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Abstract Searching for relevant images given a query term is an important task in
nowadays large-scale community databases. The image ranking approach presented
in this work represents an image collection as a graph that is built using a multimodal
similarity measure based on visual features and user tags. We perform a random
walk on this graph to find the most common images. Further we discuss several
scalability issues of the proposed approach and show how in this framework queries
can be answered fast. Experimental results validate the effectiveness of the presented
algorithm.
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1 Introduction

With the emergence and spread of digital cameras in everyday use the number of
images in personal and online collections grows daily. For example, the Flickr™
photo repository now consists of more than four billion images. Such huge image
databases require efficient techniques for navigating, labeling, and searching.
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In this work we focus on the goal of selecting relevant images given a query
term, i.e. finding images showing content that most people associate with the query
term. More specifically we aim to solve this image search problem on a large-scale
community database such as Flickr where images are often associated with different
types of user generated metadata, e.g. tags, date & time, and location.

Our proposed image ranking approach has been inspired by [8] where the
PageRank method [19] has been adapted to the visual domain. The PageRank
approach is a method to rank webpages according to their importance. It builds a
graph representing the link structure of the web. The importance of a webpage is
assumed to be proportional to the number of hyperlinks pointing towards this page,
i.e. the number of pages linking it. Transferring this approach to our image search
task we assume that the relevance or importance of an image is proportional to the
number of images showing similar content. As we consider community databases, i.e.
databases with images from many different authors/photographers, this assumption
is justified by the following: If an image has many close neighbors all showing the
same content and being associated with similar metadata then the respective images’
authors agree that this is an important shot of the respective content.

The main difficulty in such an approach is to reasonably define the similarity
between two images, i.e. to determine if two images show the same content. The
authors in [8] calculate the images’ distance based on the number of matching
local features between two images. This approach works well for landmarks or
product images as in such cases typically many images exist showing the exact same
object. However, when searching for object categories or scenes we cannot expect to
reliably match the local image descriptors. Thus we use a more sophisticated image
description based on automatic content analysis. Moreover we do not rely solely on
the automatically extracted visual content description for similarity definition, but we
also exploit an image description based on the available metadata. More specifically
we also use an representation based on the author’s tags.

However, establishing links between all pairs in a huge image collection does not
scale well, as this results into a complete graph and computing similarities between
images is costly. Thus we also consider scalability issues when designing the link
structure of our graph. The original PageRank method introduces only a limited
amount of links in the graph due to the hyperlink structure of the web. Opposing
to the hyperlink structure in the web context, there exists no similar link structure
between images which we can exploit in our image graph. Therefore we rely on a
nearest neighbor approach and compute similarities only between images in small
subsets.

Finally, computing a separate relevance score for each image and each query
term is computationally inefficient. Thus, based on our scalable nearest neighbor ap-
proach, we show how to compute the relevance of an image in a query-independent
fashion. We evaluate our proposed image retrieval method extensively on a real-
world large-scale database in user studies.

1.1 Related work

There exist many works addressing the task of searching and ranking photos in (com-
munity) databases. For instance there are approaches that aim to find representative
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images of landmarks [2, 10, 13, 26]. Another work aims to find iconic object
images [1] using cluster centroids and identifying images with clear foreground
objects.

There are image search approaches that rely on the user tags associated with the
images. The main challenge is here posed by the ambiguity and subjectivity of user
annotations in such community databases, making the direct application of text
search approaches difficult. Therefore many approaches analyze and exploit the
visual image content to improve the noisy labeling. Li et al. [12] and Liu et al. [16]
both propose methods that use a visual content description to learn a tag’s relevance
to an image. In [12] the authors determine a tag’s relevance by nearest neighbor
voting. The latter work builds a graph using the tags associated with an image and
performs a random walk to determine the tag relevance. The re-ranked tag lists are
then used to retrieve images. We will use this approach as one baseline for our user
studies conducted in Section 5.

On the other hand there are approaches that directly analyze images and rely only
on a visual content description, e.g. [4, 8], where the former work uses a classifier.
However, a classifier needs to be trained on (carefully) labeled data which is not
available in most scenarios.

Recently there have been some works exploiting multiple modalities for image
search applications. Raguram and Lazebnik [22] perform joint clustering in a space
built from visual and tag descriptors to find iconic summaries of abstract concepts.
Wang and Forsyth [25] retrieve object images from webpages by analyzing the
surrounding text and the image itself. In [24], Schroff et al. use the surrounding text
of web images for re-ranking purposes before training a SVM classifier based on
visual features.

Our multimodal ranking approach has been inspired by the graph-based approach
presented by Jing and Baluja [8]. Here the authors construct an image graph where
vertices represent images and edge weights are proportional to the visual similarity
between two images. An importance score is computed for each image and query
term by performing random walk on this graph. However, in contrast to their product
image search scenario, our goal is to perform retrieval of objects categories and
scenes from community databases with very diverse images depicting objects in
their natural context. Also, a query-dependent graph is used in [8] to compute the
importance score. In this work we propose to compute a global ranking independent
of any predefined query. We use multiple modalities to build our image graph, more
precisely visual features and user tags. We show that our multimodal ranking method
improves performance over the unimodal case. The work by Winston et al. [7] is
similar to our method. However they employ a context graph in a different domain
as they rank videos based on multimodal story-level similarities. Text transcriptions
and visual similarity based on near-duplicate detection are used to build a graph
which in turn is refined by random walk.

