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Abstract The study of fish populations in their own natural environment is a task
that has usually been tackled in invasive ways which inevitably influenced the
behavior of the fish under observation. Recent projects involving the installation
of permanent underwater cameras (e.g. the Fish4Knowledge (F4K) project, for the
observation of Taiwan’s coral reefs) allow to gather huge quantities of video data,
without interfering with the observed environment, but at the same time require
the development of automatic processing tools, since manual analysis would be
impractical for such amounts of videos. Event detection is one of the most interesting
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aspects from the biologists’ point of view, since it allows the analysis of fish activity
during particular events, such as typhoons. In order to achieve this goal, in this paper
we present an automatic video analysis approach for fish behavior understanding
during typhoon events. The first step of the proposed system, therefore, involves
the detection of “typhoon” events and it is based on video texture analysis and on
classification by means of Support Vector Machines (SVM). As part of our behavior
understanding efforts, trajectory extraction and clustering have been performed to
study the differences in behavior when disruptive events happen. The integration
of event detection with fish behavior understanding surpasses the idea of simply
detecting events by low-level features analysis, as it supports the full semantic
comprehension of interesting events.

Keywords Event detection ·Fish detection ·Covariance tracking ·Behavior
understanding

1 Introduction

The typical techniques adopted by marine biologists to study fish populations in their
natural habitat involve casting nets in the ocean, human underwater observation
and photography [48], combined net casting and acoustic (sonar) [6] and human
hand-held video filming. However, these approaches suffer several limitations: for
example, the net casting method, though accurate, has the disadvantage of killing
the fish and damaging their environment; human filming and photography do not
damage the habitat, but provide limited information.

In order to overcome these limitations, in recent years the use of embedded
underwater cameras has drawn a lot of interest, since it is an environmentally friendly
approach, does not influence fish behavior and also provides large amounts of video
material. On the other hand, it becomes impractical to manually analyze this huge
quantity of video data, both because it requires a lot of time and concentration and
also because it is error prone—it is unrealistic to assume people can fully investigate
all the information in the videos. Therefore, automatic video analysis methods are
heavily demanded.
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(a) Scene under standard conditions (b) Scene during a typhoon

Fig. 1 Underwater scenes recorded by the Coral Reef in Ken-Ting Area (Taiwan)

The Fish4Knowledge1 project uses live video feeds from ten underwater cameras
located in the coral reefs of Taiwan’s shores and aims at developing an automatic
system for integrated data capturing, video analysis, fish detection and classification,
and querying, for the marine biologists to use, in order to study fish populations,
behavior and interactions. The main difficulty of this kind of task is the nature of
the videos to be processed. Traditionally, such tasks involve the analysis of video shot
in controlled environments, such as tanks, where for example lighting conditions
do not change with time, the background can be chosen to simplify fish detection,
the type of fish is known, etc. The lack of these assumptions greatly complicates
the task to be accomplished and requires the development of automatic analysis
methods which are robust enough to handle all the possible varying conditions of
the environment.

Another critical aspect of the project is the recognition of “events”, both related
to fish behavior (such as eating, preying, sleeping, mating, etc) and to environmental
phenomena (such as typhoons), in order to have videos automatically labeled and
categorized by the happening of such events. In fact, in marine biology it is of extreme
importance to monitor habitat and fish fauna before and after catastrophic typhoons.
For example, The Taiwan area is often hit by typhoons (e.g. five in 2010), which
cause severe deleterious effects on fish and their habitat [33, 58]. Although there
exist studies, e.g. [40] and [53], that have investigated the changes in underwater
environment after such events happen, most of them have focused on long-term
monitoring and they are not able to explore the effects right after the typhoon. This is
mainly due to the impracticability for human operators to monitor the area because
of, for instance, the floods coming down from neighboring mountains. Therefore, the
importance of using underwater cameras (and intelligent video analysis approaches)
rises again, especially for short/middle term monitoring but also for analyzing all
those cases where a typhoon hits a specific area unexpectedly.

However, underwater camera-based monitoring shows some deficiencies (as above
mentioned): the impossibility of a human operator to deeply analyze the stored videos
and the poor clarity of the images during such events, that makes hardly possible not
only the identification of fish behavior, but also of fish, as shown in Fig. 1.

1http://fish4knowledge.eu

http://f/ish4knowledge.eu
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In this paper we propose an approach that integrates typhoon event detection
and fish behavior understanding based on the analysis of fish trajectory dynamics.
Since the videos shot during with typhoons show an increase of the turbidity of the
water, the event detection algorithm relies on classification of texture features of
video frames by means of Support Vector Machines (SVM). Once a typhoon event is
detected, fish trajectories are extracted by suitable detection and tracking modules in
order to study to what extent typhoons influence fish behavior. Finally, to describe
the differences in fish activities at the different times of a typhoon’s passage, the
clustering of fish trajectories in standard underwater conditions (i.e., no typhoon)
and during typhoons is performed.

This paper focuses on typhoon event detection and trajectory-based behavior
understanding (Section 4), which rely on automatic object detection and tracking
methods. These are advances on previous underwater object detection, tracking and
event analysis algorithms (Section 3).

The data for the project comes from the fixed camera underwater monitoring
system of the Fish4Knowledge project (Section 2). We achieve an accuracy of about
80% on fish detection, 95% on tracking and 97% on event detection (Section 5).
Possible improvements include (discussed in Section 6) the extension of the event
detection algorithm to any event detection problem which can be formulated in terms
of texture description of videos and the publication of all the achieved event data as
Linked Open Data in order to provide sufficient detail to allow full replication of the
experiments described, but also a sufficient level of abstraction to facilitate linking
to existing event data.

2 The underwater monitoring system

The Fish4Knowledge project exploits the distributed system for real-time video
streaming and storage provided by the National Center of High Performance Com-
puting in Taiwan. This system includes a stream receiving unit, a stream processing
unit and a presentation unit [10]. Figure 2 illustrates the distributed streaming system
architecture and the stream pipeline.

Fig. 2 Architecture blocks and stream pipeline
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The stream receiving unit supports and identifies automatically multiple capture
devices, choosing a proper encoder accordingly. It creates a device identification
module, packed together with several commonly used software components into
one package. This package contains not only the most commonly used devices,
such as HDV, DV, DC, Webcams, TV Cards and Capture Cards, but also multiple
stream compression encoders of the most commonly used standards, such as MPEG-
1/2/4, WMV, FLV, MJPEG. The benefit of the architecture is the decoupling of the
pipeline, which allows flexible configurations of capture devices and codec standards.
The stream processing unit, after receiving a stream, offers two options: one that
directly streams the received video to the presentation unit and another that slices it
into a sequence of images, which can be extracted and stored for further processing.
These images are sent to the respective round robin queues, to be treated by image
processing techniques, such as event detection, object detection and tracking, image
segmentation etc. When the image processing phase terminates, the images and the
associated logging information are automatically stored in an image database. There,
users can query, browse, analyze, and manage these images via image management
services. The presentation unit supports multiple display devices to accommodate
end-users’ needs. The easiest way for users to view the streams is by using a Web
browser. For this purpose, a Web-based user interface was designed to allow users to
browse multiple real-time streams (Fig. 3). In order to reduce network traffic and to
enhance the streaming efficiency, two distributed video stream compression concepts
are implemented. The first distributed compression is a client-server based concept.
It includes pre-compression on the client side and post-compression on the server
side. The stream receiving unit grabs the video stream from the client and compresses
it to reduce the necessary bandwidth needed. The post-compression transfers the

Fig. 3 A Web interface for stream viewing, users can select multiple real-time streams from top
panel
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Fig. 4 An example of the coral reef underwater ecological observation

original video stream to multiple formats, such as MPEG-1/2/4, WMV, FLV and
MJPEG, to reduce the video data volume [41, 65]. The second distributed compres-
sion is a server-side based concept. It dynamically assigns the video compression task
to the most appropriate servers depending on their load. It compresses the video
stream to a variety of bit-rates to suite different network bandwidth capabilities.
A real-time high-resolution streaming system is implemented by combining these
two distributed stream compression concepts. The main application of the described
architecture is the long term underwater environment ecological observation for
assisting marine ecologists to closely monitor the ecosystem of coral reefs in Ken-
Ting National Park and in Orchid Island (Taiwan). Figure 4 shows an example of
coral reef observation.

