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Abstract Spoken term detection (STD) is the task of searching for occur-
rences of spoken terms in audio archives. It relies on robust confidence estima-
tion to make a hit/false alarm (FA) decision. In order to optimize the decision
in terms of the STD evaluation metric, the confidence has to be discriminative.
Multi-layer perceptrons (MLPs) and support vector machines (SVMs) exhibit
good performance in producing discriminative confidence; however they are
severely limited by the continuous objective functions, and are therefore less
capable of dealing with complex decision tasks. This leads to a substantial
performance reduction when measuring detection of out-of-vocabulary (OOV)
terms, where the high diversity in term properties usually leads to a compli-
cated decision boundary.

In this paper we present a new discriminative confidence estimation ap-
proach based on evolutionary discriminant analysis (EDA). Unlike MLPs and
SVMs, EDA uses the classification error as its objective function, resulting
in a model optimized towards the evaluation metric. In addition, EDA com-
bines heterogeneous projection functions and classification strategies in deci-
sion making, leading to a highly flexible classifier that is capable of dealing
with complex decision tasks. Finally, the evolutionary strategy of EDA re-
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Machine Learning Group, Universidad Autónoma de Madrid
E-mail: alejandro.e.rey@gmail.com

Dong Wang
Multimedia Communications Department, EURECOM
E-mail: dong.wang@ed.ac.uk

Ravichander Vipperla
Multimedia Communications Department, EURECOM
E-mail: ravichander.vipperla@eurecom.fr



2 Javier Tejedor et. al

duces the risk of local minima. We tested the EDA-based confidence with a
state-of-the-art phoneme-based STD system on an English meeting domain
corpus, which employs a phoneme speech recognition system to produce lat-
tices within which the phoneme sequences corresponding to the enquiry terms
are searched. The test corpora comprise 11 hours of speech data recorded with
individual head-mounted microphones from 30 meetings carried out at several
institutes including ICSI; NIST; ISL; LDC; the Virginia Polytechnic Institute
and State University; and the University of Edinburgh. The experimental re-
sults demonstrate that EDA considerably outperforms MLPs and SVMs on
both classification and confidence measurement in STD, and the advantage
is found to be more significant on OOV terms than on in-vocabulary (INV)
terms. In terms of classification performance, EDA achieved an equal error
rate (EER) of 11% on OOV terms, compared to 34% and 31% with MLPs and
SVMs respectively; for INV terms, an EER of 15% was obtained with EDA
compared to 17% obtained with MLPs and SVMs. In terms of STD perfor-
mance for OOV terms, EDA presented a significant relative improvement of
1.4% and 2.5% in terms of average term-weighted value (ATWV) over MLPs
and SVMs respectively.

Keywords Spoken term detection · confidence measurement · evolutionary
discriminant analysis

1 Introduction

The ever increasing volume of audio data available on the web substantially
promotes research on automatic indexing and retrieval of spoken documents.
Spoken term detection (STD) is a fundamental task in this direction [35],
and was defined by NIST as searching vast, heterogeneous audio archives for
occurrences of spoken terms [35]. Due to the importance of theoretical research
and its potential in practical applications, STD has attracted much interest of
late from the likes of IBM [27,26,8]; BBN [19]; SRI & OGI [51,50,1]; BUT [47,
44,45]; Microsoft Research Asia [30]; QUT [49,52]; JHU [36,24,37]; Fraunhofer
IAIS/NTNU/TUD [40]; NTU [9,11]; IDIAP [34] etc.

The common STD architecture consists of three main components, as de-
picted in Fig. 1: a speech recognition component which converts input speech
to word or sub-word lattices; a term detector which searches the lattices for
potential occurrences of search terms, and a decision maker which evaluates
the detected occurrences and hypothesizes reliable ones as output. It is impor-
tant to note that the speech recognition runs just once on the audio and the
term detector does not require the original audio when serving queries.

In STD, a hypothesized occurrence is called a detection; if the detection
corresponds to an actual occurrence, it is called a hit, otherwise it is a false
alarm (FA). If an actual occurrence is not detected, this is called a miss. To
evaluate the STD performance, NIST defines a metric called average term-
weighted value (ATWV) [35] and a detection error tradeoff (DET) curve [29]
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Fig. 1 The standard STD architecture: a speech recognizer converts speech into word/sub-
word lattices; a term detector searches for potential occurrences of search terms; a decision
maker determines whether a detection is reliable. The NIST tool is used to evaluate detection
performance.

which works at various hit/FA ratios. Both ATWV and DET curves are used
for performance evaluation in this paper.

Within the STD architecture, the decision maker plays an important role
in determining eligible detections, which is usually based on certain confi-
dence measures. Term-dependent confidence measures derived from discrim-
inative models, such as a multi-layer perceptron (MLP) or a support vector
machine (SVM), have been shown to outperform the commonly used lattice-
based confidence [56]. Generally speaking, this discriminative approach treats
the hit/FA decision as a two-class classification problem, and derives confi-
dence measures from classification posterior probabilities. We will show that
discriminative confidence is an essential requirement for ATWV-oriented de-
cision making and is inherently consistent with the confidence normalization
technique proposed in [56].

Discriminative confidence can be derived from any discriminative model,
though MLPs and SVMs are the most commonly used. A possible drawback of
MLPs and SVMs, however, is that their cost functions are based on some inter-
mediate metrics instead of relying on the classification error rate itself. For ex-
ample, MLPs take cross entropy as their objective function, while SVMs max-
imize the minimum soft margin of training patterns to the decision boundary.
More importantly, these objective functions are all continuous, which greatly
limits the discriminative power of these models in complex tasks where the
decision boundary is highly complicated. Another problem, mainly for MLPs,
is that the training process depends heavily on initialization, and is therefore
more likely to be trapped in a local minimum. These disadvantages result
in considerable performance degradation when measuring detections of the
out-of-vocabulary (OOV) terms, for which the term properties (pronunciation
variation, occurrence rate, confidence distribution, ASR error pattern) tend
to be more diverse compared to the in-vocabulary (INV) terms [55,57], and
therefore the decision boundary tends to be more complicated.

We propose a new discriminative confidence estimation approach based on
an evolutionary algorithm, named evolutionary discriminant analysis (EDA).
Unlike MLPs and SVMs, EDA uses the classification error rate as its objective,
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which on one hand removes the continuity assumption on objective functions
of MLPs and SVMs, and on the other hand optimizes the evaluation met-
ric directly. Moreover, EDA combines heterogeneous projection functions and
classification strategies in decision making, which empowers EDA to handle
very complex decision boundaries. Finally, the intrinsic randomness within the
evolution approach provides a simple mechanism to rescue models trapped in
local minima. We argue that these advantages make EDA a better model for
discriminative confidence estimation for STD than standard MLPs and SVMs,
especially for OOV terms for which the decision boundary is complex.