We also address scalability issues in our approach. In order to let our approach
scale with the steadily growing size of image repositories, we exploit a nearest
neighbor approach for graph construction. This idea has been motivated by [5],
where the authors propose a framework for structural analysis of image databases
using spectral clustering and spectral dimensionality reduction. The experimental
results presented in [7] as well as the discussion in [20] prove the rationality of nearest
neighbor approaches in a random walk context.
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1.2 Contribution
The main contributions of this paper are:

1. We present a query-by-term image ranking approach that relies on a graph where
the images are linked by their similarities. We show that using similarities based
on both user annotations and visual content improves results.

2. Based on this image ranking approach we propose a self-contained image
retrieval method which is designed to scale well with the increasing size of image
repositories. More specifically we show how to appropriately modify the link
structure of the graph and how to efficiently compute the image similarities
needed to build the graph.

3. In our experiments on a large-scale real-world database we demonstrate the
effectiveness of our approach. Our system yields highly satisfactory retrieval
results for different kinds of query terms such as object and scene categories.
In addition, we evaluate an extension such that the ranking score is computed
independently of the query term resulting in a very effective, scalable image
search.

1.3 Organization

This paper is organized as follows: Section 2 describes our proposed image ranking
approach. In Section 3 we discuss the implementation of the presented method in
more detail and address scalability issues. An analysis of the proposed algorithm’s
complexity is given in Section 4 and we evaluate the approach experimentally on a
large-scale image database in Section 5. Section 6 summarizes our results.

2 Approach

Given a large-scale collection consisting of images and their respective metadata our
goal is to find images relevant to a given query term. We define a relevant image as
one showing content that most people associate with the query term. For now we
focus on the case where only one query term is given, however, our method can be
extended to multi-term queries.

In order to perform image search given a query term, we start with a broad set
of images that satisfy the query. In our implementation this set simply includes all
images that have been tagged with the query term by their authors. Since this image
set is derived automatically based on this simple constraint, it contains a significant
number of noisy images not necessarily showing the desired image content due to the
subjectivity and ambiguity of tags. Besides these images that are somehow related
to the query term, we have neither additional data nor information about which
images are preferred. Thus, we need to determine a score for each image indicating
its relevance or importance to the current query.

Assuming that the importance of an image is proportional to the number of images
showing similar content, we build a graph representing the relationships of all images
in the database. Its vertices represent our images and the edges their multimodal
similarity. Those multimodal similarities are based on visual and textual features.
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We then perform a random walk on this graph to determine a score for each image
indicating its importance. This importance score reflects the likelihood of arriving in
a certain vertex after a random walk over the given graph. We can then automatically
rank the images in the former mentioned subset according to their importance score.

In the following subsections, we describe in detail how we build our similarity
graph and review the random walk.

2.1 Multimodal similarity graph

The link structure as well as the weights associated with the edges are fundamental
for the performance of our graph-based approach. Hence, the first step in building a
similarity graph is to define an appropriate distance measure for comparing images.

Previous work [8] on image ranking uses only the visual content to compare
images. On the other hand it has been shown in the context of query-by-example
retrieval that image descriptions based on user annotations outperform a represen-
tation based on visual features. Moreover it has been shown in recent work [15, 23]
that using multiple cues to find similar images boosts performance over using a
single modality, either tags or visual features. Therefore we propose to use a distance
measure for image comparison that combines the two modalities—user annotations
and image content (see Fig. 1).

We start by computing two descriptions for an image, one for each modality. In
our implementation we represent our images by automatically extracted topic dis-
tributions. Details of our image representations are discussed in Section 3. It should
be noted that our ranking system is not constrained to specific representations or
modalities. However we use a low-dimensional vector description of an image in its
respective modality as it allows to easily compute distances between two such vector
representations.

Fig.1 Images are compared
by using the similarities

in two different domains,

i.e. by using visual and textual
features (tags)

4 jacksonvillezoo, zoo,
jacksonville, jaguar,

trickortreat,
halloween, jaguar,
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Assuming we have a vector representation of the image content for each modality
o separately, one based on text features, i.e. tags, and the other based on visual
features, we define an image relevance score as

(1)

1,0)—1,(j
0ol ) = exp (— |20 _ (’)”1>

where | 1, (i) — 1,(j)||, denotes in our case the L distance of the representation 7, (i)
and /,(j) of images i and j. o,, is a normalization constant that was set equal to the
median of the pairwise L distance of all images. With the equation above we obtain
a relevance score between each pair of images for each modality. We then fuse both
scores linearly to a combined image similarity measure s;;:

Sij = B+ Puisual (&, ]) +d-8)- wtag(i’ ]) (2)

where § € [0, 1] determines the weight between visual- and tag-based features. In
Section 5 we evaluate the optimal setting for g experimentally by user studies.