In detail, the underwater ecological observation system consists of ten cameras
continuously recording during daylight. For convenience, the video stream is divided
into ten min long video files at multiple resolutions (320×240 and 640×480) and
at different frame rates ranging from 5 fps to 30 fps. Currently, the system contains
videos of the last five years (2007–2011), i.e., each camera has recorded about 100,000
videos and therefore, the entire dataset for all the ten cameras is of about one million
videos. The videos are available at the Web-link http://gad240.nchc.org.tw/.

3 Related works

In this paper we propose an automatic system for typhoon event detection that,
differently from the existing approaches, integrates low-level events (fish trajec-

http://gad240.nchc.org.tw/
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tories) with high-level events (typhoon), in order to understand how fish behave
during specific events and thus supporting the full semantic comprehension of a
specific event [51]. Therefore, one of the main parts of the proposed system is fish
trajectory analysis, which involves fish detection and tracking. For this reason, at
the beginning of this section, a brief review of the detection and tracking methods
that work under conditions similar to the underwater’s ones is presented; then, the
existing approaches in underwater domain are reviewed. Finally, the analysis of the
existing approaches for event detection in underwater scenes is given.

Before reviewing the literature, let us introduce which are the effects that usually
occur in underwater scenes and that make the task of video analysis very difficult and
challenging:

– sudden and gradual light changes: typically, the videos are available starting
from sunrise up to sunset, so it is necessary to consider the light transition due
to these particular moments of the day in which brightness and contrast of the
images are strongly compromised by the absence of sunlight. Moreover, the
periodical gleaming in the underwater scene has to be considered when designing
the detection and tracking algorithms;

– bad weather conditions: the weather conditions could be subject to unexpected
changes such as sudden cloudiness, storms and typhoons. Under these conditions
the scene becomes very difficult to analyze due to a worsening of image contrast
which makes it hard to detect and track clearly any targets;

– murky water: in order to investigate the movements of fish in their natural
habitat it is important to consider that the clarity of the water during the
day could change due to the drift and the presence of plankton. Under these
conditions, targets that are not fish might be detected as false positives;

– algae on camera lens: the direct contact of seawater with the lens causes a rapid
formation of algae and filth that compromises the quality of the observed scene;

– periodic and multimodal background: handling background movements and
variations is one of the most difficult tasks and algorithms must be robust enough
to cope with any arbitrary changes in the scene. Also periodic movements (e.g.
plants affected by flood-tide and drift) have to be taken into account to avoid the
detection of moving non-fish objects;

However, one of the most complex issues to deal with, when processing underwa-
ter videos, concerns the targets to be detected and tracked. Indeed, differently from
humans, fish show erratic and fast movements (in three dimensions) that, therefore,
lead to frequently changes in size and appearance.

All these aspects can be classified as extreme conditions, and in the following the
object detection and tracking methods that deal with similar conditions are reviewed.

3.1 Object detection ad tracking under extreme conditions

A myriad of detection algorithms have been proposed for handling different back-
grounds and scene phenomena. Basically, the existing approaches for motion mod-
eling [9, 19] can be classified into recursive techniques [18, 62] which adaptively
update single or multiple background models based on each input frame at the
current time, and non-recursive techniques [22, 64] that use a buffer of N previous
frames to estimate the background image according to the temporal variation of
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each pixel within the buffer. However, none of these approaches have demonstrated
to be generally superior to the other ones, and the performance depends on the
specific application domain. Porikli in [44] have compared different algorithms
(both for detection and tracking) under extreme conditions that somehow recall
the ones present in underwater scenes such as erratic motion, sudden and global
light change, presence of periodic and multimodal background, arbitrary changes in
the observed scene, low contrast and noise. In detail, the authors have shown that
the algorithms that best perform under these conditions use mixture of probability
density function (pdf ) models [23, 24, 62], Wave-Back Model [45] and Intrinsic
Model [43]. In detail, mixture of pdf models have been adopted to handle multi-
modal backgrounds. In these models, background pixels are modeled as a mixture of
either Gaussian or Poisson pdf s, which are iteratively updated at every frame. These
approaches are flexible enough to handle sudden and global illumination changes
and other arbitrary variations in the scene and, moreover, they can converge to any
arbitrary distribution providing enough number of observations, but generally the
computational cost grows exponentially as the number of models in the mixture
increases. A drawback of the previous methods is that they ignore the temporal
correlation of color values. This impedes the differentiation of periodic background
motion from foreground motion. Since real-world physics (especially, in underwa-
ter domains) induces near-periodic phenomenon in the environment, a frequency
decomposition-based representation of the background (Wave-Back [45]) has been
also adopted. This algorithm detects moving objects based on the form of the
temporal color variation by comparing the frequency transform responses. Basically,
the algorithms use frequency decomposition of pixels’ history to catch periodic
background movements. In particular, for any input frame the DCT (Discrete Cosine
Transform) coefficients are calculated and compared to the respective background
coefficients, thus resulting in a distance map. By thresholding this distance map, the
moving objects can be isolated. The Wave-Back algorithm usually performs well in
repetitive scenes and with low-contrast colors but it performs inadequately in scenes
with erratic movement and when sudden lighting transitions take place.

To overcome these limits, background scene has been represented using intrinsic
images [43] as a multiplication of static and dynamic parts. The idea behind this
algorithm is that in a video, every image can be decomposed in two components:
the reflectance image and the illumination image. The former is invariant to lighting
changes and is almost identical under any light conditions. The background is
modeled by calculating the temporal median of these reflectance parts of the input
images. This algorithm has been proved to perform better than the previous ones
under extreme conditions, specially, in scenes with lighting changes, fast-and-erratic
object movements and low-contrast.

In a behaviour understanding system, tracking is of core importance since it
extracts the trajectories of the objects involved in the scene and, at the same, it
allows to repair detection failures. Visual tracking consists of following an object
in a video across consecutive frames; in other words a tracking algorithm has to
be able to recognize that two regions in two different frames represent the same
object. However, this task presents a few major difficulties, which are even more
emphasized in unconstrained environments such as the underwater one. First of
all, in a tracking algorithm, the search region of an object has to be limited to a
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neighborhood of its previous detection, otherwise a new object appearing in the
scene might be associated to the old one, even if it is located in a different part of
the video. The choice of the search area depends on the motion characteristics of the
objects which typically appear in the scene. For example, in an urban environment we
can safely assume that pedestrians and cars (e.g. the same holds for football players)
move approximately always in the same direction, without swift changes, and this
restricts the search area to something shaped like a cone oriented towards the main
direction of the target. However, with fish this is not necessarily true, because their
typical erratic motion in three dimensions makes their direction less predictable.
Another tracking issue consists of the change in appearance of an object across the
video, because of variations of lighting, orientation, shape. This is especially true
for fish, because of their non-rigidity and, again, of erratic motion. Finally, another
complication is caused by occlusions, that is the case of partial or total overlapping
of two or more objects.