The authors note that EDA has previously been applied to a number of
other applications, and substantial success has been obtained in solving prob-
lems with highly mixed features that are unevenly distributed with multiple
modes (e.g., classification on complex data such as UCI databases [41,42]).
The novelty of this paper from the EDA perspective is that EDA is extended
to provide classification posterior probabilities instead of making hard classifi-
cation decisions. To the best of our knowledge, this is the first effort to apply
evolutionary approaches to STD.

A work related to EDA is the evolutionary MLP training [18,38,39], in
which MLP parameters are learnt in an evolutionary manner. The difference
between EDA and this approach is that EDA minimizes the classification er-
rors and hence optimizes the task objective directly, while evolutionary MLP
training minimizes the mean square error, which is an intermediate objective
and is thus closer in principle to the conventional MLPs. Readers are encour-
aged to refer to [41,42] for more details distinguishing these two approaches.

The rest of the paper is organized as follows: we first describe the dis-
criminative confidence estimation in STD in Section 2, and then present the
evolutionary algorithm in Section 3. In Section 4 we present the implemen-
tation of the EDA approach for the discriminative confidence estimation, we
report our experiments in Section 5, and the work is concluded in Section 6
with some ideas for future work.

2 Discriminative confidence estimation in spoken term detection

As shown in Fig. 1, the decision maker plays an important role in STD: it
determines if a detection is reliable or not. This is named as a hit/FA decision.
In most cases, this decision is based on some form of confidence measure, or
simply confidences. To make the presentation clear, we denote a detection d
as a tuple which captures all the available information:

d = (K, s = (ts, te), va, vl, ...) (1)

where va, vl represent the acoustic likelihood and language model score respec-
tively and s denotes the speech segment from ts to te where the detection of
the term K resides. Other informative factors, such as term occurrence rates,
are represented by “...”. The task of the confidence estimation based on this
representation then amounts to deriving a certain confidence measure from the
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information encapsulated in the tuple d. A widely used confidence measure is
the detection posterior probability, which was proposed by Wessel et al. [59]
and found widespread use in STD research [32,27,46,50,30]. It can be formally
written as follows:

clat(d) = P (Kte
ts
|O) (2)

where Kte
ts

denotes the event of term K appearing in the speech segment from
ts to te, and O represents the audio stream. In practice, this confidence is often
approximated by the lattice posterior probability, and hence is also called the
lattice-based confidence [59]. We use clat to denote the lattice-based confidence
measure in Eq. 2.

2.1 OOV challenge and confidence normalization

Although the lattice-based confidence performs well in many STD tasks, e.g.,
[27,46,50], it exhibits severe performance reduction when measuring detection
of OOV terms, as shown in [56]. This motivates a thorough study on OOV
terms.

In STD, OOV words are those words absent from the system dictionary,
and OOV terms are those containing one or more OOV words. INV terms,
correspondingly, are those terms containing only in-vocabulary words. Some
words are OOV simply because the system vocabulary has a fixed size, whereas
others arise from the dynamics of human language evolution. One estimate is
that about 20,000 new words are coined each year [58]. OOV terms present
a significant challenge to STD; in one real spoken document retrieval system,
12% of queries were reported to contain OOV terms [25]. Since new words are
continually being created, an STD system, even with a very large vocabulary,
will eventually receive a significant number of OOV queries.

A widely adopted approach to OOV STD is based on sub-word units,
usually phonemes [47,27,1]. In this approach, phoneme transcriptions of OOV
terms are searched for in the phoneme lattices generated by a phoneme-based
speech recognizer. Unlike the INV terms for which the phone transcriptions
can be obtained from the system dictionary, OOV terms have to resort to
letter-to-sound (LTS) conversion. State-of-the-art LTS for English presents a
word error rate in the order of 30% [15,6,14,48,4]. This means that OOV STD
is actually based on uncertain phoneme transcriptions, which in turn leads to
more noisy detections and more complex error patterns.

Another challenge from OOV terms relates to the high diversity in term
properties. Adopted from different sources, OOV terms usually possess highly
varying properties in various aspects, e.g., occurrence rate, phonemic struc-
ture, linguistic background, morphological form, etc. This diversity is more
evident for open languages such as English. This diversity in term properties
certainly results in diverse patterns in confidence measures, which in turn lead
to complex decision boundaries in hit/FA decision making. To illustrate the
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term diversity and in particular for the OOV terms, the term occurrence dis-
tribution for both the OOV and INV terms are shown in Fig. 2 and Fig. 3
respectively. As expected, we can see a larger variation in the distribution of
occurrences of OOV terms as compared to that of INV terms: while the INV
terms have occurrences varying from 5 to 20, the OOV terms have occurrences
varying from 1 to more than 300, with less frequent terms in domination.

10 20 30 40 50 60 70 80
Number of occurrences

Fig. 2 Histogram of occurrences of the 484 OOV terms. The X-axis shows the number of
occurrences and the Y-axis shows how many terms have each number of occurrences in the
evaluation set. The X-axis corresponding to 80 refers to all the terms with a number of
occurrences equal to or greater than 80.

Another example of OOV term diversity is related to phonetic regulation.
Some OOV terms follow the English spelling and pronunciation rules well, e.g.,
‘GOOGLE’, while others are simply out-of-rule, particularly those borrowed
from other languages, e.g., ‘OKINAWA’. Regular OOV terms can easily derive
their pronunciations by LTS and their phoneme fragments tend to appear in
the training data and therefore are partially represented by the acoustic and
language models; in contrast, irregular OOV terms usually obtain unreliable
pronunciations and their phoneme fragments are often missed in the training
data. We show that this phonetic regulation diversity leads to different pat-
terns for INV and OOV terms with differences in the n-gram occurrences for
language model training and in the distribution of the triphone occurrences for
acoustic model training in Fig. 4 and Fig. 5 respectively. From Fig. 4, it can be
seen that there are fewer occurrences of OOV n-grams than INV n-grams in
the training data particularly when n is high. From Fig. 5, it can be seen that
fewer training instances are available for triphones of OOV terms than those
of INV terms, and the distributions are slightly different. The OOV terms
display a flatter distribution, indicating higher diversity among OOV terms.
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5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Number of occurrences

Fig. 3 Histogram of occurrences of the 256 INV terms. The X-axis shows the number of
occurrences and the Y-axis shows how many terms have each number of occurrences in the
evaluation set.