Using the above defined similarity measure we are able to build our image
graph. However this results in a complete graph (i.e. a graph having links between
all images). Establishing, storing, and processing a fully connected graph becomes
difficult when considering very large image databases, as the number of links would
grow quadratically. Therefore we link each image only to its k-nearest neighbors,
thus the number of edges grows only linearly in the number of images. Given an
image we consider other images to be among the k-nearest neighbors if the distance
between the corresponding vector representations is among the smallest k distances.
This is equivalent to choosing the k images as neighbors which have the largest
similarity according to Eq. 2.

It should be noted that due to the nearest neighbor approach, the link structure of
our graph differs considerably from a complete graph. Besides its resulting sparsity,
links established in the graph are not bidirectional in general. Although the used
similarity defined in Eq. 2 is symmetric, the neighborhood of an image is not as it is
defined by its k-nearest neighbors, not by the absolute distance value itself. Figure 2
visualizes the local structure of such an image graph.

As we target the search in community databases where users upload their images,
it is necessary to take special care to avoid artifacts introduced by users. For instance,
a single user may contribute multiple images to our image graph. Each link from one
image to another represents a vote for the other image’s relevance. In order to limit
a user’s influence, we apply the following two restrictions:

— A user may not vote for any of his own images. That is, no links between images
of the same user are allowed as this would make the ranking vulnerable to
manipulation by a single user.

— If an image has an incoming link from more than one image of a particular
owner, the respective link weights are normalized by the number of incoming
links originating from that owner’s images. Alternatively we could keep only the
in-link from the best matching image.
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Fig. 2 Example for the link structure established in the image graph according to multimodal
similarities. Note that there are both unidirectional (gray) and bidirectional links (orange) due to
our nearest neighbor approach

The latter aspect is especially important since users tend to upload series of images
which often show similar visual content and have the same or similar textual anno-
tation. Thus, it is very likely that these near-duplicates share their nearest neighbors.
Hence, an image voted by such a group or the group itself would be influenced overly
strong by a single user.

2.2 Random walk

Having determined the graph representing the relationship between the images
in our database we now perform a random walk on this graph. The stationary
distribution of the random walk process gives us a value for each image which we
use as their respective relevance scores.

Let G denote the image graph. Each vertex of G corresponds to a certain image.
The edges of the graph are established as discussed in the previous subsection.
The random walk then traverses the graph according to its link structure, i.e. the
probability of following an edge is given by its associated weight. The final computed
random walk score for a vertex corresponds to the likelihood of arriving at this
vertex after random walk over G. Thus, in order to apply the iterative random walk
algorithm to G, we construct the corresponding transition matrix P = [p;jl,xn, a row-
stochastic matrix describing the transition probabilities used in the random walk
process, i.e. p;; = p(jli) is the probability of arriving at vertex j in one step given
the current vertex i.
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We first compute a multimodal similarity matrix M = [m;j],,x

0 otherwise.

Each row i of M contains exactly k entries that represent weighted links to the
k-nearest neighbors N (i) of image i. P is then derived by normalization:

p il
ij =
2 mij

Now let [x;(i)],x1 denote the so called state distribution containing all the prob-
abilities of arriving at image (or vertex) i at time instance ¢ during the random
walk. Those probabilities can be computed for all future time instances by iteratively
applying the transition matrix P:

(4)

X1 (j) = Y %) pij+ (1 — a)v(j), (5)

i=1

where v denotes a n x 1 bias vector and « € [0, 1]1is a linear fusion variable.

While the bias vector is in most cases used to ensure irreducibility! and therefore
convergence of the random walk, it also allows to assign some nodes a higher
importance prior to the actual ranking procedure. Thus we examine two different
bias settings in our experiments (see Section 5.3):

— A uniform bias where we assign the same bias value to all nodes.
— A non-uniform bias where the bias values correspond to a simple initial estimate
of the importance of each image.

If no auxiliary knowledge is available the bias vector v may be initialized uniformly.
Typically all entries are set to 1/n with n denoting the total number of images in the
database. This ensures irreducibility and therefore convergence of the random walk
process. On the other hand an initial estimate may improve the overall results. For
instance the visual similarity computed from the image content itself could be used
to obtain an initial relevance estimate for the images. However, as our experiments
show (see Section 5.3), exploiting the tag lists alone provides more accurate retrieval
results than using the visual similarity to compare images. Therefore we calculate
a simple initial estimate based on text features derived from the images’ tags and
a kernel density estimator (KDE) [21]. In our implementation we use this initial
estimate only to set the bias values for the L images having the largest values. We
will determine a good choice for the parameter L in our experiments (see Section 5).

Figure 3 illustrates the random walk, i.e. how the score of node j is refined in
iteration 7 + 1 by using the scores computed in the prior iteration z.

L A directed graph is called irreducible, if there exists a path from each vertex to all others.
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Fig. 3 A partial image graph
during the random walk
iteration ¢ + 1. The score of
image jis refined by its
neighbors {i1, iy, ..., i} that
have weighted links pointing
to j. Their score has been
computed during iteration ¢

We will now show how the stationary distribution of the random walk process can
be computed. Therefore we first re-write Eq. 5 more compactly:

1
—_——

xL = ax/P+(1—a)(x/e)v’
=x; (aP+ (1 —a)ev’)
_xTP 6)

where e is a n x 1 vector with all entries set to 1. Note that, v/ = (x/ev’) as
> x,() = 1.