Many different approaches have been studied in literature on how to solve the
visual tracking problem. Among these, the most famous and widely-used algorithms
[32] are Kalman filter-based tracking [16], multiple hypothesis tracking (MHT) [47],
optical flow-based tracking [56], particle filter tracking [27], point feature tracking,
and mean shift tracking [12]. A detailed analysis and comparison of the existing
approaches is beyond the aim of the paper, and an extensive literature of object
tracking approaches may be found in [70] and [49]. However, a brief description
of the existing approaches showing pros and cons under extreme conditions is, here,
given.

One of the simplest ways to see the tracking problem is as an estimation of
the probability density function of a state representing an object’s position and
appearance, given the set of all measurements up to that moment. When the
measurement noise is assumed to be Gaussian, Kalman filters provide an optimal
solution. The most general class of such filters is represented by particle filters, where
the current state distribution is modeled as a set of weighted samples which are
updated as soon as new measurements become available. Particle filter tracking is
used in several applications [5, 71], however it may become impractical because of the
size of the state vector and of the large number of particles in complex scenes (such as
underwater domain). Another tracking approach consists in characterizing objects by
local point features [37, 56] and trying to match objects through frames by evaluating
the correspondences between feature point sets, chosen in such a way as to make the
description of the objects invariant to affine or projective transformations. However,
this technique presents several limits, especially with smooth object surfaces (for
which it is difficult to extract distinguishing feature points) or when objects undergo
pose changes, intersections and severe deformations as often happens with fish.

A computationally efficient and very popular approach is mean-shift tracking
[12], which models the object’s probability density in terms of color histogram, and
moves the object region towards the largest gradient direction, in order to maximize
the similarity between the reference and candidate object regions, measured with
the Bhattacharyya coefficient or the Kullback-Leibler divergence criteria. However,
this technique fails in the case of occlusions and quick appearance changes, when
the color distribution of the background is too similar to that of the target object
or when the object moves outside of the kernel search area. Tracking algorithms
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based on covariance representation [66] model objects as the covariance matrices
of a set of feature built out of each pixel belonging to the object’s region. This
representation embodies both the spatial and statistical properties, unlike from
histogram representations (which disregard the structural arrangement of pixels) and
appearance models (which ignore statistical properties) and, therefore, it is the most
suitable to track objects under the above described conditions.

3.2 Object detection and tracking in underwater scenes

The existing literature for automatic video and image analysis of real-life underwater
environments has been mainly focused on fish recognition [3, 34, 39, 61], whereas
only few approaches for fish detection and tracking have been proposed.

Most of the existing methods have largely been driven by commercial fish aquacul-
ture, with the goal of non-intrusive estimation of fish numbers and sizes in controlled
environments or in labs (i.e., with fixed lighting, cameras, background, fixed objects
in the water, known types of fish, known number of fish, etc.) in order to provide
also useful feedback for the study of behavioral and locomotion under different
environmental variations.

The first step before detecting and tracking fish is to perform image registration
and to improve the quality of the grabbed frames. In this direction very few
approaches have been proposed in underwater environment: for image registration,
recently, Costa et al. [13] developed an approach based on artificial neural networks
for correcting the distortion due to camera lens (as far as we know no approach
exists for correcting jitter). Iqbal et al. [30] developed an enhancement system based
on contrast stretching for solving lighting problems or clarity of water problems. An
extensive literature of underwater image enhancement and restoration methods can
be found in [52].

A variety of methods for fish detection and tracking have been proposed. Morais
et al. [38] proposed a system, based on Bayesian filtering techniques, to detect and
count fish in a fish tank with a fixed number of fish, reporting a success rate for fish
counting of 81%. Evans [21] detected and counted isolated Southern Bluefin tuna in
cages. Spampinato et al. [60], instead, proposed a system that detects and counts live
fish free swimming by the coral reefs through the use of a video change detection
algorithm with a performance of about 85%. Zhou and Clark [72] tracked individual
Large Mouth Bass through multiple frames while simultaneously estimating their
3D position and orientation. Walther et al. [69] developed an automatic machine
vision system for animal detection and tracking by using high-resolution video
equipment on board of the ROV (ocean-going remotely operated vehicles—ROV).
Hariharakrishnan and Schonfeld [28] proposed a tracking system based on the
prediction of object contour by analyzing motion vector information.

3.3 Event detection in underwater scenes

In the last few years, high-level event detection and description in videos has drawn
increasing interest from the scientific community [2]. Video surveillance systems,
advanced human-computer interfaces and semantic video indexing are just the main
examples of the possible application fields of this research branch. However, the
video event recognition task has often been tackled in a domain-specific way (except
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few exceptions, such as [14, 42])—where the typical domains are for example sports,
movies, video-surveillance and user-generated content—which caused the lack of
a general detection framework [2]. The most popular application fields for event
detection in videos are sports [36], video-surveillance [1], road traffic control [55].

Event detection and, more in general video data analysis approaches have rarely
dealt with effective real-life environments as those concerning the eco-system mon-
itoring, which involves different and challenging domains with respect to common
domains with humans [31, 57], since animals, fish and insects have more degrees of
freedom than humans moving in a scene.

To best of our knowledge only a little number of approaches have dealt with event
detection on unconstrained underwater scenes. In particular, Edgington et al. [17]
proposed a system operating on the deep ocean where interesting low-level events
(i.e. rare animals) are identified by using a model for saliency-based attention in
humans and then such events are tracked. Similarly, Cline et al. [11] developed a
neuromorphic vision approach for low-level event detection in the deep ocean. One
approach that, instead, focuses on high-level events mainly related to group fish
movement has been proposed in [59], where an automatic system for crowd flow
analysis in underwater scenes was used to investigate fish schooling characteristics.
The approach exploits Lagrangian particle dynamics from fluid mechanics in order
to examine the trajectories of small particles in the fish flow and achieved satisfying
performance in detecting events, such as fish schooling as a group flow.

4 The proposed system

The proposed typhoon event detection is based on texture analysis (at frame level)
and on Support Vector Machines (SVM). This system is then integrated with a
trajectory-based behavior analysis to fully understand the semantics of the event we
are dealing with. Figure 5 depicts the flowchart of the whole system: in detail, a video
is input into the typhoon detection and to the fish detection/tracking blocks. The
former extracts a subset of the frames from the video and for each of them computes
a set of features representing the texture characteristics of the image. In order to
reduce the size of these vectors, Principal Component Analysis is performed and the
resulting features are sent to an SVM classifier, which has been trained from ground-
truth data to classify between typhoon and non-typhoon videos. Independently, fish
detection and tracking algorithms are run and the results are sent to a trajectory
analysis block, which builds clusters of similar trajectories; by joining these results
with the output of the typhoon detection subsystem, it is possible to draw some
conclusions on the behavior of fish in the periods before, during and after typhoons.

In the following sections, the single blocks, shown in the flowchart, are described
in detail.

