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Abstract The Multimedia Messaging Service (MMS) allows users with heterogeneous termi-

nals to exchange structured messages composed of text, images, sound, and video. The MMS

market is growing rapidly, posing the problem of MMS adaptation, which is necessary to en-

sure terminal interoperability. Message adaptation involves technological challenges, especially

considering the high volume of messages that this service can handle. In this work, we propose

novel predictor-based dynamic programming approaches to MMS adaptation, which provide a

framework for explicit maximization of the user experience, rather than relying on heuristics

to deliver adapted messages satisfactorily. We show that the proposed solutions lead to notice-

ably superior image quality and faster transcoding times than comparable algorithms offered

in products currently on the market and those described in the literature.

Keywords MMS, image adaptation, JPEG, optimization, predictor, dynamic
programming, SSIM.

1 Introduction

The Multimedia Messaging Service (MMS) allows users with heterogeneous ter-
minals to exchange structured messages composed of text, audio, still images, and
video [29], and is a great source of revenue for mobile operators. According to
Portio Research, 207 billion MMS messages were sent in 2011, and this number
is expected to rise to 276.8 billion by 2016. With this volume of messages, MMS
would maintain its position as the second most successful non voice mobile service
to date, behind the highly lucrative Short Message Service (SMS) [4, 5]. Informa
sees even higher MMS volumes by 2016, predicting that 387.5 billion MMS mes-
sages will be sent, representing 10.6% of global messaging revenues, at US$20.7
billion [3].

MMS technical specifications have been defined by the 3rd Generation Part-
nership Project (3GPP) and the Open Mobile Alliance (OMA) (and adapted in
3GPP2). The overall architecture of the MMS implementation in cellular networks
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Fig. 1 The multimedia messaging network architecture.

is shown in Fig. 1 [6, 27]. The Multimedia Message Service Center (MMSC), also
called MMS relay/server or MMS proxy-relay, is responsible for storing messages
received from a user and relaying them to the intended recipient. It plays a sim-
ilar role in MMS to that of the Short Message Service Center (SMSC) in SMS.
However, since MMS is a premium service permitting the exchange of rich content
between terminals with diverse capabilities (e.g. maximum message size and maxi-
mum image resolution), the MMSC must perform content adaptation to make the
message suitable for viewing on the recipient’s terminal.

As shown in Fig. 1, the MMSC provides access to the cellular network via the
MM1 interface (or reference point) [6]. This is the interface used when two users
having the same operator exchange multimedia messages. If the operators are dif-
ferent, then MM4 must be used between the users’ respective MMS relays/servers.
The MMSC provides access for value-added service providers (premium content
emails, Web) via MM7. Access to external servers, such as email and fax servers, is
performed through the MM3 reference point. MM11 allows the MMSC to access an
external transcoding server to perform message adaptation, and is specified by the
OMA Standard Transcoding Interface (STI) v1.0 [6,26]. To ensure interoperability,
these interfaces are defined to operate over WAP/WSP and HTTP.

Figure 2 shows a typical message flow for multimedia message delivery between
two mobile terminals having the same operator [28]. The steps are as follows:

1. The sender’s terminal initiates a WAP POST request (a generalization of
HTTP POST) to the MMSC in order to send a message. The message may,
for instance, comprise several pictures taken by the sender’s camera phone.
This WAP POST operation uploads the message to the MMSC, which is then
responsible for its delivery.

2. After the MMSC has stored the message, it sends a notification to the recipi-
ent’s terminal to inform it that a new message has arrived. The notification is
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Fig. 2 Typical multimedia message transactions between two heterogeneous terminals.

typically made using WAP PUSH (e.g. using SMS as the bearer). The notifica-
tion contains a Uniform Resource Locator (URL) associated with the message
(URLs being the standard mechanism used over the Internet to uniquely iden-
tify content, such as a Web page).

3. The notification triggers a WAP GET operation (a generalization of HTTP
GET) on the recipient’s terminal, which retrieves the message (using its URL)
from the MMSC and sends it to the mobile device. That transaction contains
information about the terminal type (UA-header). This information is useful
to determine if the message needs to be adapted. For instance, since the UA-
header value is unique to every device and software release, we can create a
database containing the terminal capabilities of known UA-headers. This is
one of several methods used to determine receiving terminal capabilities [11].