Thus, according to Eq. 6, we can express the random walk as matrix-vector
multiplication, also known as the power method. With ¢ going to infinity and as-
suming irreducibility of P, the random walk converges to a (unique) stationary state
distribution x; :

T

x! =xP < x, = FTX,T (7)

That is, the distribution x, does not change anymore during subsequent iterations.
: . . . . =T
X, is then equivalent to the dominant eigenvector of matrix P~ [9].

2.3 Query-independent image retrieval

We have not stated yet which images we use to build our multimodal graph. As we
consider a query-by-term ranking task, two different cases are possible. Both will be
experimentally evaluated in Section 5.3.

First we test a query-dependent approach where we compute the relevance scores
by a random walk only for a subset of images. Typically one would pre-filter the
images in the database to keep only those likely showing the query content. Thus we
limit the set of candidate images used for the graph construction by keeping only
those being labeled with the query term. This procedure reduces the size of the
resulting graph. It may also lead to a more reliable link structure of the graph as
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image similarities may be estimated more accurately for this subset than for all
images.

However, in the query-dependent case a graph needs to be built separately for
every possible query. Therefore we explore a second, query-independent ranking
approach. Here the relevance of an image is computed only once independent of the
query term. No pre-filtering of the images is necessary and similarities are computed
between all images regardless of their annotation. Thus we may experience a
deterioration of the retrieval results. On the other hand, since this approach does not
depend on a certain query tag, all computations can be performed offline in advance.
To return the result for a certain query term w, we then simply need to look up the
relevance score of those images of the database that are within the subset labeled
with w.

3 Implementation
3.1 Image description

As stated above, we build our image graph using an image similarity measure based
on two different modalities: The visual similarity of the image content and the
textual similarity of their associated tags. To be able to apply Eq. 1, we need a
fixed size vector representation of each image for both modalities. In this work we
chose an image description for both the visual and textual image description based
on the probabilistic Latent Semantic Analysis (pLSA). The pLSA enables learning
an abstract high-level description from the occurrence counts of low-level features
like words (tags) or quantized basic visual features (commonly referred to as visual
words). We derive a representation that is low-dimensional and thus, once computed,
very efficient. Moreover, compared to directly using low-level image features, it
describes the images’ content with fewer noise by overcoming some issues, for
instance polysemy and synonymy in the text features. In the visual case, Lienhart and
Slaney [14] showed that comparing topic vectors yields better results than directly
comparing bag-of-word histograms.

The pLSA was originally introduced by Hofmann [6] in the context of text
document modeling and retrieval. The key concept of the pLSA model is to map the
high-dimensional word distribution or word count vector of a document to a lower
dimensional topic distribution (also called aspect vector). To achieve this, pLSA
introduces a latent, i.e. unobservable, topic layer between the documents and the
words. It is assumed that each document (in our case an image) consists of a mixture
of multiple topics and that the occurrences of words (i.e., visual words in images
or tags associated with images) stem from the topics in the respective mixture. This
generative model is expressed by the following probabilistic model:

p(di, wj) = p(dy) Z p zildi) p (wjlzk) 3)
K

where p(d;) denotes the probability of a document d; of the collection to be picked,
p(zk|d;) the probability of a topic zx given the current document, and p(wj|zx) the
probability of a visual word w; given a topic. K denotes the number of topics.
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Although the latent topics describe the content of images, only the occurrence
of words in tag lists or visual words in images can be observed in practice. To
learn the pLSA model, i.e. its distributions p(zk|d;) and p(w,|zx), the Expectation-
Maximization algorithm [3, 6] is applied. Note that the learning procedure is com-
pletely unsupervised and therefore the topics themselves are defined automatically.

Once a topic mixture p(zx|d;) is derived for each document d;, a high-level
representation based on the respective modality has been found. The entries of
the topic vector denote to which extend an image depicts a certain topic. As we
commonly choose the number of concepts in our model to be much smaller than
the number of distinctive words this representation is low-dimensional. The K-
dimensional topic mixture vector is then used to compute image similarities as in
Eqgs. 1 and 2.

3.1.1 Tag features

In order to learn the pLSA model on the image tags we need to define a finite
vocabulary. We consider only the most commonly used words, i.e. our vocabulary
consists of all tags in our dataset that are used by more than 100 users. Further we
do not allow tags with numbers. The resulting vocabulary consisting of 2,977 distinct
words was applied to derive a bag-of-words description for each image based on its
associated tags. These word count vectors are then used to compute a pLSA model
with 200 topics. Thus we derive a 200-dimensional tag-based image description for
our text modality. We empirically chose 200 topics as a tradeoff between a low-
dimensional vector and a more detailed representation.

Note that the resulting topic vector P(zx|d;) computed by the pLSA is a compact
representation that allows to compute similarities by simple vector operations in
contrast to tag lists. Additionally the topic distribution also allows to match synonyms
and homonyms when comparing images.

3.1.2 Visual features

To apply the pLSA model in the visual domain we consider each image as a single
visual document. The pLSA can be applied directly to image tags, as image tags
consist of words. However, for our visual features we need comparable elementary
parts called visual words. These visual words are computed by quantizing local
feature descriptors extracted from image regions.