4.1 Typhoon event detection

The aim of this module is to identify, among all the recorded videos, the ones that
show a typhoon event. By analyzing all the available videos, it is possible to notice
that the best discriminant for typhoon event detection is the turbidity of the water,
that is related to the image texture. Figure 1 shows how radically the global video
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Fig. 5 Flow chart of the proposed typhoon detection and behavior understanding system

appearance changes after the arrival of a typhoon in the area. Accordingly, the
detection of typhoon events is based on computing blurring and texture features
on different parts of the images and at different scales. The features extraction
method takes inspiration from the object detection algorithm described in [68], where
the model of the background is built by iteratively dividing the image into a grid,
computing histogram-based features on each cell, grouping cells into coarser blocks
and repeating the procedure, until the size of the cells becomes too large (according
to user criteria). The subdivision of the input image into a grid provides a convenient
representation for both global and local texture statistics. The main disadvantage of
this approach is the computation time, since the number of sub-images to process can
be very large, because of the iterative grid division algorithm. Nevertheless, it is not
necessary to process every frame in a video, since the global appearance of the scene
is unlikely to change suddenly. For this reason, we only process a subset of frames
(per video) in order to achieve the best compromise between computation costs and
variability of the recorded scene. The proposed algorithm (the flowchart of which is
depicted in Fig. 6) for feature extraction is described in Algorithm 1. The initial cell
size is set to 40×30 pixels in order to keep the 4:3 ratio of the input videos.

The output vector describing global and local texture contains a number of
elements that depends on the video resolution; for 320 × 240 videos, it stores 3,910
values for each frame. In order to reduce the dimensionality of the problem, principal
component analysis (PCA) is then applied for features selection. The data obtained is
then fed to a Support Vector Machine with a quadratic kernel, because of their good
generalization property [29], as a binary classifier for identifying videos that depict
typhoons from ones that do not. After typhoon event detection is accomplished, fish
detection and tracking is performed to extract the trajectories used for investigating
fish behavior during typhoons.
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Algorithm 1 Pseudo-code implementation of the feature extraction algorithm
Initialize feature vector
featureVector ← ∅
Initialize cell size
cellSize.height ← minimumCellHeight
cellSize.width ← minimumCellWidth
Divide the image into a grid with the initial cell size
cells ← image.divideInCells(cellSize)
Start feature computation loop
while cells.size() ≥ minimumGridSize do

for cell in cells do
Get RGB and grayscale histograms
redChannelHistogram ← cell.getRedChannelHistogram()
greenChannelHistogram ← cell.getRedChannelHistogram()
blueChannelHistogram ← cell.getRedChannelHistogram()
grayHistogram ← cell.toGrayscale().getRedChannelHistogram()
Add histogram-related features
featureVector.add(redChannelHistogram.mean())
featureVector.add(redChannelHistogram.variance())
featureVector.add(redChannelHistogram.entropy())
featureVector.add(redChannelHistogram.uniformity())
...
featureVector.add(grayHistogram.mean())
featureVector.add(grayHistogram.variance())
featureVector.add(grayHistogram.entropy())
featureVector.add(grayHistogram.uniformity())
Apply Gabor f ilter at several scales and orientations
for scale in 2, 4, 6, 8 do

for orientation in 0, π
4 , π

2 , 3π
4 do

gaborOut ← cell.applyGaborFilter(scale, orientation)
Add Gabor-related features
featureVector.add(gaborOut.mean())
featureVector.add(gaborOut.variance())

end for
end for
Compute gray-level co-occurrence matrix
gclm ← cell.computeCoOccurrenceMatrix()
Add co-occurrence-related features
featureVector.add(gclm.maximumProbability())
featureVector.add(gclm.elementDifferenceMomentOfOrder(2))
featureVector.add(gclm.elementDifferenceMomentOfOrder(3))
featureVector.add(gclm.inverseElementDifferenceMomentOfOrder(2))
featureVector.add(gclm.inverseElementDifferenceMomentOfOrder(3))
featureVector.add(gclm.entropy())
featureVector.add(gclm.uniformity())

end for
Increase cell size
cellSize.height ← cellSize.height × 2
cellSize.width ← cellSize.width × 2

end while
Reduce the dimensionality by applying PCA
featureVector ← PCA(featureVector)
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Fig. 6 Flow chart describing
the algorithm for the
extraction of features from a
video

4.2 Fish trajectory extraction

4.2.1 Fish detection

Following the evaluation on detection algorithms under extreme conditions per-
formed by Porikli [44], we have implemented four approaches for fish detection,
namely, Adaptive Gaussian Mixture Model (AGMM), Adaptive Poisson Mixture
Model (APMM), Intrinsic Model (IM) and Wave-Back (W B), each one dealing
with some aspects of the underwater scenes as described in Section 3. These algo-
rithms perform fairly well (as shown in the experimental result section) in underwater
environment, however they often detect non-fish objects (i.e. false positives) that
have to be filtered out. This requirement led us to provide the fish detector with an
additional level of post-processing that assigns to each detected blob a quality score.
This score is a numerical value between 0 and 1 and is computed as the average of
the following features:

– Dif ference of color at object boundary ("CO): this index is based on the assump-
tion that color boundaries often coincide with fish/background boundaries; this
value is highest when the areas “just inside” and “just outside” of the contour of
the detected fish have markedly different color values. It is computed according
to the following procedure.

– Select N equidistant points on the object’s contour. The current value for N
(the number of sampled contour points) has been set to 25. This choice is due
to the fact that the minimum fish contour size, in pixels, has been estimated to
be about 150–160 points for 320×240 images. Sampling one point in every six
allows to accurately follow the contour of the object, without missing sharp
changes in the shape.
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– For each point Pi,

• Select two points Pi,in and Pi,out located just inside and just outside of
the contour on the line passing by Pi and such that it is orthogonal to the
tangent of the contour in that point.

• Compute Ci,in and Ci,out as the average color intensities in the 5 × 5
neighborhoods of Pi,in and Pi,out.

– Compute the result as:

"CO = 1
N

N∑

i=1

∣∣∣∣Ci,in − Ci,out
∣∣∣∣

√
3 · α2

(1)

In this formula, the numerator of the fraction inside the sum is the norm of
the color intensity between the pair of pixels, and the denominator repre-
sents the minimum Euclidean distance between two pixels to be considered
as belonging to markedly separate color regions. Ideally, for each pair of
points, the contribution to the sum should be low if the contour belongs to
a homogenous region, and high if the color difference is greater than the
reference distance (the denumerator).

– Dif ference of motion vectors at object boundary "MV : similarly to the previous
case, the motion vector in the regions close to the object contour are com-
pared; this value (computed by formula (2)) takes into account the fact that,
hypothetically, the motion vector outside of the object contour should be zero
(static background) or significantly different than inside (as shown in Fig. 7).
In the following formula, Mi,in and Mi,out represent the average motion vectors

(a) Original frame (b) Motion vector

Fig. 7 Motion vector boundaries typically coincide with object boundaries
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computed just inside and just outside of contour point Pi (obtained as in the
previous formula).

"MV = 1
N

N∑

i=1

∣∣∣∣Mi,in − Mi,out
∣∣∣∣

∣∣∣∣Mi,in
∣∣∣∣ +

∣∣∣∣Mi,out
∣∣∣∣ (2)

As in the previous formula, this score returns a high value if the motion vectors
are different, and a low value otherwise. The denumerator allows to normalize
between 0 and 1, since the norm of the difference is necessarily smaller than the
sum of the respective norms.

– Internal color homogeneity: due to the low resolution of videos, most fish
(especially the ones far away from the camera) appear as monochromatic, so
this index gives an indication on how homogenous the color distribution of the
detected fish is. The body of the object is divided into a grid and for each cell the
average color value is computed; the more similar these average results are, the
more likely it is that the detected object is actually a fish. This value is computed
as follows:

– For each cell j in the grid, compute the mean color C j.
– Compute CM as the mean of all

{
C j

}
.