3 4 5 6

x 10
6

order of n−gram

 

INV
OOV

Fig. 4 The average number of occurrences of various orders of n-grams in the training
corpus. INV denotes in-vocabulary terms and OOV denotes out-of-vocabulary terms.

A possible way to deal with this OOV challenge is to consider the term
identity in decision making, which is the idea of the term-specific threshold
(TST) approach [32]. An alternative way is to normalize the term-independent
lattice-based confidence with term-dependent filters so that the term diversity
can be compensated for. This approach is known as confidence normaliza-
tion [56]. Due to its importance in developing the discriminative confidence
estimation, we outline the normalization technique in the following.
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1 2 3 4 5 6 7 8 9 10
log(occ)

 

INV

1 2 3 4 5 6 7 8 9 10
log(occ)

 

OOV

Fig. 5 The distributions of the occurrences (in log scale) of INV triphones (top plot) and
OOV triphones (bottom plot). The vertical stems represent average occurrences.

We start with the definition of the ATWV metric, which integrates the miss
rate and false alarm rate of each term into a single metric and then averages
over all the search terms:

ATWV =
1
|∆|

∑

K∈∆

(
NK

hit

NK
true

− β
NK

FA

T −NK
true

)
(3)

where ∆ denotes the set of search terms and |∆|, the number of terms in this
set. NK

hit and NK
FA represent the number of hits and false alarms of the term K

respectively and NK
true is the number of actual occurrences of K in the audio.

T denotes the audio length in seconds, and β is a weight factor.
It can be rearranged as follows:

ATWV =
1
|∆|

∑

K∈∆

∑

i

(
I(dK

i )
NK

true

− β
1− I(dK

i )
T −NK

true

)
(4)

where dK
i denotes the i-th detection of the term K, and I(d) is an indicator

function which takes 1 if d is a hit and 0 otherwise. Taking expectation on
both sides of the equation, and noticing that the expected occurrence of a
detection in a certain class corresponds to the posterior probability that the
detection belongs to that class, we have

E(ATWV ) =
1
|∆|

∑

K∈∆

∑

i

(
P (Chit|dK

i )
NK

true

− β
1− P (Chit|dK

i )
T −NK

true

)
(5)

where P (Chit|dK
i ) represents the posterior probability that dK

i belongs to the
class of hits (Chit). For any detection dK

i , the quantity in the parentheses
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corresponds to its contribution to ATWV if it is treated as a hit. According to
decision theory, dK

i should be classified as a hit if the contribution is positive,
i.e.,

P (Chit|dK
i )

NK
true

− β
1− P (Chit|dK

i )
T −NK

true

> 0. (6)

A simple rearrangement leads to

ξ(P (Chit|dK
i )) = P (Chit|dK

i )− βNK
true

(β − 1)NK
true + T

> 0 (7)

where the function ξ represents confidence normalization since it compensates
for the term-dependent occurrences NK

true. This normalization, as shown in
[56], is very effective in dealing with the high diversity among OOV terms.
Note that NK

true is unknown in practice and thereby has to be estimated from
the data. As in the TST approach, we use the expected count as the estimate:

NK
true ≈

∑

i

P (Chit|dK
i ). (8)

2.2 Discriminative confidence

The derivation of the confidence normalization technique in the previous sec-
tion indicates that an optimal decision in terms of ATWV should be based on
the normalized classification posterior probability ξ(P (Chit|dK

i )), henceforth
denoted as ξ(P (Chit|d)). From the perspective of the confidence estimation,
P (Chit|d) is named as a discriminative confidence since it is discriminative
for hits and FAs. We denote the discriminative confidence by cdisc, formally
written as follows:

cdisc(d) = P (Chit|d).

Accordingly, the normalized posterior probability is named as the normalized
discriminative confidence, given by

ĉdisc(d) = ξ(P (Chit|d))

where ξ is as defined in Eq. 7.
The discriminative confidence estimation was first presented in [56], where

MLPs and SVMs are employed to derive the posterior probabilities. Following
the same notation, the approach can be formally represented as a non-linear
mapping f from a set of informative features to cdisc(d):

f : (clat(d), A, L, T, R0(K), R1(K)) −→ cdisc(d) (9)

where clat(d) is the lattice-based confidence. The rest of the input features
include the acoustic likelihood (A), the language model score (L), the duration
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of the detection (T ), and two term-dependent features R0(K) and R1(K)
defined as follows:

R0(K) =
∑

i clat(dK
i )

T0
(10)

and

R1(K) =
∑

i (1− clat(dK
i ))

T0
(11)

where T0 is the length of the audio. Note that R0 and R1 are designed to
introduce term-dependency (occurrence rates here) in the modeling, and are
motivated by the definition of ATWV.

A particular advantage of this approach is that term-dependent factors
(such as the R0 and R1 in Eq. 9) can be involved in the modeling and hence
are taken into account in confidence measuring. This is a more flexible way
to compensate for term-dependent factors than the normalization technique
where only the term occurrences are taken into account. Therefore it is not sur-
prising that the discriminative confidence provides a considerable performance
improvement particularly for OOV terms, as reported in [56].

3 Evolutionary Algorithms and Evolutionary Discriminant Analysis

A potential problem of MLPs and SVMs is that they take some interme-
diate measurements as objective functions, instead of the evaluation metric,
i.e., classification error rate (CER). For MLPs, the objective is maximum cross
entropy while for SVMs the objective is maximum soft margin. These interme-
diate objectives could possibly lead to a sub-optimal model training in terms
of the evaluation metric; more importantly, they all impose some continuity
assumptions: for MLPs, the posterior probability is assumed to be continuous
and for SVMs the slack penalty is assumed to be continuous. This artificial
assumption may lead to considerable performance degradation in tasks where
the decision boundary is complex. For instance, in OOV STD where the hit/FA
decision making is complicated, the continuity assumption seems to be over
strict. A better model, of course, should take the CER as its objective directly.
Such a model consists of at least two components: first a projection compo-
nent maps patterns to a projection space, and then a classification component
classifies the mapped patterns according to a certain classification strategy.
This is illustrated in Fig. 6.