4. The MMSC retrieves the message from its database that corresponds to the
URL. If required, it will adapt the message to meet the terminal’s capabilities.

5. The MMSC sends the resulting message to the destination terminal. Since
WAP/WSP or HTTP is used for the transfer, there is no risk of transmis-
sion error. Furthermore, the user is typically informed of the incoming MMS
only when it has been completely received, thereby avoiding usability issues
associated with a user impatiently monitoring the download of a message.

6. The terminal confirms reception of the message (not shown).
7. The MMSC sends a delivery report to the sender using WAP PUSH (not

shown).

Clearly, MMS traffic will continue to grow very rapidly in the next few
years, which will open up business opportunities, but also pose technological
challenges [19]. As MMS usage increases and standards evolve, providers are
being pressed to handle ever greater numbers of messages containing richer
media content. This daunting task cannot be reduced to merely passing along
messages, as server-side adaptation of messages, performed by the MMSC or an
external transcoding server connected to it, is also necessary, in order to ensure
interoperability among users [11]. The very high volume of messages to be handled
by service providers will call for the most efficient adaptation algorithms and
strategies to cope with the demand, the growth and evolution of standards, and
the solution of scaling problems.
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For MMS applications, a receiving terminal is characterized by its capabilities—
or perhaps more accurately by its limitations—as defined by profiles. A profile
determines the terminal’s constraints, such as the maximum multimedia message
size in bytes, the media types that the terminal can interpret, and the specific
constraints of individual media types, such as maximum image resolution. A
device supporting the “Content Rich” profile will support the JPEG and GIF
image formats with resolutions up to 1600×1200 pixels and a maximum message
size of 600 KB [29]. A device supporting the “Image Basic” profile will only
support these image formats at resolutions up to 160×120 pixels and a maximum
message size of 30 KB. We can see in Fig. 2 that the delivered message, which
belonging to the Content Rich class was adapted to meet the lower resolution and
memory capabilities of the receiving “Image Basic” class of terminal.

Server-side adaptation will ensure that not only each individual multimedia
attachment is compatible with the receiving terminal but also that the message as
a whole can be sent and correctly interpreted. Every attachment must be charac-
terized and transformed, if need be, to satisfy the receiving terminal’s constraints,
whether by adjusting its format or its resolution. In the absence of server-side
adaptation, a message exceeding the terminal’s capabilities (either by message size
or media type) can result in terminal-specific behavior that ranges from merely
incomplete messages to terminal crash. If the server is capable of determining the
capabilities of the terminal, but incapable or unwilling to perform adaptation, it
can apply an alternative strategy, such as sending a text-only SMS along with
the location of the original message, for the user to download or browse by other
means [25]. While this ensures the delivery of content, it does not provide the
user with a satisfactory experience, which means that server-side adaptation is
preferable from the user’s point of view.

Multimedia message adaptation, however, is not a trivial task as it does not
suffice to apply heuristics such as successively reducing the file size or successively
reducing the resolution of the various message attachments until a message sat-
isfying the receiving terminal’s various constraints is produced. We have shown
in previous work that strategies involving both adaptation of JPEG compres-
sion parameters and scaling produce significantly better results than using either
method alone [13]. In this work, we propose to extend this approach to the explicit
optimization of compression parameters and scaling over a complete, multipart,
image-only message, in order to achieve an adaptation that not only satisfies the
constraints of the receiving device, but also maximizes overall perceived quality,
with the expectation that the user experience will be maximized. While the tech-
niques proposed in this work could be applied to other types of images, and to
other media in general, we will, without loss of generality, restrict ourselves here
to JPEG images. This is because the most popular use of MMS is to send pho-
tographs (JPEG images) from camera-equipped handsets [30]. Although it is also
a popular method of delivering ringtones, these do not require transcoding.