We determine the image regions by applying dense sampling with a vertical and
horizontal step size of 10 pixels across an image pyramid created with a scale factor
of 1.2. SIFT descriptors [17] computed over a region of 41 x 41 pixels are then used
to describe the local image content in a scale and orientation invariant fashion. It
should be noted that any other feature detector or descriptor could be used instead.
Prior to the actual feature extraction, images are scaled down to a maximum side
length of 500 pixel.

Quantization is performed with a vocabulary tree [18] in order to support large
vocabulary sizes. The vocabulary tree is computed by repeated k-means cluster-
ing that hierarchically partitions the feature space. Such a hierarchical approach
overcomes two major problems of the traditional direct k-means clustering in cases
where k is large. Firstly, during vocabulary learning, applying the k-means algorithm
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repeatedly with small k is computationally more efficient than running it only once
with larger k. Secondly, the mapping of visual features to discrete words is very fast.
In our experiments we constructed a visual vocabulary consisting of 10,000 visual
words.

Once the visual vocabulary is determined we map each feature vector of each
image to its closest visual word. Then, we derive a bag-of-visual words representation
by counting the occurrences of each visual word in the respective image. Note that
this image content description does not preserve any geometric relationship between
the occurrences of the visual words.

The word count vectors are then used to compute the pLSA model. Similar to the
pLSA on tags we used 200 topics leading to a 200-dimensional description of each
image’s content based on visual features.

3.2 Nearest neighbor search

As the random walk requires to find the k-nearest neighbors of each image, a naive
implementation would result in computing similarities between all image pairs
and sorting those similarities for each image. This would result in at least O(n?)
comparisons which certainly limits the scalability of our approach, especially in the
query-independent case (see Section 2.3).

Therefore we propose an approach that hierarchically partitions the topic space.
The nearest neighbor search of an image is then limited to such a subspace, i.e.
to a subset of images in our database. This way we reduce the number of image
comparisons required for the graph construction to a linear amount depending on
the cluster sizes.

To determine such a partition we cluster the images’ representations, in our case
their topic vectors, hierarchically by applying the k-means algorithm recursively.
Each of the resulting cascaded subspaces is represented by its respective cluster
centroid, i.e. the mean vector over all representations in the cluster. The resulting
tree allows searching the topic space efficiently for the nearest cluster for a given
image description. This is done by propagating down the tree, i.e. comparing the
descriptor vector to the centroids at each level and choosing the closest. Once the
nearest cluster is determined the image only needs to be compared to all members of
that cluster (see Fig. 4).

The more clusters emerge from the hierarchical clustering, the faster the k-nearest
neighbor search will be as clusters tend to be smaller and thus fewer vectors need to
be compared. On the other hand, a larger number of subsets may lead to a per-
formance degradation due to the introduction of inaccuracies at subspace borders.
For our dataset consisting of roughly 260,000 images (see Section 5.1) we choose
an hierarchical clustering into two clusters on each level, thus we construct a binary
tree. As long as a cluster consists of more than 25,000 associated vectors it is further
recursively sub-divided. This procedure results into 15 subspaces/image subsets with
cluster sizes ranging from 10,740 to 23,889 vectors. We use the multimodal similarity
measure as defined in Eq. 2 as our distance measure for computing the clusters.

As this k-nearest neighbor search is an approximation, we also empirically
measured the intersection of the nearest neighbors computed with and without
approximation in order to get an idea of the scale of the inaccuracies we have intro-
duced by the approximation. Surprisingly only 34% identical images could be found
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Fig. 4 The hierarchically
partitioned topic space. For a
given query vector (blue dot)
the nearest cluster is found
and then the nearest neighbors
are computed by comparing
the vectors belonging to the
same cluster (red dots)

in our experiments. However, this has no negative impact on the overall performance
of our query-independent system as shown in Section 5.3.

3.3 Dynamic graph update

When exploring our query-independent approach, retrieval results are determined
by a simple lookup of each image’s probability from the stationary state distribution
x! resulting from a random walk over the multimodal similarity graph build from
all images in the current dataset. However, social online community databases are
highly dynamic and images may be added and deleted frequently.

Thus updating xI' and/or computing the relevance scores for novel images be-
comes an important aspect in practical situations. In this work we do not concentrate
on this issue, however we will give a short overview of possible solutions in the
following paragraphs.

A naive approach to obtain a stationary state distribution X. for the modified
graph is to re-run the entire ranking algorithm. This basically requires to re-construct
the multimodal similarity graph for the modified database and to perform a random
walk from scratch. Even though this approach yields the optimal state distribution
according to our algorithm, the problem size makes this procedure prohibitively
expensive in practice.

On the other hand there exist research works addressing the issue of obtaining
the updated state distribution vector XI. One example is the iterative aggregation
updating algorithm proposed in [11]. The key idea of this algorithm is to partition
the image set S, containing all images including the newly added ones, into two
subsets, i.e. S = G U G. Thereby G contains all images that are likely to be affected
by the database update, and G contains all other images. Hence, images that have
been either added/deleted, have an updated tag list or obtain new nearest neighbors
after the update are contained in G. The algorithm then computes an approximate
stationary state distribution for a smaller graph that comprises all images from G as
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well as a node representing all images of G. It should be noted that the stationary
distribution x! for the images in G is unaffected by the computations.

