaborative filtering
approaches. Our goal here is to see, using our user-item relevance model, whether the
smoothing and inverse item frequency should improve recommendation performance with
respect to the other methods. For this, we focused on the item-based generation (denoted as
UIR-Item). We set 4; to the optimal value 0.9. We compared our results to those obtained

@ Springer

Multimed Tools Appl (2008) 36:89-113 109

Table 1 Comparison of recommendation performance

Top-1 item Top-10 item Top-20 item Top-40 item
(a) Precision
UIR-item 0.62 0.52 0.44 0.35
Item-t FIDF 0.55 0.47 0.40 0.31
Ttem-CosSim 0.56 0.46 0.38 0.31
Item-CorSim 0.50 0.38 0.33 0.27
User-CosSim 0.55 0.42 0.34 0.27
(b) Recall
UIR-item 0.02 0.15 0.25 0.40
Item-TFIDF 0.02 0.15 0.26 0.41
Item-CosSim 0.02 0.13 0.22 0.35
Item-CorSim 0.01 0.11 0.19 0.31
User-CosSim 0.02 0.15 0.25 0.39

with the fop-N-suggest recommendation engine, a well-known log-based collaborative
filtering implementation® [6]. This engine implements a variety of log-based recommen-
dation algorithms. We compared our own results to both the item-based TF xIDF-like
version (denoted as ITEM-TFIDF) as well the user-based cosine similarity method (denoted
as User-CosSim), setting the parameters to the optimal ones according to the user manual.
Additionally, for item-based approaches, we also used other similarity measures: the
commonly used cosine similarity (denoted as Item-CosSim) and Pearson correlation
(denoted as Item-CorSim). Results are shown in Table 1.

For the precision, our user-item relevance model with the item-based generation (UIR-
Item) outperforms other log-based collaborative filtering approaches for all four different
number of returned items. Overall, 7F xIDF-like ranking ranks second. The obtained
experimental results demonstrate that smoothing contributes to a better recommendation
precision in the two ways also found by [26]. On the one hand, smoothing compensates for
missing data in the user-item matrix, and on the other hand, it plays the role of inverse item
frequency to emphasize the weight of the items with the best discriminative power. With
respect to recall, all four algorithms perform almost identically. This is consistent to our first
experiment that recommendation precision is sensitive to the smoothing parameters while
the recommendation recall is not.

5 Conclusions

This paper discussed personalization in a personalized peer-to-peer television system called
Tribler, i.e., (1) the exchange of user interest profiles between users by automatically
creating social groups based on the interest of users, (2) learning these user interest profiles
from zapping behavior, (3) the relevance model to predict user interest, and (4) a
personalized user interface to browse the available content making use of recommendation
technology. Experiments on two real data sets show that personalization can increase the
effectiveness to exchange content and enables to explore the wealth of available TV
programs in a peer-to-peer environment.

3 http://www-users.cs.umn.edu/~karypis/suggest/

@ Springer

http://www-users.cs.umn.edu/~karypis/suggest/

110 Multimed Tools Appl (2008) 36:89-113

References

—_

w

W

~N o

o]

o

10.
11.

13.

14.

15.

16.

18.

19.

20.

2

—_

22

23.

24.

25.

26.

. Ali K, van Stam W (2004) TiVo: making show recommendations using a distributed collaborative

filtering architecture. International ACM SIGKDD conference on knowledge discovery and data mining

. Ardissono L, Kobsa A, Maybury M (Eds) (2004) Personalized digital television. Targeting programs to

individual users. Kluwer

. Breese JS, Heckerman D, Kadie C (1998) Empirical analysis of predictive algorithms for collaborative

filtering. Conference on uncertainty in artificial intelligence

. Canny J. (1999) Collaborative filtering with privacy via factor analysis. Proceedings of the 25th annual

international ACM SIGIR conference on Research and development in information retrieval

. Claypool M, Waseda M, Le P, Brow DC (2001) Implicit interest indicators. International conference on

intelligent user interfaces

. Deshpande M, Karypis G (2004) Item-based top-N recommendation algorithms. ACM Trans Inf Sys
. Eugster PT, Guerraoui R, Kermarrec AM, Massoulie L (2004) From epidemics to distributed computing.

IEEE Comput 21(4):341-374

. Eyheramendy S, Lewis D, Madigan D (2003) On the naive bayes model for text categorization. In

Proceedings of artificial intelligence and statistics

. Fokker JE, De Ridder H (2005) Technical report on the human side of cooperating in decentralized

networks. Internal report I-Share Deliverable 1.2. Delft University of Technology. http://www.cs.vu.nl/
ishare/public/I-Share-D1.2.pdf

Hofmann T (2004) Latent semantic models for collaborative filtering. ACM Trans Inf Sys

Herlocker JL, Konstan JA, Borchers A, Riedl J (1999) An algorithmic framework for performing
collaborative filtering. International ACM SIGIR conference on research development on information
retrieval

. Hull D (1993) Using statistical testing in the evalution of retrieval experiments. International ACM

SIGIR conference on research development on information retrieval

Jelasity M, van Steen M (2002) Large-scale newscast computing on the internet. Internal report IR-503,
Vrije Universiteit, Department of Computer Science

Lafferty J, Zhai C (2003) Probabilistic relevance models based on document and query generation. In:
Croft WB, Lafferty J (eds) Language Modeling and information retrieval. Kluwer

Linden G, Smith B, York J (2003) Amazon. com recommendations: item-to-item collaborative filtering.
IEEE Internet Computing

Marlin B (2004) Collaborative filtering: a machine learning perspective. Master’s thesis, Department of
Computer Science, University of Toronto