The CER-oriented optimization for this model can be formulated as follows:

θ̂ = arg min
θ

∑

d

δ{Hgθ
(d), t(d)} (12)

where d is a training pattern, and t(d) is its class label; gθ is a projection
function depending on some parameters θ, Hgθ

is a classification function in
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g

H

J( )
Evol(  )

Feature space

Projection space

Fig. 6 Illustration of the EDA approach. The small circles and stars represent training
patterns of two classes. The dashed line in the projection space represents the decision
boundary in the projection space according to the classification function H. Evol(·) denotes
an evolutionary strategy.

the projected space, and δ(a, b) is an indicator function which is equal to 0 if
a = b and equal to 1 otherwise.

The main obstacle with this model, however, is that the objective func-
tion will never be continuous, and so the conventional gradient or quadratic
approaches for the model training do not work. A possible solution is to ex-
ploit the evolution strategy [3] to ‘breed’ some solutions and then choose the
optimal one.

3.1 Evolutionary algorithm

An evolutionary algorithm (EA) is based on a number of optimization tech-
niques that resemble the mechanisms of biological evolution: reproduction,
mutation, and selection. With this approach, a candidate solution corresponds
to an individual chromosome, and the goodness of the solution corresponds to
the fitness of the chromosome and is determined by a fitness function. In our
case, we choose the classification error as the fitness function since it is directly
related to the evaluation metric of our task (i.e., CER and ATWV). Other fit-
ness functions are possible, e.g., square distance; the appropriate choice is fully
task-dependent and has a direct impact on the model quality and the conver-
gence speed. An evolutionary computing process starts from a set of random
initial solutions, resembling the starting population of a biological system;
parents with high fitness are then chosen to beget the offspring by copying
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and crossover recombination of their genes, alike biological reproduction. This
reproduction involves a random modification of the genes copied from their
parents, similar to mutation in biological evolution. The new generation com-
petes for survival in a limited population according to the fitness. This process
is repeated until a candidate with sufficient quality is found or a previously
defined computational limit is reached, which results in an optimal solution.

Evolutionary algorithms often perform well in all types of problems be-
cause they typically do not make any assumption about the underlying fitness
landscape; this generality has led to success in broad fields such as engineering
[31,28], biology [21], economics [12], physics [2], medicine [43], ecology [33],
information retrieval [13], etc.

3.2 Evolutionary Discriminant Analysis

Instead of resorting to gradient-based optimization or quadratic programming
as with MLPs and SVMs, evolutionary algorithms optimize objective functions
by selecting, recombining and mutating existing solutions according to the fit-
ness function which is not necessarily continuous, and therefore can be used to
solve the optimization problem defined by Eq. 12. One approach following this
strategy has been proposed by Sierra et al. in the name of evolutionary dis-
criminant analysis (EDA) [41,42]. As shown in Fig. 6, this approach involves a
projection function gθ which is continuous and non-linear and is parametrized
by θ. An instance of θ is then regarded as a chromosome. The training pro-
cess starts from projecting all the training patterns to a projection space by
gθ, where the projected patterns are classified according to the classification
function H. The fitness of the chromosome θ, denoted by J(θ), is measured by
the classification error rate. In order to find a θ which optimizes the fitness, a
number of instances of θ are randomly initialized, forming an initial popula-
tion. New instances of θ are then reproduced based on the existing population
by recombining a few randomly selected parents plus mutation noise. Only
the most promising offspring are retained, just like the natural selection pro-
cess in biological systems. This evolutionary process continues until no fitness
improvement is observed within a prescribed number of batch generations1;
therein the best instance of θ represents the optimal solution of the parameters
of the EDA model.

EDA resembles some linear discriminants such as the Fisher discriminant
[20] in the sense that the input patterns are first projected to a lower dimen-
sion space and then classified by some conventional classification approach.
However EDA takes the CER as its objective whilst Fisher discriminant seeks
maximum data separation. More importantly, EDA optimizes the projection

1 This criterion is widely used in Evolutionary Computing to test the algorithm conver-
gence [17]. The underlying idea is that if evolution does not improve the fitness over a large
number of generations, then there is a high probability that an optimal solution has been
attained.
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by taking classification into consideration, which actually forms an integra-
tive optimization. The Fisher discriminant, in contrast, merely optimizes the
projection. Finally, the Fisher discriminant assumes a linear projection, whilst
EDA can choose any form of projection function, leading to much more flexi-
bility.

Compared to other non-linear classifiers such as MLPs and SVMs, EDA
removes the underlying continuity assumption by allowing discrete objectives,
which allows it to solve tasks with non-differentiable complex decision bound-
aries; moreover, EDA uses the evaluation metric (CER) as its objective, which
usually results in a higher performance in terms of this metric. Finally, the ran-
domness inherent in EDA reduces the risk of local minima, avoiding a critical
problem that impacts many non-linear classifiers such as an MLP.

The advantage of EDA is largely attributed to the flexible combination of
the continuous projection function and the discrete classification function in its
model structure, which lends EDA the capability to deal with highly complex
decision boundaries. The evolutionary approach ensures that this complex
objective can be optimized, although at the cost of increased computational
requirement.

4 EDA for confidence estimation

In this section, we apply EDA to discriminative confidence estimation for
STD. We first present how to construct an EDA solution for a classification
task based on an MLP-style non-linear projection and a nearest-neighbor clas-
sifier. The evolution procedure is then outlined, and the hard decision making
(classification) is extended to posterior probability estimation.

4.1 Evolutionary treatment

In order to construct an evolutionary solution for a classification task with
EDA, we need to specify the projection function g and the classification func-
tion H. The instances of the parameters θ of the projection function are then
treated as chromosomes and are optimized with the evolution program.

4.1.1 MLP-based projection

The EDA approach allows an arbitrary projection function, though a non-
linear projection is preferred due to its capacity to fit complex decision bound-
aries. In our implementation, an MLP-style non-linear function is used due to
its ability to approximate any continuous function with compact parameters.

We choose a 3-layer MLP structure as shown in Fig. 7, which consists of
N +1 input units, M +1 hidden units and K output units, where the notation
+1 indicates the bias unit in the input and the hidden layers. The weights of
the first layer are denoted by wnm, where n = 0, . . . , N and m = 1, . . . ,M ,
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and the weights of the second layer are denoted by vmk, where m = 0, . . . , M
and k = 1, . . . , K. The active function applied to the hidden units is a logistic
sigmoid, i.e.,

ϕ(z) = 1/(1 + exp−z) (13)

and the active function applied to the output units is linear.

T

A

L

C

R0

R1

d g (d)

Fig. 7 The MLP-style non-linear projection function. The input consists of 6 features and
the projected space has 5 dimensions. The logistic sigmoid activation has been applied to
the hidden units.