Such an algorithm allows to efficiently compute an approximate updated station-
ary state distribution by considering the prior result x!. Thereby it accounts for both,
the element-updating problem (modified link structure, constant number of nodes)
as well as the state-updating problem (modified nodes, i.e. added/deleted nodes).

Moreover, the algorithm in [11] can be employed in conjunction with the extrap-
olation technique introduced in [9].

4 Computational complexity

In order to show the scalability of our query-independent approach we compare its
complexity to the complexity of a naive approach which uses a complete graph, i.e.
each pair of images is linked within the multimodal similarity graph. For our analysis
we only consider the query-independent case which is more relevant in practice.

In a naive approach the construction of the graph requires n> image comparisons,
where n is the number of images in the database. In addition, each iteration of the
power method requires n? floating point multiplications. As the number of necessary
iterations M is small in practice and considered independent of n, the total number
of required operations is bounded by n? + Mn? = n*(1 + M), such that the overall
complexity is O(n?).

Now we analyze the complexity of the query-independent nearest neighbor
approach using hierarchical k-means. As with the naive approach we first construct a
similarity graph and then perform the power method. To efficiently find the nearest
neighbors of an image during graph construction, we hierarchically partition our
feature space and look for similar images only in such a subspace, i.e. in a subset of
images (see Section 3.2). Thus, to determine the overall complexity we have to take
into account the costs of hierarchical clustering used to partition the image space.

4.1 Graph construction

Performing a hierarchical k-means clustering using k = 2 results in a binary tree.
Leaves of the tree correspond to subsets of images which are then used for the near-
est neighbor search and inner nodes represent clusters that are further sub-divided.
During construction a cluster C; is further partitioned if it contains more than W
images. To partition the cluster C; we perform k-means clustering on g random
samples from within C;. Let this k-means clustering require Q operations known
to be only dependent on g and k.

Then we can obtain a realistic upper bound for the required number of clusterings
by assuming that each k-means clustering sub-divides the images among two clusters
by a constant factor p and (1 — p), respectively. Without loss of generality, we may
assume that given a p, p € (0, 1), the |C;| images in cluster C; are divided propor-
tionally into a smaller subset containing p - |C;| images and a larger subset consisting
of (1 — p)-|C;| images. A visualization for the resulting binary tree is depicted in
Fig. 5. In this scenario, we may determine an upper bound for the required number
of times r running the k-means algorithm by r < —(1/log (1 — p)) logn. In this case,
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Fig. 5 Binary tree resulting
from a non-optimal
hierarchical clustering.

Inner nodes (grey) are further
sub-divided such that each leaf
(blue nodes) contains only a
specified maximum number of
images

each clustering corresponds to one additional level in the resulting binary tree. This
directly lets us estimate the tree height & = —(1/log (1 — p))logn. Thus the total
number of clustering operations to build the tree is bounded by Q - A.

We also need to assign every image in the database to exactly one cluster, i.e.
one leaf of the tree. This requires n - 2k vector comparisons to traverse the tree
down to the best-matching leaf. It should be noted that in practice this assignment is
performed simultaneously during tree construction, as it is needed to determine the
exact cluster size |C;|.

Once all images are assigned to clusters, determining the links for a single image
requires only one lookup of the image’s cluster and at most W image comparisons.
Additionally, we need Wlog W operations to sort the similarities and thus to
obtain the nearest neighbors. Therefore, the graph construction requires at most
n(W+Wlog W) operations in total whereby the constant W does not depend on n.

4.2 Power method

In this setting the transition matrix P contains exactly n - k positive entries that
require n - k floating point multiplications within each of the M iterations of the
power method. Hence, in total M - n - k operations are needed.

Summarizing all steps, the overall boundary for the number of operations is given
by OQ-h+n-2h+n(W+ WlogW)+ M -n-k. With h = —(1/log (1 — p)) logn the
overall theoretical complexity is O(n log n) compared to O(n?) of the naive approach.
It should be emphasized that in practice the complexity grows only linearly in #n as
W >=> logn holds even for very large databases. Even though the tree-based nearest
neighbor approach introduces computational overhead it enables us to apply it to
large databases at all.

5 Evaluation
5.1 Datasets

We evaluate our approach experimentally on two datasets. The first dataset consists
of 261,901 Flickr images. To derive this dataset we downloaded up to 10,000 images
from each of the following 28 categories: aircraft, beach, bicycle(s), bird(s), boat,
bottle(s), building, bus(es), car(s), cat(s), chair(s), city, coast, cow(s), desert, dog,
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Fig. 6 Some randomly picked
images from the image set
consisting of 28 categories

forest, horse(s), motorcycle(s), mountain(s), people, potted plant, sheep, sofa, street(s),
table(s), tree(s), tv. As we downloaded images according to their user tags, images
with multiple tags can be part of multiple categories. Note that the dataset contains
objects as well as scene categories. Some example images from the dataset can be
seen in Fig. 6.