– For each C j, compute d j =
∣∣∣∣C j − CM

∣∣∣∣.
– Compute dM as the mean of all

{
d j

}
.

– Return −βdM + γ (this score decreases linearly as the average difference
between each cell’s color and the average cell color increases).

– Internal motion homogeneity. This index is based on the assumption that the
internal motion vectors of a correctly-detected fish are more uniform than the
ones of an erroneous fish detection, as shown in Fig. 8. Similarly to the previous
case, the object is divided into a grid and the average motion vectors for each cell
are compared. However, the computation of the corresponding score is slightly
different:

– Given an object, its current bounding box and the bounding box of its last
appearance, compute the motion vector of the region R obtained as the
union of the two bounding boxes.

– For each motion vector point in R, mark it as “not valid” if its displacement
projects the point out of R. This might happen because the motion vector
algorithm is not accurate for points belonging to the common region between
two detections.

– For each cell j in the grid which has at least one valid motion vector point,
compute the mean motion vector V j, whose components are the average "x
and "y.

– Compute the variances vx and vy of the first and second components of all{
V j

}
.

– Return 1 − vx+vy

δ
.

The parameters α, β, γ and δ are used to normalize the quality score in the range
[0–1], and their computation is specified in Section 5. For the investigation of fish
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(a) Original frame (good detection) (b) Filtered motion vector (good detection)

(c) Original frame (bad detection) (d) Filtered motion vector (bad detection)

Fig. 8 Correct object detections are made up of points generally orientated towards the same
direction. The circle to the right of subfigures b and d maps color to direction of motion

behavior during typhoons, we consider fish to be all those objects with a quality
score larger than 0.8. After the fish detection, the tracking algorithm is carried out,
which serves both as a proof of the correctness of the detected fish—i.e., a moving
fish usually remains in the monitored scene longer than a spurious object and its
movements (as erratic as possible) are more regular than plants’ ones—and to extract
consistently fish paths necessary for the trajectory-based behavior understanding
module.

4.2.2 Fish tracking

The tracking algorithm, adopted to handle all the phenomena typical of underwater
domain, is based on [46] and uses covariance matrices (since the covariance-based
tracker has been demonstrated to be superior under extreme conditions [44]) com-
puted on a set of pixel-based features to model the fish appearance. In the following
description, we use “tracked object” to indicate an entity that represents a unique fish
and contains information about the fish appearance history and its current covariance
model; and “detected object” to indicate a moving object, which has not been
associated to any tracked object yet. For each detected object, the corresponding
covariance matrix is computed by first building a feature vector for each pixel, made
up of the pixel coordinates, the RGB and hue values and the mean and standard
deviation of the grey level histogram of a 5×5 window which contains the target pixel.
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The covariance matrix, which models the object, is then computed from this feature
vector and associated to the detected object. Afterwards, the covariance matrix is
used to compare the object with the currently tracked objects, in order to decide
which one it resembles the most. The main issue in comparing covariance matrices
is that they do not lie on the Euclidean space—for example, the covariance space is
not closed under multiplication with negative scales. For this reason, as suggested in
[46], we used Förstner’s distance [25], which is based on generalized eigenvalues, to
compute the similarity between two covariance matrices:

ρ
(
Ci, C j

)
=

√√√√
d∑

k=1

ln2λk
(
Ci, C j

)
(3)

where d is the order of the matrices and
{
λk

(
Ci, C j

)}
are the generalized eigenvalues

of covariance matrices Ci and C j, computed from

λkCixk − C jxk = 0 k = 1 · · ·d (4)

The model of each tracked object is then computed as a mean of the covariance
matrices corresponding to the most recent detections of that object. In order to
deal with occlusions, the algorithm handles the temporary loss of tracked objects, by
keeping for each of them a counter for how many frames it has been missing; when
this counter reaches a user-defined value (time-to-live, TTL), the object is considered
lost and discarded. Of course, it is important to find a good trade-off for this value:
if it is too low, an object which temporarily disappears (for example, because it is
hidden behind a plant) might be treated as a different object when it reappears; if
it is too high, different objects might be recognized as the same one, which has long
exited the scene.

The steps performed by the proposed tracking algorithm are described in detail in
Algorithm 2.

The fish tracking algorithm is one of the most important parts of the proposed
system since it identifies the fish trajectories on which the behavior understanding
module relies. Thereafter, in order to consistently investigate fish behavior, it is
necessary to estimate the quality of each detected trajectory and to select the ones
that respect a specific criteria of goodness, thus avoiding to invalidate the final
behavior analysis. To compute such a quality score (referred in the following as qS),
we have adopted a series of measurements taken from [8] and [20] and combined
them with new measurements in order to obtain values indicating the goodness and
the feasibility of a trajectory. In detail, for each tracking decision (i.e. an association
between an object in frame t and one in frame t + 1) the following features are
computed and combined into a single score as an average. As for the detection
quality scores, the formulas below are parameterized by normalization constants
(which are described in Section 5).

– Dif ference of shape ratio between frames: this score detects rapid changes in the
object’s shape, which might indicate tracking failure. This value is high if the
shape ratio (R = W

H , with W and H, respectively, the width and the height of
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Algorithm 2 Pseudo-code implementation of the tracking algorithm
detected_objects ← runDetectionAlgorithm()
tracked_objects ← getCurrentlyTrackedObjects()
feasible_associations ← ∅
Compute covariance matrix for each detected object
for D j in detected_objects do

D j.computeCovarianceMatrix()
end for
Compute set of possible associations between tracked objects and detected objects
for Ti in tracked_objects do

for D j in detected_objects do
if Ti.getCurrentPosition() ∩ D j.getBlob() ̸= ∅ then

dij ← computeCovarianceDistance(Ti.currentModel(),
Dj.covarianceMatrix())
feasible_associations.add(

(
Ti, D j, dij

)
)

end if
end for

end for
sortByDistance(feasible_associations)
Assign each detected object to the covariance-closest tracked object
for

(
Ti, D j, dij

)
in feasible_associations do

if not D j.isAssigned() then
D j.assignTo(Ti)
Ti.updateModel()

end if
end for
If a tracked object has been missing for too many frames, remove it
for Ti in tracked_objects do

if Ti.foundInCurrentFrame() then
Ti.resetTTL()

else
Ti.decreaseTTL()
if Ti.getTTL() = 0 then

tracked_objects.remove(Ti)
end if

end if
end for
Add new tracked objects
for D j in detected_objects do

if not D j.isAssigned() then
tracked_objects.createNew(D j)

end if
end for

the bounding box containing the object) between consecutive frames t − 1 and t
keeps as constant as possible:

Rmax = max {Rt, Rt−1}
Rmin = min {Rt, Rt−1}

shape_ratio_score = Rmin

Rmax
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– Histogram dif ference: this feature evaluates the difference between two appear-
ances of the same object by comparing the respective histograms (analyzing
independently the three RGB channels and the grayscale versions of the two
objects). Given histograms Ht and Ht−1, the corresponding score is computed by
subtracting each bin’s difference (scaled by a constant) from the maximum score
(1):

1 − 1
ϵ

255∑

i=0

|Ht (i) − Ht−1 (i)|

– Direction smoothness: assuming a trajectory is as good as it is regular and without
sudden direction changes, this value keeps track of the direction of the object in
the last frames and checks for unlikely changes in the trajectory. It is computed
as:

direction_smoothness = 1 − |θ1 − θ2|
180

where θ1 and θ2 are the angles (with respect to the x axis) of the last two displace-
ments of the object. For simplicity, we use θ1 − θ2 in the formula, although the
actual implementation handles the case of angles around the 0◦/360◦ boundary.
According to this formula, the corresponding score is equal to 1 if the object’s
direction keeps constant in two consecutive frames (θ1 = θ2), and is 0 if the
object’s direction is inverted.