With this MLP-alike non-linear projection, a pattern d in the N -dimensional
feature space is projected to d̂ in the K-dimensional projection space, where
the k-th dimension d̂(k) is represented by the k-th output of the MLP struc-
ture. This is formulated as:

d̂(k) =
M∑

m=0

vmkϕ(
N∑

n=0

d(n)wnm) (14)

= gk
θ (d) (15)

where d(n) represents the n-th feature of d including the bias, ϕ is the logistic
sigmoid function defined in Eq. 13 and gk

θ represents the projection function
on the k-th dimension of the projection space. The entire set of projection
functions is a collection of all these single-dimension projections, i.e., gθ =
{gk

θ}, where θ = {wnm} ∪ {vmk}. A candidate solution of θ corresponds to a
chromosome in EDA, and the optimal solution needs to be discovered by the
evolution strategy that will be presented in Section 4.2.

It should be emphasized that the MLP-alike structure here is used simply
to represent a non-linear function; it is not a real MLP. Firstly, the output does
not associate any regression or classification targets – actually, the number of
output units is the dimension of the projected space and is not equal to the
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number of classes in general. And secondly, the update of the weights is driven
by evolution, instead of by error back-propagation [5].

4.1.2 Classification and fitness

The second component of the EDA approach is the classification function H,
which directly relates to the fitness of chromosomes/solutions. We choose the
nearest neighbor classifier in this study, which assigns a pattern to the class
whose mean is nearest to the pattern in the projection space.

Specifically, the mean of each class is computed in the N -dimensional fea-
ture space and is then mapped to the K-dimensional projection space:

m̂r = gθ(
1
|<r|

∑

di∈<r

di) r = 1, . . . , R (16)

where <r denotes the set of training patterns for the r-th class. In our STD
task, the patterns belong either to hits or false alarms, and therefore R=2. The
reason we compute class means in the input space and then project them to the
projection space (using Eq. 16) instead of computing them in the projection
space directly is that this enables a much faster EDA, as we can obtain the
projection means by a simple non-linear function calculation instead of costly
data pooling each time the projection is updated.
Applying the same projection to each training pattern d, we have its image d̂
in the projection space, formally represented as:

d̂ = gθ(d). (17)

The nearest-neighbor approach is then employed to classify a pattern by as-
signing it to a class whose mean projection is nearest to the projection of the
pattern. This results in the classification function H as follows:

Hgθ
(d) = arg min

r
||d̂− m̂r||22 (18)

where || · ||2 is the Frobenius norm. Although other competing classification
approaches could have been exploited, we have chosen the nearest neighbor
classifier due to its simplicity and computational efficiency. With the projec-
tion flexible enough, we find that this simple classifier provides fairly good
performance.
The classification errors, or the fitness of the chromosome θ, is then given by

J(θ) =
∑

d

δ(t(d),Hgθ
(d)) (19)

where δ is the indicator function as in Eq. 12.
In order to reduce the risk of over-fitting, we partition the training data

into a training set and a validation set. The class means are simply computed
based on the training set, while the fitness is computed on both the training
set and the validation set, leading to a composite fitness function:
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Jall(θ) = Jtr(θ) + Jva(θ) (20)

where Jtr(θ) and Jva(θ) are the classification errors computed according to
Eq. 19 on the training set and the validation set respectively.

4.2 Evolutionary program

We have cast a classification task to an EDA problem in the previous sec-
tion; now the evolutionary strategy can be employed to search for the optimal
chromosome, or the classification parameters θ. Algorithm 1 illustrates the
evolutionary process, where = represents a population, and µ, ρ, λ, σ,ℵ are
the parameters controlling the evolution process. The algorithm starts by ran-
domly sampling µ chromosomes as the initial population, and then evolves
the population by reproducing new offspring and selecting the most promis-
ing as the next generation. This reproduction-selection process continues until
the convergence criterion is satisfied. Reproduce(=old, λ, σ, ρ) is the function
that conducts reproduction, and Select(=, µ) is the function that performs
selection, i.e., selects µ chromosomes from = according to their fitness (Eq.
20). Fitness(=) is an auxiliary function that returns the best fitness of the
chromosomes in the population =.

Algorithm 1 EDA algorithm
Require: µ, ρ, λ, σ,ℵ
1: {µ: population size}
2: {ρ: size of family, i.e., number of parents to reproduce an offspring}
3: {λ: total number of offspring in reproduction}
4: {σ: mutation noise}
5: {ℵ: number of batch generations}
6: =old=Init(µ)
7: Jbest=MAX FLOAT
8: i=0;
9: while ℵ > i do

10: =new=Reproduce(=old,ρ,λ,σ)
11: =old=Select(=new,µ)
12: Jnew=Fitness(=old)
13: if Jnew < Jbest then
14: i=0;
15: Jbest ← Jnew

16: else
17: i← i + 1
18: end if
19: end while

The production process (function Reproduce) is presented in Algorithm 2.
An offspring θ is produced by recombining its ρ parents that are randomly
selected from the current generation =. Each gene in θ is copied from one of
its parents plus a mutation noise ι sampled from the Gaussian distribution
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Algorithm 2 Reproduction in EDA
Require: =, ρ, λ, σ
1: {=: the existing population of size µ}
2: {ρ: size of family, i.e., number of parents to reproduce an offspring}
3: {λ: total number of offspring in reproduction}
4: {σ: mutation noise}
5: =new={}
6: for i:=1 to λ do
7: Ξ=sampling(=,ρ)
8: θ=0;
9: for j:=1 to length(θ) do

10: ξ=sampling(Ξ)
11: θj = ξj + ι ι ∼ N(0, σ)
12: end for
13: =new ← =new + θ
14: end for
return =new

N(0, σ). The production process stops after λ offspring are produced. There-
after a new generation is created and returned, participating in competition
for survival in the selection process.

4.3 Discriminative confidence estimation

The EDA model optimized with the evolutionary approach presented in the
previous section can be applied directly to classification tasks according to the
classification function H (Eq. 18). However in STD, we prefer a ‘soft decision’
based on discriminative confidence so that the ATWV-oriented decision can
be conducted with the normalization technique as presented in Section 2.
Therefore, the EDA approach needs to be extended to predict classification
posterior probabilities instead of class categories. This can be achieved by
measuring the relative distance of the projected detection d̂ to the projected
means of the hit and FA classes, i.e., m̂hit and m̂FA respectively. As shown in
Fig. 8, we first draw a vector from the mean of FAs to the mean of hits, and
then project the detection image d̂ on to the vector, obtaining the new image
d̈.