. Miller BM, Konstan JA, Riedl J (2004) PocketLens: Toward a personal recommender system. ACM

Trans Inf Sys

Nichols D (1998) Implicit rating and filtering. In Proceedings of 5th DELOS workshop on filtering and
collaborative filtering, pp 31-36, ERCIM

Pennock D, Horvitz E, Lawrence S, Lee Giles C (2000) Collaborative filtering by personality diagnosis:
a hybrid memory and model-based approach. UAI 2000: 437-480

Pouwelse JA, Garbacki P, Wang J, Bakker A, Yang J, losup A, Epema DHJ, Reinders MJT, van Steen M,
Sips HJ (2006) Tribler: A social-based peer-to-peer system. International workshop on peer-to-peer
systems (IPTPS’06)

. Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation

algorithms. International World Wide Web Conference

Wang J, de Vries AP, Reinders MJT (2006a) A user-item relevance model for log-based collaborative
filtering. European conference on information retrieval

Wang J, de Vries AP, Reinders MIT (2006b) Unifying user-based and item-based collaborative filtering
by similarity fusion. International ACM SIGIR conference on research development on information
retrieval

Wang J, Pouwelse J, Lagendijk R, Reinders MJT (2006¢) Distributed collaborative filtering for peer-to-
peer file sharing systems. ACM Symposium on Applied Computing

Xue G, Lin C, Yang Q, Xi W, Zeng H, Yu Y, Chen Z (2005) Scalable collaborative filtering using
cluster-based smoothing. International ACM SIGIR conference on research development on information
retrieval

Zhai C, Lafferty J (2001) A study of smoothing methods for language models appzlied to Ad Hoc information
retrieval. International ACM SIGIR conference on research development on information retrieval

@ Springer

http://www.cs.vu.nl/ishare/public/I-Share-D1.2.pdf
http://www.cs.vu.nl/ishare/public/I-Share-D1.2.pdf

Multimed Tools Appl (2008) 36:89—113 111

Jun Wang received the B.E. degree in electrical engineering from the Southeast University, China, and the
MSc degree in computer science from the National University of Singapore. He is currently pursuing the
PhD degree with Faculty of Electrical Engineering, Mathematics and Computer Science (EWI), Delft
University of Technology, The Netherlands. He has published over 20 research papers including IEEE Trans.
on Multimedia, ACM Multimedia System Journal, ACM SIGMM and ACM SIGIR. He received the best
Doctoral Consortium award in ACM SIGIR 2006. His research interests include: collaborative filtering
(recommender systems), information retrieval, pattern recognition and multimedia information systems
(content analysis, retrieval, and personalization).

Johan A. Pouwelse is an assistant professor at Delft University of Technology. He is the technical
coordinator of a team of 16 people who are working on P2P content sharing. This team has developed the
Tribler P2P system. Some time ago he conducted one of the largest easurements of the Bittorrent P2P
network. This detailed measurement study ran over a period of two years and discovered many unique
properties of this P2P market leader. He delivered a statement for the Federal Trade Commission in
Washington, was a visiting scientist at Massachusetts Institute of Technology (MIT), and recently spent a few
months at Harvard Business School to study the economic impact of movie downloads on Hollywood.

@ Springer

112 Multimed Tools Appl (2008) 36:89-113

Jenneke Fokker is a PhD student at Delft University of Technology within the department of Human
Information Communication Design. She holds a Master’s Degree in Industrial Design Engineering, for
which she worked with the design agency Bureau Mijksenaar that specializes in consultancy and the creation
of visually oriented information systems. In September 2004 she started on a PhD project called Inducing
Human Cooperation in Peer-to-Peer Systems. Believing that users are the decisive factor for the success of
any Peer-to-Peer system, she investigates what social psychological phenomena could stimulate users to
engage voluntarily and massively in specific forms of cooperative behavior.

Arjen P. de Vries received his PhD in Computer Science from the University of Twente in 1999, on the
integration of content management in database systems. He is especially interested in the design of database
systems that support search in multimedia digital libraries. He has worked on a variety of research topics,
including (multimedia) information retrieval, database architecture, query processing, retrieval system
evaluation, and ambient intelligence. Arjen works as a postdoctoral researcher at the CWI, the National
Research Institute for Mathematics and Computer Science in the Netherlands. He is also associate professor
in the area of multimedia data management at the Technical University of Delft.

@ Springer

Multimed Tools Appl (2008) 36:89-113 113

Marcel J.T. Reinders received his MSc degree in Applied Physics and a PhD degree in Electrical
Engineering from Delft University of Technology, The Netherlands, in 1990 and 1995, respectively. Recently
he became a Professor in Bioinformatics within the Mediamatics Department of the Faculty of Electrical
Engineering, Mathematics and Computer Science at the Delft University of Technology. The background of
Prof. Reinders is within pattern recognition. Besides studying fundamental issues, he applies pattern
recognition techniques to the areas of bioinformatics, computer vision and context-aware recommender
systems. His special interest goes towards understanding complex systems (such as biological systems) that
are severely under-sampled. Current fields of interest: Bioin-formatics, pattern recognition, computer vision,
data mining, recommender systems and man-machine interfacing.

@ Springer

	Personalization on a peer-to-peer television system
	Abstract
	Introduction
	Related work
	Recommendation
	Distributed recommendation
	Learning user interest

	System design
	User profiling from zapping behavior
	BuddyCast profile exchange
	Recommendation by relevance models
	Item-based generation model
	User-based generation model

	Statistical ranking mechanisms
	Personalized user interfaces

	Experiments and results
	Data set
	Observations of the data set
	Learning the user interest threshold
	Convergence behavior of BuddyCast
	Recommendation performance

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