– Speed smoothness: similarly to the previous feature, this value checks whether
the current speed of the object (i.e. the displacement between the previous posi-
tion and current one) is similar to the average speed in the object’s history. Let
Pt and Pt−1 be the last two positions of the object, we compute st = ||Pt − Pt−1||,
so that st represents the last displacement (speed) of the object, and compare it
with the average speed s̄ in order to compute speed_smoothness as:

smax = max {st, s̄}
smin = min {st, s̄}

speed_smoothness = η
smin

smax

– Texture dif ference: texture features (mean and variance of several Gabor filters)
are computed from two consecutive appearances and compared. Given two
feature vectors v1 and v2, this value is computed by subtracting the (scaled)
Euclidean distance from 1:

1 −

√√√√
n∑

i=1

(v1 (i) − v2 (i))2/λ (5)

– Temporal persistence: this value is the number of frames in which a given object
appears.

The overall quality score qS is computed as follows:

– Compute the average µ of the above-described values, except the temporal
persistence T P.
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(a) Unusual fish trajectory (b) Feasible fish trajectory

Fig. 9 Some results about fish tracking: a an erroneous path (average qS score 0.63) due to a fail of
the tracking algorithm, b a correct path (average qS score is of 0.91)

– If T P > 5, return µ;
– Else, return µ ·

(
0.9 + T P

50

)
.

In the formula above, the temporal persistence score is used to limit the actual
maximum overall score achievable: if the object has appeared for less than 5 frames,
then the maximum score is limited, proportionally, between 0.95 and 1.

Figure 9 shows two sample trajectories with related average qS scores; it is possible
to notice that the trajectory of the left image is unrealistic and its average score,
computed as average of the scores of each tracking decision for all the appearances
of a fish (four times, in this case), was of 0.63, whereas the image on the right side
shows a correct trajectory whose average score is of 0.91.

4.3 Fish trajectory analysis

In marine biology, it is interesting to observe how the occurrence of anomalous
events can influence fish behavior. In this section we describe a trajectory-based be-
havior understanding approach for investigating how fish act when typhoons happen.
In detail, the behavior understanding module uses fish trajectories to describe usual
fish habits and, based on our knowledge of the periods when typhoons occur, allows
us to study the behavioral deviations that might apperar during such events.

The combined information of fish detection and tracking gives us the apparent
trajectories (due to the 2D nature of the input data) that fish follow in the videos.
There exist different ways to represent trajectories, although the literature in this
area focuses mainly on video surveillance applications [31, 57]. However, in un-
derwater recordings fish have more degrees of freedom than humans walking in a
scene; furthermore, fish sometimes tend to stay in one place instead of following
clear trajectories. In order to model 3D fish paths, a representation based on the x, y
location and blob size of the fish, which gives an indication of the depth z, is used.
Therefore, for each appearance of a fish we keep the tuple T = (x, y, z) and a path
is represented by its start, middle and end locations (Tfirst, Tmiddle, Tend). Given this
representation, we divide the set of all trajectories into fish trajectories P = {pi}N

i=1
during standard underwater conditions and fish trajectories during typhoons Q =
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(a) NPP3 camera 1 (b) NPP3 camera 2

Fig. 10 The fish trajectories computed from the recordings of two underwater cameras in Kenting,
Taiwan (http://ecosite.nchc.org.tw/kenting/). Camera 1 shows how fish tend to hide in the coral’s
holes (as indicated by the arrows close to the holes), whereas above the coral, fish seem to swim
more in paths. In Camera 2, a coral without much caves is shown, where fish tend to swim along the
coral or just horizontally into the open sea

{Q j}M
j=1. Afterwards, an unsupervised k-means clustering [63] is applied on the P

and Q sets, thus achieving a set C of clusters. Each obtained cluster is represented
by its centroid, which is still a trajectory. Figure 10 depicts the achieved centroids
as the average paths on a sample set of videos (the same as the one used for
the experimental results). Unlike what generally happens in the video-surveillance
fields, we can observe that fish often do not have well defined paths, due to their
erratic movements and frequent changes in size and appearance. Once the k-means
algorithm is applied and all the clusters are computed, the percentage of trajectories
pT that belong to each cluster can be derived. Figure 11 shows the pT values for all
the clusters shown in Fig. 10 both for trajectories P (red circles) and for trajectories

(a) NPP3 camera 1 (b) NPP3 camera 2

Fig. 11 These images show red and green circles around the clusters’ centroids; the radius of the red
circles indicates the percentage of trajectories that fall into a cluster when no typhoons occur, while
the radius of the green circles is the percentage of trajectories followed during a typhoon. It is clearly
visible that in the former case the trajectories are almost evenly distributed, while during a typhoon
fish prefer certain trajectories. In camera 2, it seems also that fish do not go into the open sea and
stay close to the coral

http://ecosite.nchc.org.tw/kenting/
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Q (green circles). The bigger the radius of a circle is, the more trajectories have
been assigned to the cluster found in that specific point. Therefore, the size of
the red circles indicates how often a certain trajectory is followed by fish when no
typhoon affects the recorded scene, whereas the size of the green circles indicates
the percentage of followed trajectories by fish during typhoons. It is possible to notice
how, in the former case, the distribution of the clusters is quite regular over the scene,
while in the latter case, the trajectories are not evenly distributed anymore.

Moreover, during a typhoon, fish seem to stay by the coral instead of going to
open sea, as shown in Fig. 11b.

Although the scientific value of this finding has to be validated by marine
biologists, it is easy to understand the asset that the proposed approach may provide
to marine biology, especially in discovering and interpreting anomalous events.

As concerns the implementation of the algorithm, we have followed the workflow
given in Algorithm 3.

Algorithm 3 Trajectory clustering algorithm
Get trajectories in standard water conditions and during typhoons
standardTrajs ← getStandardTrajectories()
typhoonTrajs ← getTyphoonTrajectories()
Apply k-means clustering
clusters ← kMeansClustering(merge(standardTrajs, typhoonTrajs))
Initialize counters to keep track of the number of trajectories associated to each cluster
clusterStandard[0, 1, ... clusters.size()-1] ← {0, 0, ...0}
clusterTyphoon[0, 1, ... clusters.size()-1] ← {0, 0, ...0}
Check which cluster each standard trajectory belongs to
for standardTraj in standardTrajs do

clusterIndex ← getClosestCluster(standardTraj, clusters)
clusterStandard[clusterIndex] ← clusterStandard[clusterIndex] + 1

end for
Check which cluster each typhoon trajectory belongs to
for typhoonTraj in typhoonTrajs do

clusterIndex ← getClosestCluster(typhoonTraj, clusters)
clusterTyphoon[clusterIndex] ← clusterTyphoon[clusterIndex] + 1

end for

5 Experimental results

The proposed system consists of different modules integrated together, therefore,
the overall performance depends on the effectiveness of each of them.