The posterior probability of d belonging to the hit class, or the discrimi-
native confidence of d, is then given by the following equation.

cdisc(d) =





0 α < 0
α 0 ≤ α ≤ 1
1 α > 1

(21)

where α is represented by the following equation.

α =
d̈− m̂FA

m̂hit − m̂FA
(22)
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Fig. 8 EDA-based discriminative confidence estimation. The two shaded circles represent
the class of hits and FAs in the projection space, and m̂hit and m̂FA are the projections
of the means of the two classes, hit and FA, respectively. d̂ represents the projection of
an evaluation pattern, and d̈ is its image on the vector from m̂FA to m̂hit. The posterior
probability of d belonging to each class is then proportional to the distance from d̈ to the
mean projection of that class.

5 Experiments

The proposed EDA-based discriminative confidence estimation is evaluated
on an STD task on an English meeting domain corpus. We first manually
selected 256 terms that are entity names with sufficient occurrences from the
dictionary used by the AMI LVCSR system [22] as INV terms. These terms,
which have 2329 occurrences in the evaluation data, appear in the system
dictionaries for speech recognition and term detection and are well represented
by the language and acoustic models. OOV terms are strictly defined as those
terms absent in the dictionaries of both the ASR and the term detection
systems, and absent in training material for acoustic and language models.
This means our OOV terms are not only ‘out-of-vocabulary’, but also ‘out-of-
language’. To comply with this definition, all occurrences of these terms are
purged from the dictionaries as well as from the speech and text corpora used
for model training. We first compared the AMI dictionary (in active use and
assumed to represent current usage) and the COMLEX Syntax dictionary v3.1
(published by LDC in 1996 and therefore historical from an STD perspective),
and selected 414 terms as OOV terms from the AMI dictionary that do not
occur in the COMLEX dictionary. These terms were chosen to simulate the
evolution of English over time and are referred to as real OOV terms since
they are created in recent years and are absolutely OOV for any previously
developed system. Additionally, in order to design a reliable experiment with
sufficient OOV occurrences, we manually selected another 70 artificial OOV
terms that are plausible as search terms such as city and person names. These
terms are not really new in English, but still display OOV properties from the
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perspective of our system design, since all their occurrences in the dictionaries
and the training material have been removed and their pronunciations have
been obtained using LTS conversion. In total, we have 484 OOV terms with
2736 occurrences in the evaluation data.

The speech data used for acoustic model (AM) training, system develop-
ment and performance evaluation come from multi-party meetings recorded at
several institutes, including ICSI; NIST; ISL; LDC; the Virginia Polytechnic
Institute and State University; and various partners of the AMI project con-
sortium. The speech data recorded by individual head-mounted microphones
(IHM) were used. The original AM training corpus comprises 73 hours of
speech from 30 meetings at ICSI [23], 13 hours of speech from 15 meetings at
NIST, 10 hours of speech from 19 meetings at ISL [7] and 16 hours of speech
from 35 meetings from AMI partners [22]. In total, there are 104 hours of
speech with the regions of silence excluded. Next, we purge the OOV terms
from them by removing those sentences that contain any OOV term, which
removed 23% of the speech data and resulted in our final AM training col-
lection that consists of 122744 utterances with a total duration of about 80.2
hours of speech. The official RT04s development set provided by NIST, which
consists of 1.40 hours of speech excerpted from 8 meetings recorded at ICSI,
NIST, ISL and LDC was used for parameter tuning. The evaluation set con-
sists of the official RT04s eval set which consists of 1.7 hours of speech from
8 meetings recorded at ICSI, NIST, ISL and LDC, the official RT05s eval set
which comprises 2.1 hours of speech recorded from 10 meetings at ICSI, ISL,
VT and AMI partners and a speech corpus AMI08 which consists of 7.2 hours
of speech from 12 meetings recorded at the University of Edinburgh in the
AMIDA project2. The total size of the evaluation set is 11 hours of speech.
There is no overlapping between training, development and test sets.

The text corpus used to train the language model was provided by the
AMI project and is the one used by the AMI RT05s LVCSR system [22].
This corpus contains text from various sources such as news, transcripts of
speech corpora and a large amount of web text, amounting to 521.4M words
after OOV purging. The 50k AMI dictionary (from which we had purged the
OOVs) was used to convert the word-based text corpus to a phoneme-based
corpus.

We built a phoneme-based system using the speech and text corpora de-
scribed above. The acoustic models are state-clustered triphone HMMs with
Mel frequency cepstral coefficient (MFCC) features. The language model is a
phoneme 6-gram model where the order is chosen as the value that provides
the best STD performance on the development set among various models al-
lowed by computational resources [53]. Cambridge University’s HTK is used to
train the acoustic models and for lattice generation, and the SRI LM toolkit is
used to train the LM. An enhanced joint-multigram model [16,54] trained with
the AMI dictionary is used to predict pronunciations for the OOV terms. The
Lattice2Multigram tool from Speech@FIT (Brno University of Technology) is

2 http://www.amiproject.org/
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used to search for detections within the phoneme lattices. More information
about the experimental setting can be found in [53].

We conduct a comparative study of EDA with the other two discriminative
models, an MLP and an SVM. We first describe the data and configurations
used to train these models, and then present the results on the classification
and STD tasks.

5.1 Model training

In order to train a discriminative model, we need a set of positive and a set of
negative training samples, which correspond to hits and false alarms respec-
tively in STD. Therefore the first step in our experiments is to conduct STD
on the development set without discriminative confidence and normalization
applied. The output detections are then collected together with the informa-
tive attributes enumerated in Eq. 9, including the lattice-based confidence,
the acoustic likelihood, the language model score, the time duration, and two
occurrence-derived attributes R0(K) and R1(K). These detections are labeled
as hits and false alarms according to the reference, and are used as positive
and negative samples to train the MLP, SVM and the EDA. A particular
problem in the training set is that there are far more negative samples than
positive samples, which results in biased models preferring FAs. To address
this imbalance, we duplicate some hits to make them similar in number to
FAs, and train balanced models with the balanced data. A standard K-fold
cross-validation with K = 10 is employed for all the three models.