In order to show the scalability of our approach, we also report results on an even
larger second dataset. Here we collected 1,176,020 Flickr images from 56 different
categories including the 28 mentioned above: aircraft, beach, bicycle(s), bird(s), boat,
bottle(s), building, bus(es), car(s), cat(s), chair(s), city, coast, cow(s), desert, dog,
forest, horse(s), motorcycle(s), mountain(s), people, potted plant, sheep, sofa, street(s),
table(s), tree(s), tv, ship, hot air balloon, tractor, flowers, trains, butterfly, carnival,
sunset, portrait, golden gate bridge, tower bridge, colosseum, cn tower, statue of liberty,
pyramids, sydney opera, eiffel tower, louvre, pisa tower, arc de triomphe, snow
boarding, sailing/sailboat, rock climbing, polo, baseball, soccer, christmas, wedding.
Note that some categories have up to 30,000 images.

Both databases have not been cleaned or post-processed. A manual statistical
analysis has shown that on average about 40% of the images are mislabeled with
tags that do not describe the depicted image content (see Section 5.3).

We have also stored the metadata associated with the images including their tags.
We counted 136,371 unique tags in our first collection, leading to a vocabulary of
size 2977 after filtering (see Section 3.1). For the second dataset we counted 396,913
unique tags resulting in a vocabulary of size 3080 after filtering.

5.2 Methodology

As no ground truth is available for both large-scale image databases, test users are
required to rate the performance of our system. Therefore we evaluate our ranking
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system and the different parameter settings by conducting several user studies. For
each category of an image database the most frequently occurring tag is selected
as the query term resulting into 28 query terms for the smaller first dataset. As the
second dataset is a superset of the first collection the queries are identically used to
evaluate the second dataset. Then we ask 10 participants to judge the top 19 results
for every query term as “relevant”, “somewhat relevant” or “not relevant” to the
query.

We use the following scoring to get a quantitative performance measure: An
image considered being relevant receives 1 point, an image considered as somewhat
relevant receives 0.5 points. All other images get 0 points. A mean score is calculated
for each user; the mean over all users’ means yields the final score of the parameter
configuration/system being evaluated.

5.3 Experiments

In our first experiments we examine the influence of several parameters in our image
ranking approach using the query-dependent setting. Then we compare our query-
dependent image ranking method to three baselines. Finally we compare the result
of the query-dependent image ranking method to the proposed query-independent
algorithm. We perform all of our evaluations on the smaller dataset of 261,901 images
and finally validate the performance of our query-independent approach on the
larger collection of 1,176,020 images (see Section 5.1).

First, we determine the optimal weight g for the two modalities in our multimodal
similarity measure (see Section 2.1). Therefore we vary g and keep all other
parameters fixed: We chose k = 250 nearest neighbors and a non-uniform bias to
weight the top 500 positive entries for building the graph. Figure 7 shows the results
of our user studies. As can be seen, the best results are obtained for g = 0.2, i.e. the
text modality receives a four times larger weight than the visual modality. Comparing
images by their associated tags seems to be slightly more reliable than comparing
them by visual content. However, fusing both similarities as proposed improves the
results over using only one single modality to measure similarity. Hence, we fix g to
0.2 for the following experiments.

Fig. 7 The results shown for 1
different weights 8 of the
visual and textual modalities
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Fig. 8 The results shown for a
varying number of k-nearest
neighbors of each node
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In our second experiment we vary the number of nearest neighbors k used to
establish the link structure in our image graph. Since we assume larger values of k to
introduce unreliable links to the graph, we choose k € {100, 250, 500} and compare
to the results from a fully connected graph. When changing k we need to adapt the
bias in order to weight the nodes with the same magnitude. To avoid this issue, we
chose a uniform bias to obtain comparable results. As can be seen from Fig. 8 our
nearest neighbor approach yields similar results compared to an approach with a
fully connected graph. However building a fully connected graph does not allow very
large image sets as discussed in Section 4.

In our third experiment we evaluate the impact of the bias. Therefore we compare
a uniform bias to non-uniform biases as described in Section 2.2. For the non-uniform
bias we examine two different values for the parameter L, L = 500 and L = 1,000,
indicating the number of images biased with their respective initial estimates. The
other parameters, k = 250 and g = 0.2, have been chosen according to the results

Fig. 9 The results for different 1
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Fig. 10 Comparison between 1
KDE-based retrieval and our
query-dependent approach 09

0.8 T X

0.7

precision

0.6

0.5

0.4

0.3

KDE KDE query-dependent
(tags) (visual)
approach

of the previous two experiments. As illustrated in Fig. 9 we obtain the highest score
for a non-uniform bias where either the top 500 or top 1,000 most important images
have been biased. However, the influence of the bias is small, especially since we
have empirically chosen @ = 0.9 (see Section 2.2).

Having determined the optimal parameter setting, we now examine the influence
of the random walk. As described before, to obtain appropriate values for the non-
uniform bias, we derive an initial estimate of the importance of each image based on
text features and a kernel density estimator (KDE). Similarly, it could be computed
based on the visual image representation. Such an importance estimate can be used to
directly rank all images associated with a query term and thus to find relevant images.
In Fig. 10 we compare the retrieval results obtained by using our initial estimate
directly to the results after the random walk algorithm has been applied. As can be
seen, the simple KDE-based method performs already well but an additional per-
formance improvement can be obtained by the random walk. Moreover we observe

Fig. 11 A performance 1
comparison of different image
ranking approaches 09
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that the textual features outperform the visual image representation thus validating
our choice for computing the bias values.