5.1 Event detection

To evaluate the effectiveness of the typhoon detection module, we tested our
method on 257 different videoclips taken from the Fish4Knowledge repository. These
videoclips were sampled at 320×240 with a 24-bit color depth, at a frame rate of
6 fps. Each video was ten min long. Among all the 257 videoclips, 99 showed a
typhoon event, and the remaining ones showed standard underwater conditions
before and after the typhoon events. The videos of typhoon were selected among
all the existing videos (recorded in the Taiwanese area during the last five years) by
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Table 1 Obtained results in
terms of CR and ER

K-Iteration CR (%) ER (%)

1 97.95 2.05
2 97.90 2.10
3 97.46 2.54
4 98.01 1.99
5 97.30 2.70

using the information (i.e. the dates) on the specific events gathered from DBpedia2

and were then validated against two expert (over 20 years of experience) marine
biologists.

For each video we processed 15 frames and the feature vector for each frame
had dimensionality of [1×3910]. We selected only 15 frames per video since this was
the best trade-off between computation costs and variability of the analysed scene:
indeed by processing only 15 frames we were able to perform the method on-the-fly
and, at the same, about one frame per minute was enough to grab the dynamics of a
typhoon as the scenes change very gradually and slowly. This implies that the original
dataset describing the features of all the 257 videos was a matrix of [3855×3910]
values. After feature selection, carried out by means of PCA, the original dataset
had dimensionality of [3855×18]. Then the reduced features vector was used to train
and test the Support Vector Machines classifier. To calculate the expected risk since a
large amount of data is considered, the K-fold cross-validation method was applied.
By using N = 3855 labels for the data that represents the observations, we divide
them into K subsets:

– K-1 subsets are used as training sets (learning);
– the remaining subset is used as the test set.

This operation is repeated leaving out each k subset, with k = 1, 2, · · · , K and the
final risk is obtained from the combination of the k intermediate estimates. To
evaluate the effectiveness of the classifier K = 5 was chosen, while Correct Rate
(CR) and Error Rate (ER) were chosen to estimate the accuracy. Table 1 shows the
obtained results in terms of CR and ER, while K varies from 1 to 5.

To test the capability of the proposed event detection approach in discriminating
typhoon from other events, another evaluation was carried out by taking into account
events “storm”. In fact, the effects of a storm and of a typhoon on underwater scenes
may appear similar at a visual inspection, as shown in Fig. 12.

In this case, we compared the “typhoon” videoclips (99) with 35 videoclips
(extracted from the original dataset) depicting underwater scenes during storms.
The K-fold (with K = 5) cross-validation method was also used. The achieved
average correct rate was of 0.98, thus confirming the discrimination capability of the
proposed method. The same procedure was applied to distinguish “storm” events
from standard underwater conditions yielding an average correct rate (with K = 5) of
about 0.91. This good performance indicates that a cascade of SVM classifiers is able
to discriminate typhoon event, storm event from “not interesting” events (standard
conditions).

2http://dbpedia.org/

http://dbpedia.org/
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(a) typhoon event  (b) storm event

Fig. 12 Example of underwater scenes during a typhoon and b storm

The performance of the proposed system in detecting typhoon event was also
estimated using the normalized detection cost (NDC) [26, 35], that represents the
performance of detecting a specific event and it is defined as a weighted linear
combination of missed detection (MD) and false alarm (F A) probabilities. The
NDC for a specific event is given by:

NDC = CMD · PMD · PT + CF A · PF A · (1 − PT) (6)

with PMD = NMD
NT

, PF A = NF A
NT

that are, respectively, the missed detection and false
alarm probabilities; where NT , NMD, NF A are the numbers of videoclips, missed
detections and false alarms regarding the specific event under investigation. PT is the
a priori rate of event instances E, whereas CMD and CF A are, respectively, the costs
of MD and F A. The NDC was computed for both “typhoon” and “storm” events and
we used 130 videoclips whose 52 with typhoons and 18 with storms as the training set.
The evaluation set consisted of 127 videoclips, of which 47 with typhoons and 17 with
storms. During our experiments, CMD and CF A were both set to 5. Table 2 reports
the achieved values in terms of MD, F A and NDC for both “Typhoon” events and
“Storm” events. Figure 13, instead, shows both the DET curve and the ROC curve
of the SVM classifier when dealing with “Typhoon” events.

5.2 Fish trajectory extraction

The fish trajectory extraction module was evaluated by assessing the performance of
fish detection and tracking methods. As described in the “Fish Detection” section,
we used four different algorithms for detecting fish, namely, Adaptive Gaussian
Mixture Model (AGMM), Adaptive Poisson Mixture Model (APMM), Intrinsic
Model (IM) and Wave-Back (W B), together with a post-processing module. To

Table 2 Evaluation results for events “Typhoon” and “Storm”

Events E NT MD F A PMD PF A PT NDC

Typhoon 47 127 2 7 0.02 0.05 0.37 0.19
Storm 17 127 3 3 0.02 0.02 0.13 0.10
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Fig. 13 Performance evaluation of the SVM Classifier for “Typhoon” events
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evaluate the performance of the detection algorithms we adopted common metrics
[35], i.e., detection rate (DR) and false alarm rate (F AR) which are defined as:

DR = NT P

NT P + NF N
(7)

F AR = NF P

NT P + NF P
(8)

where NT P, NF P and NF N are, respectively, the number of true positives, false
positives and false negatives. For the evaluation of the detection performance we
used five videos (ten min long each) of the Fish4Knowledge repository, and two
of them depicted typhoons. The videos had resolutions of 320×240 with a 24-bit
color depth at a frame rate of 6 fps. The selection of these videos was based on
specific features to test the effectiveness of every algorithm when non-standard
conditions were encountered. In particular, the features taken into account were:
dynamic backgrounds, illumination variations, high water turbidity, low contrast and
camouflage phenomena. The ground truth on these videos was hand labeled by us
using the Video Performance Evaluation Resource (VIPER) [15] and then validated
by the same two marine biologists who labeled the ground-truth for typhoon event
detection. The used videos are described in Table 3 together with the number of
hand-labelled fish (NF) in the ground truth data.

Moreover, in order to test the performance of the post-processing module, the
results of the detection with and without the post-processing were estimated and
are shown in Table 4. The results indicated that on average the best performance,
in terms of fish detection in typhoon videos, was achieved by the Intrinsic Model
combined with the proposed post-processing module and this was the method we
used as basis for the subsequent fish tracking part.

For testing the tracking algorithm we used a different approach from ground-
truth-based evaluation for two main reasons. First of all, the hand-labeling of ground
truth for tracking is more tedious and more difficult than the detection one. The
second reason is that it is not simple to define a quantitative performance metrics
for an algorithm that may provide partially correct results, i.e. tracking algorithms
provide multiple measures for the same object that represent the positions of all of its
appearances and the algorithm may identify correctly only a subset of these positions.