We choose a 3-layer MLP in this work. The input layer consists of 6 units,
corresponding to the 6 informative attributes. The hidden layer consists of 30
units (chosen by cross validation) with sigmoid activation. The output layer
consists of two units with soft-max activation, corresponding to hits and FAs
respectively. The standard error back-propagation algorithm [5] is employed
to train the model. The SVM is trained with the LIBSVM toolkit [10] with
a radial basis kernel function. The parameters, including the error penalty C
for classification and the radius scale γ for the kernel, are again optimized by
cross-validation, giving C = 32 and γ = 0.5 in our experiments.

The EDA training is a bit more complicated. First, the MLP-style projec-
tion function needs to be specified. The input layer is fixed and consists of 6
units corresponding to the 6 informative attributes; the hidden layer and the
output layer, however, need to be optimized with respect to the fitness value.
The cross-validation shows that the optimal structure is composed of 12 hid-
den units and 5 output units. This means that the optimal projection space
for the classification task has 5 dimensions. The parameters that control the
evolution process are chosen heuristically, as µ = 15, λ = 100, ρ = 2, σ = 0.15,
ℵ = 100.
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5.2 Classification

In this experiment, we investigate the performance of various discriminative
models on the classification task. The detections obtained from STD conducted
on the evaluation set are used to evaluate the three discriminative models. The
results are measured in terms of the hit misclassification rate, ε(Hit), and the
FA misclassification rate, ε(FA), defined as follows:

ε(Hit) = 1−
∑

K N̂K
hit∑

K NK
hit

and

ε(FA) = 1−
∑

K N̂K
FA∑

K NK
FA

where NK
hit and NK

FA are the number of hits and FAs of the term K in the
evaluation data according to the reference, and N̂K

hit and N̂K
FA are the number

of hits and FAs of the term K that are correctly classified by the classifier.
Varying the decision threshold on the classification posterior probability results
in the ROC curves shown in Fig. 9 and Fig. 10 for INV terms and OOV terms
respectively.

Fig. 9 ROC curves for INV terms with MLP/SVM/EDA.

We observe that the EDA model outperforms the MLP and the SVM for
both INV terms and OOV terms; especially with OOV terms, EDA substan-
tially outperforms the other two models. This result is fully consistent with
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Fig. 10 ROC curves for OOV terms with MLP/SVM/EDA.

our analysis in previous sections: on one hand, it confirms our conjecture that
OOV terms tend to be more diverse and therefore the decision boundary is
more complex in classification; on the other hand, it supports our analysis
that EDA leads to more flexible models than MLPs and SVMs and therefore
tends to exhibit more advantage on classification tasks with complex decision
boundaries, which is the case when classifying detections of OOV terms.

As presented in Section 2, the confidence provided by the discriminative
models can be normalized to make an ATWV-oriented decision. This means
that the confidence after normalization is more relevant for STD performance.
To elucidate the contribution of confidence normalization, we present the ROC
curves for classification performance on INV and OOV terms with normalized
confidence (Eq. 7) in Fig. 11 and Fig. 12 respectively. Again, we observe dif-
ferent patterns for INV terms and OOV terms: for INV terms, the confidence
normalization does not provide any substantial benefit, however, for OOV
terms it leads to a performance improvement with all the three models, and
in particular, substantially for the MLPs and SVMs. This is to be expected
as the normalization technique is proposed to compensate for the diversity in
term occurrences, which is clearly more prominent for OOV terms.

Comparing Fig. 10 and Fig. 12, we observe that the improvement achieved
with EDA compared to MLP and SVM without confidence normalization di-
minishes after applying confidence normalization. This suggests that EDA
plays the role of confidence normalization to some extent. Specifically, the
EDA model, due to its ability to deal with complex decision boundaries, may
well take into account the contribution of the term occurrences in modeling
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Fig. 11 ROC curves for INV terms with MLP/SVM/EDA after confidence normalization.

Fig. 12 ROC curves for OOV terms with MLP/SVM/EDA after confidence normalization.

and compensate for it, which is precisely the role played by confidence nor-
malization. MLPs and SVMs, although fed with the term occurrence features,
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are less capable of modeling them. With confidence normalization applied, the
term occurrences are explicitly compensated for all the three models, leading
to a less significant EDA advantage. Apart from the implicit normalization
that EDA makes, we should note that EDA is far superior for occurrence com-
pensation – it is capable of taking any possible features and assigning them
appropriate roles in decision making, by its evolutionary mechanism and the
evaluation metric-oriented optimization.

Table 1 presents the equal error rate (EER) with the three discriminative
models, with and without confidence normalization. Although the patterns
can be observed from the ROC curves, this table provides a direct comparison
for different models on different categories of terms with and without normal-
ization. Note that the EER is not proportional to ATWV in STD that we will
report in the next section. Firstly, EER is occurrence-averaged while ATWV
is term-averaged; secondly, EER considers the detections that have been hy-
pothesized by STD, whereas ATWV considers even the occurrences that are
missed by STD; and finally, EER and ATWV reflect system behavior with
different hit/FA ratios. Therefore, the smaller EER on OOV terms in Table
1 does not indicate better performance on STD with OOV terms – it just
results from the fact that more OOV occurrences tend to be missed by STD
and the OOV detections usually involve more false alarms that are easy to
classify. Nevertheless, the results we obtained so far, clearly demonstrate that
the EDA is more effective than the other two models in classification, and this
advantage is more prominent when classifying detections of OOV terms. It is
reasonable to expect that this advantage leads to an improvement in the STD
performance.

EER
Confidence estimator INV terms OOV terms
MLP 0.17 0.34
+ conf. norm. 0.20 0.10
SVM 0.17 0.31
+ conf. norm. 0.19 0.09
EDA 0.15 0.11
+ conf. norm. 0.14 0.09

Table 1 EER with MLP/SVM/EDA, with and without confidence normalization. “conf.
norm.” denotes confidence normalization.

5.3 Spoken term detection

After normalization, the discriminative confidence can be used for STD to
make the hit/FA decision according to Eq. 7. The results in terms of ATWV
on both INV and OOV terms are shown in Table 2. We observe that the
confidence based on EDA outperforms those based on the MLP and SVM
for both INV and OOV terms. Paired t-tests show that this improvement is
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statistically significant (p < 0.001) for OOV terms compared with the SVM
and weakly significant (p < 0.09) compared with the MLP. For INV terms,
the improvement achieved by EDA is insignificant compared with the MLP
(p ≈ 0.4) and hardly significant compared with the SVM (p ≈ 0.1).

ATWV
Confidence estimator INV terms OOV terms
MLP 0.5466 0.2952
SVM 0.5434 0.2920
EDA 0.5500 0.2994

Table 2 STD performance based on discriminative confidence estimated by the MLP, SVM
and EDA with the best result in bold. Results are reported in terms of ATWV, and for both
INV and OOV terms. Confidence normalization is applied.