We now compare our query-dependent approach to three different baselines.
As a worst-case baseline we draw random images from each of the 28 query term
categories. This baseline reflects the average relevance of images within the tag
categories included in our user studies. We also compare our system to state-of-the-
art approaches described in [16] and [8]. In [16] the tags associated with an image are
first re-ranked using both, image content and associated tags. Given a query tag w,
the images are then ranked according to a relevance score r(x) purely relying on the

M random [ tag ranking M VisualRank M query-dependent multimodal
Liu (2009) Jing (2008) image ranking

precision

query term

precision

query term

Fig. 12 Comparison between our query-dependent approach and both baselines per query term
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re-ranked tag list:
r(x) = —t(w) + 1/]x], )

where t(w) denotes the ranked position of w in the tag list of length |x| associated
with image x. The approach described in [8] applies the PageRank algorithm to
an image graph built only using visual similarities between images. The similarity
between two images is defined as the number of matching SIFT features. The results
of our user study are depicted in Fig. 11. In Fig. 12 we also show the scores for each
query term separately. One can see that our proposed multimodal query-dependent
image ranking outperforms all three baselines in average and in most categories.
Note that, while the tag ranking approach performs well, we consider it hardly usable
in practice, as it has a strong focus on very short tag lists.

In our last experiment we evaluate the proposed query-independent approach. As
can be seen in Fig. 8, the query-dependent approach performs best for the complete
graph in which a link between each image pair is established. Besides that building
a complete graph is not feasible in practice for the query-independent approach,
a global link structure would introduce many noisy links due to the large number
of unrelated images. Such links between unrelated images provide only little or no
information about their similarity as the distance between their representations is not
quantitatively meaningful. Therefore we empirically set the number of neighbors &
to 500 to build the graph. As described in Section 3.2 we performed the k-nearest
neighbor search by utilizing the hierarchically clustered topic space. The results
show that the query-independent approach allows to compute the relevant images
in a scalable way with only a minor loss of precision. Moreover, as can be seen in
Fig. 13, the query-independent approach unexpectedly performs better when the
tree is used to approximate the k-nearest neighbors than determining the neighbors
by direct computation. This might be due to the clustering as it divides the vector
space of our image representation largely based on the tags of our images. Therefore
irrelevant neighbors might be excluded as in the query-dependent case before the
absolute distance between images is taken into account. To show the scalability of our
query-independent approach we further test on the larger data set containing more
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approach compared to the
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} I
0.8
0.7 :[

0.6

precision

0.5

0.4

0.3
query-dependent query-independent query-independent query-independent
260K images 260K images (hierarchical k-NN) (hierarchical k-NN)

260K images 1M images

approach



56

than 1.1 million images. We again use a hierarchically clustered topic space to
determine the k = 500 nearest neighbors in order to build the image graph. The
improvement in performance on the larger database compared to the smaller image
collection may be explained by the larger number of images per tag category. This
may lead to a more accurate similarity graph as the nearest neighbors of an image
can be determined more precisely due to the larger number of candidate images.

relevance score S
— |

low high

Fig. 14 Example graph for the queries bus (top) and cat (bottom)



Fig. 15 Top 16
(query-dependent) retrieval
results for query term building

Next, we plot in Fig. 14 two result graphs to show some examples of our algorithm.
We randomly selected 1.000 images for the two query terms bus and cat and applied
our proposed algorithm to determine the relevance score for each image. To build
the graph we set the number of nearest neighbors k to 10. Each graph has then been
layouted by a spring layout algorithm that groups images by their similarity. The size
and color of the nodes in the graphs indicate the relevance of the according image.

Finally, we show that for both the query-dependent and query-independent
approach we are able to retrieve relevant and at the same time diverse result images
for different query terms such as objects, sceneries and animals. Figures 15 and 16

Fig. 16 Top 16
(query-dependent) retrieval
results for query term coast
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Fig. 17 Top 16
(query-independent) retrieval
results for query term sheep

show the top 16 retrieved images for the query terms building and coast. We used the
query-dependent approach with k = 250 neighbors, g = 0.2 and a non-uniform bias
setting the top L = 500 entries. For the query-independent system, Fig. 17 shows
the results of using sheep as query term, with k = 500 neighbors, 8 = 0.2 and a
uniform bias.

6 Conclusion

We have presented an image ranking method based on random walk on an image
graph. This graph is built from images and their similarities among each other.
We proposed to use a multimodal similarity measure to find nearest neighbors of
images. Our experiments showed that combining more than one modality improves
the system performance significantly. Moreover we proposed a query-independent
ranking approach that allows to compute a global ranking score prior to a certain
query. In this work we further addressed scalability issues by using a k-nearest
neighbor approximation when building the graph and computing the similarities
between images. Future work will evaluate the query-independent approach on even
larger databases, explore its scalability in more detail and evaluate the proposed
approach in the context of abstract query terms.
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