Table 3 Description of the
videos used as ground truth

Video Description NF

1 Dynamic background 156
Striped fish texture

2 Dynamic background 1,373
Camouflage phenomena

3 Typhoon 1,790
Frequent illumination variations
Very low contrast

4 Typhoon 34
Plants movements

5 High illumination 840
Camouflage phenomena
Striped fish texture
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Table 4 Experimental results achieved when the detection algorithms run, respectively, without
(NPP) and with (PP) the post-processing module

V. Alg. No post-processing Post-processing

NT P NF P NF N DR F AR NT P NF P NF N DR F AR

1 AGMM 102 38 54 0.65 0.27 129 11 27 0.83 0.08
APMM 112 29 44 0.72 0.21 132 15 24 0.85 0.10
IM 111 14 45 0.71 0.11 113 10 23 0.85 0.07
WB 81 22 75 0.52 0.21 124 7 32 0.79 0.05

2 AGMM 957 89 416 0.70 0.09 1,126 87 247 0.82 0.07
APMM 925 167 448 0.67 0.15 1,168 106 205 0.85 0.08
IM 1,001 121 372 0.73 0.11 1,219 82 154 0.89 0.06
WB 1,033 71 349 0.75 0.06 1,103 55 270 0.80 0.05

3 AGMM 1,253 228 537 0.70 0.15 1,458 159 332 0.81 0.10
APMM 1,096 152 694 0.61 0.12 1,501 92 289 0.84 0.06
IM 1,199 113 591 0.67 0.09 1,534 161 256 0.86 0.09
WB 982 215 808 0.55 0.18 1,447 131 343 0.81 0.08

4 AGMM 26 10 8 0.76 0.28 30 6 4 0.88 0.17
APMM 22 11 12 0.65 0.33 29 3 5 0.85 0.09
IM 23 8 11 0.68 0.26 31 4 3 0.91 0.11
WB 16 9 18 0.47 0.36 28 6 6 0.82 0.18

5 AGMM 563 60 277 0.67 0.10 686 68 154 0.82 0.09
APMM 598 123 242 0.71 0.17 689 44 151 0.82 0.06
IM 697 176 233 0.72 0.22 746 56 94 0.89 0.07
WB 500 121 340 0.60 0.19 677 25 163 0.81 0.04

This is the case shown in Fig. 9, where we classified the two found trajectories (in four
consecutive frames), respectively, as bad and good. Actually, the bad one indicates
that the tracking algorithm followed the fish in three frames out of four, whereas
the good one shows that the fish was correctly tracked in all its appearances. This
consideration led us to use an online self-evaluation framework for the tracking
algorithm based on the quality score qS (described in Section 4.2.2) computed for
assessing the quality of trajectories. Of course, such score is relative, since it is
computed through software; nevertheless, the values computed by the self-evaluation
algorithms [8, 20] have proved to provide reliable indication on the correctness of
tracking. Let us recall that the quality score qS lies in the range [0–1] and takes into
account also the capacity of the algorithm to track fish when it leaves the scene and
comes back in a reasonable interval of time (in the current version within six frames).

Therefore, the testing of the tracking algorithm involved the evaluation of the
quality scores of the fish trajectories extracted from the same dataset (herein called
D1) used for event detection. However, for comparison purposes, the scores of the
trajectories extracted from a wider set of 1,399 videos (D2) were also computed.
Table 5 shows the obtained results for both two datasets D1 and D2 in terms of
minimum (m), maximum (M), average µ and standard deviation σ . The number of

Table 5 Obtained quality
scores qS for the datasets D1
and D2

Dataset Nt ρT m M µ σ

D1 13,920 54.2 0.48 0.98 0.97 0.02
D2 79,323 56.7 0.29 0.97 0.82 0.11
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Table 6 Values of the
parameters used for the
normalization of the detection
and tracking quality scores

Parameter Value

α 75
β 3

500
γ 5

4
δ 1,600
ϵ 3

5
η 1.5
λ 100,00

extracted trajectories Nt and the average number ρT of trajectories per video are also
shown for each dataset. It is possible to notice how the quality of the trajectories used
for behavior understanding during typhoon (hence on dataset D1) is even better than
the one achieved on the larger dataset D2.

The results confirm that both fish detection and fish tracking are not affected by
the low quality of the typhoon videos, thus giving reliability to the considerations
done in the previous section on fish behavior during typhoons.

As far as it concerns the detection post-processing module and the trajectory
online evaluation method, in Sections 4.2.1 and 4.2.2 we described how quality
scores are computed, without specifying, in the formulas, the exact values for the
normalization parameters used to limit each value between 0 and 1. The choice of
such parameters is particularly important, in the case of the detection quality scores,
in order to make these values consistent with the threshold applied by the post-
processing module, and has to deal with the issue of upperly unbounded quantities
(e.g. Euclidean distances). The procedure we applied for setting such parameters for
each feature follows:

– Initialize all parameters to a “neutral” value (i.e., 1 for multiplicative parameters
and 0 for additive parameters).

– Process the videos in the test set in order to find the distribution of the quality
values.

– Set the parameters so that, after the normalization, 95% of the values in the
distribution fall into the [0, 1] range.

The values for the parameters which satisfy this property are shown in Table 6.

6 Concluding remarks

Keeping track of fish populations and analyzing their behavior in several different
situations is a task which marine biologists struggle with, because of the difficulties
in the collection of useful data and because of the typically used techniques that alter
somehow the environment under observation. The Fish4Knowledge project aims at
providing marine biologists with a tool for automatic fish detection, classification
and behavior understanding, based on live video feeds from underwater cameras
located in Taiwan’s coral reefs. In this paper we introduced the architecture of one
such system and described in detail the algorithms used for automatically detecting
videos showing typhoons, and for fish detection and tracking, which are used as the
basis for trajectory-based behavior understanding. Our approach for the detection
of typhoon events is based on the extraction of multi-scale texture features from
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the videos, which are then used to train a Support Vector Machine (SVM). We have
shown how the resulting classifier is able to reach a very high accuracy (about 97%) in
the discrimination between typhoon and non-typhoon videos. Based on these results,
a trajectory clustering algorithm is used to study the differences in paths followed by
the fish in standard underwater conditions and during typhoons. The comparison
between the results obtained at those times gave indications on fish behavior, which
of course have to be validated by marine biologists.

As future work, we are planning to extend the event detection algorithm to
any event detection (as we simply did for “storm” events) problem which can be
formulated in terms of texture description of videos. Indeed, the combination of
texture features and classifier has been proved to be a reliable means. We are
also aiming at improving both the detection and tracking algorithms (also adding
some preprocessing steps [7]), which represent the foundation on which the entire
system works, and the trajectories representation in order to better describe the 3D
fish movements. Finally, in future all the achieved typhoon event data and the fish
behavior events will be also mapped into RDF (Resource Description Framework)
and published as Linked Open Data in order to provide sufficient detail to allow full
replication of the experiments described, but also a sufficient level of abstraction to
facilitate linking to existing event data.

In detail, we will allow third party applications to work directly on the raw data
by providing a direct, lossless mapping from the relational tables to RDF [4]. As
an example of a direct translation of a database row, one could directly address
the fish detection table by dereferencing this URI: http://data.fish4knowledge.eu/
fk4/direct/fish_detection/fish_id=256993, which would return in the following RDF
(using Turtle notation):

@base <http://data.fish4knowledge.eu/fk4/direct>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix gml: <http://www.opengis.net/gml> .

# Example row of the fish_detection table:

<fish_detection/fish_id=260794>
<fish_detection/fish_id> 260794 ;
<fish_detection/video_id> <videos/video_id=3568> .
<fish_detection/frame_id> 90 .
<fish_detection/fish_id=260794>
<fish_detection/detection_certainty> 0.77146 .
<fish_detection/tracking_certainty> 1.0 .
<fish_detection/timestamp> "2011-02-01"^^xsd:date .
<fish_detection/bounding_box> "19,32 57,59"^^gml:posList .
<fish_detection/countour_polygon> "55,34 56,34 61,34 ..."
^^gml:posList .

Second, to transform the event data to a higher abstraction we will map the
typhoon event data and the fish behavior events to a number of common RDF event
models such as F [50], SEM [67] and LODE [54]. These event-centric representations
should also simplify aligning our data with other Linked Open Data, such as typhoon
events that are part of DBPedia.

http://data.fish4knowledge.eu/fk4/direct/fish_detection/fish_id=256993
http://data.fish4knowledge.eu/fk4/direct/fish_detection/fish_id=256993
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