Applying various decision thresholds leads to the DET curves shown in Fig.
13 and Fig. 14 for INV and OOV terms respectively. We can see that EDA
outperforms both the MLP and SVM considerably for OOV terms especially
when the FA is low. We suppose that this is because EDA-based confidence is
derived from distance to classification boundaries, which is more normalized
than those derived from intermediate objective functions used by MLPs and
SVMs especially in tasks involving complex decision boundaries. Therefore,
the confidence obtained from our EDA approach tends to be more robust
against threshold variation. For INV terms, EDA does not show an obvious
advantage over the other two models. This is consistent with the results on the
classification task as well as with the results in terms of ATWV, and strongly
supports our hypothesis that EDA is an advanced tool for complex decision
tasks and can be employed to boost STD on OOV terms.

5.4 Discussion

We have demonstrated that the EDA approach is more effective than MLPs
and SVMs, especially when the decision boundary is complex in classification,
and this advantage can be carried to related tasks such as OOV STD. We have
attributed this EDA advantage to its capability of compensating for the high
diversity among OOV terms. We also demonstrated that the term occurrence
rate is among those properties that result in the high diversity. An interesting
question that arises in this context is: are there other properties that lead to
the OOV diversity? As an extended investigation, we examine the relationship
between the term occurrence rate and the relative advantage of EDA.

In Fig. 15 and Fig. 16, the X-axis represents term occurrences and the
Y-axis represents the number of terms on which each model achieves the best
performance in terms of ATWV. Fig. 15 presents the results on OOV terms and
Fig. 16 presents the results on INV terms; confidence normalization has been
applied in both cases. We can see that, for OOV terms, the EDA approach
clearly outperforms both MLPs and SVMs for a wide range of occurrence
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Fig. 13 DET curves of the STD system with discriminative confidence based on MLP,
SVM and EDA. Results are reported for INV terms. Confidence normalization is applied.

Fig. 14 DET curves of the STD system with discriminative confidence based on MLP,
SVM and EDA. Results are reported for OOV terms. Confidence normalization is applied.

rates, particularly when the term occurrence rate is low. This on one hand
suggests that the EDA-based confidence is more robust to variations in term
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occurrences, and is more effective in compensating for low occurrences than
MLPs and SVMs, and on the other hand, as EDA wins in almost all term
occurrence rates (terms with 9 occurrences is the only exception), suggests
that there must be some other properties besides term occurrences (e.g., the
diversity in phonetic regulation) that are diverse among OOV terms but are
effectively normalized by the EDA approach. For INV terms, we find that
different models win at different occurrence rates, supporting our conjecture
that INV terms, due to their similar patterns, benefit less from the robustness
of the EDA-based confidence measure.

1 2 3 4 5 6 7 8 9 10 11
Term occurrence rate

 

MLP
SVM
EDA

Fig. 15 Histogram of OOV terms that achieve the best STD performance with each dis-
criminative model. The X-axis represents the term occurrence rate and the Y-axis represents
the number of terms that have a particular term occurrence rate and achieve the best STD
performance with each model (MLP, SVM or EDA). The X-axis corresponding to 11 refers
to all the terms which have more than 10 occurrences.

Generally speaking, the power of EDA is largely relevant to the flexible ar-
chitecture of combining heterogeneous projection functions and decision strate-
gies. Any continuous or discrete projection function and classification strategy
can be integrated together, lending EDA the capability to cope with highly
complex classification tasks, e.g., those with a piece-wise decision boundary.
The cost of the high flexibility is two-fold: first it may place high demand on
computation, second it tends to cause serious over-fitting problems. In our ex-
periments, training an EDA model with a fixed MLP structure takes around
160 minutes (only a few minutes are required for the MLP or SVM training).
This is still affordable for a task of the same scale as ours. The EERs on the
training and evaluation data with EDA are 0.13 and 0.15 respectively (on INV
terms). Considering the superior results over the other two models, we can as-
sume no obvious over-fitting involved in the EDA training in our experiments.
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Fig. 16 Histogram of INV terms that achieve the best STD performance with each discrim-
inative model. The X-axis represents the term occurrence rate and the Y-axis represents
the number of terms that have a particular term occurrence rate and achieve the best STD
performance with each model (MLP, SVM or EDA).

When applied to other tasks, however, selection of the EDA structure and its
configuration might be non trivial.

Finally, we note that the EDA-based approach is general and can be em-
ployed for confidence estimation in a broad range of applications such as word-
based STD or ASR output scoring. However, there is some trade-off between
the task scale and the improvement that EDA may achieve, since EDA train-
ing itself is computationally demanding. Readers can find some results on
word-based STD systems in [53], which shows that word-based systems typi-
cally generate low false alarm rates, and therefore the performance obtained
with the discriminative confidence estimation is less prominent compared to
phone-based systems.

6 Conclusions

This paper proposed a new confidence estimation approach based on EDA
for spoken term detection. Both the theoretical analysis and the experimen-
tal results demonstrate that EDA is more effective than MLPs and SVMs on
classification tasks especially those with complex decision boundaries. This
advantage can be exploited to improve the hit/FA decision making in STD for
OOV terms which are difficult to classify due to their highly diverse properties
(ASR error patterns, occurrence rates and confidence distributions) and more
risk of converging to local minima in model training. Our experiments confirm
that a significant performance improvement can be obtained for OOV terms
with EDA-based confidence than with confidence based on SVMs and MLPs,
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whilst the improvement for INV terms is relatively marginal. The EDA ap-
proach significantly outperforms both MLPs and SVMs in terms of ATWV by
a relative improvement of 1.4% and 2.5% respectively. These results validate
our analysis that the EDA approach, which is based on a flexible combina-
tion of heterogeneous projection and classification functions and using the
measurement metric as its objective, is able to deal with complex tasks and
ameliorates the risk of local minima, suggesting that the EDA is a better
model than the MLP and SVM in dealing with OOV terms in STD. The main
drawback of EDA as compared to MLPs and SVMs is the high computational
cost in model training, which in our case is about 2.5 hours, much higher than
that required to train MLPs and SVMs (just a few minutes). Nevertheless,
this is still acceptable for tasks that are not over complex, at least in STD
confidence estimation.

Future work will investigate other projection functions and other classi-
fiers to enhance the EDA model. In addition, new fitness functions will be
investigated, particularly one that optimizes ATWV directly.
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