A priori, adapting a single JPEG image to fit given constraints appears to be
a trivial task. JPEG adaptation is, in fact, a costly process, especially considering
the high volumes of images to be handled by server-side services. Solutions have
been proposed to speed up transcoding under constraints such as maximum file
size and maximum resolution. Some solutions address the problem of estimating
the transcoded file size of a single JPEG image, but these are still computation-
ally intensive (in addition to necessitate extensive modifications to existing JPEG
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software libraries) or overly rigid, considering, for example only scaling by a power
of two because they can be performed efficiently in the transform (DCT) do-
main [15, 24, 38]. Other solutions for image transcoding have been proposed in
the broader context of Web or low-bandwidth resource access, if some solutions
are designed to transcode an image so that it fits the constraints while minimiz-
ing transcoding time [16], others use a small number of fixed transcoding profiles
setting both compression parameters and maximum image resolution to achieve
adaptation [23]; neither quite expressing the problem in terms of explicit maxi-
mization of resulting image quality or user experience. More complex adaptation
approaches, based on the understanding of message contents and image points of
interest were also proposed [10,48], but, while promising, these techniques may be
too computationally expensive for the type of high-volume transcoding needed by
MMS providers [19]. Furthermore, these last methods only address the problem of
adapting a single image, and not the problem of optimizing the global perceived
quality of a multipart message.

Adapting an image, even in JPEG format, against maximum file size and
resolution constraints, while maximizing perceived quality in a computationally
efficient manner remains a challenge, as there are no established methods for es-
timating the resulting file size and quality of an image subject to changes in com-
pression parameters and resolution. To this end, we have proposed predictors and
systems in previous work designed to adapt images and messages [12,13,33]. These
predictors have been exploited in [21,22] to develop a dynamic content adaptation
framework applied to collaborative mobile presentations (e.g. OpenOffice Impress
presentations). In this paper, we extend our previous work [35] where we pro-
posed a general framework based on dynamic programming for the adaptation
of image-only multipart messages, given receiving terminal constraints explicitly
maximizing perceived quality of the whole message using a new algorithm, step

dynamic programming. However, exact adaptation, even using dynamic program-
ming, is very costly, as every possible adaptation parameter combination would
have to be explicitly tried. To speed up optimization significantly, we propose to
use predictors that yield a predicted file size and a predicted perceived image qual-
ity given particular adaptation parameters. In this work, we use a predictor that
we presented in previous work [13], JQSP (for JPEG Quality and Size Predictor),
which will serve as a “real life” prediction algorithm that exhibits moderate pre-
diction errors, and compare it to oracular predictors that “predict” without error
the resulting file size and image quality We show that the proposed optimization
framework is resilient and shows graceful degradation in the presence of increased
prediction error. We further show that our proposed optimization framework not
only yields better perceived quality than approaches found in, and inspired by,
prior art, but also that the transcoding times are significantly lower. This will
greatly improve the performance of the multimedia messaging (MMS).

The work is organized as follows. Section 2 lays out the basic definitions, details
the problem space, and presents the proposed solutions. Section 3 describes the
test methodology and the predictors, the algorithms used for comparison. The
test results of the proposed algorithms under various conditions are presented in
section 4, and discussed in section 5. Finally, section 6 concludes the work.
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2 Proposed Solution

Measuring the perceived visual quality of images subjected to transformation is a
difficult task. Several algorithms and metrics have been developed to measure it
objectively and automatically with a computer program. These can be classified as
full-reference (FR), reduced-reference (RR), and no-reference (NR) methods [45].
In FR image quality assessment, the quality of a distorted image is evaluated by
comparing it with a reference (the original) image. NR metrics assess the image
quality without any reference (blind assessment), and RR metrics exploit some
features of the reference image (partial information). The peak signal-to-noise ra-
tio (PSNR) has been extensively used in literature as the FR estimate of perceived
quality, but this metric has been shown to correlate poorly with perceived qual-
ity [37], in addition to being intolerant to transformations such as translation,
scaling, and contrast—none of which necessarily translates into a degradation of
quality to a human observer.

For the purposes of estimating the resulting quality, we use the widely known
structural similarity index (SSIM) proposed by Wang et al. [44]. We chose the SSIM
because of its popularity in the scientific community and its high level of accuracy
(it correlates well to the Mean Opinion Scores (MOS)). A statistical evaluation
of recent FR image quality assessment algorithms on various image databases has
been performed in [47]. The results show that the SSIM is very accurate for various
distortions, with an overall Spearman rank correlation coefficient of 0.948 (versus
0.876 for PSNR) on the Live Image Database, which comprises 779 images with
various distortions, such as JPEG compression and blurring (which is similar to
the scaling considered in this paper) [40]. Although the SSIM has been selected for
our study, other metrics, such as Visual Information Fidelity (VIF) [39] or a less
complex version of it [36], could also have been used to demonstrate the efficiency
of the proposed MMS transcoding approach. The SSIM between an image region
x and an image region y is defined as

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

x + C2)
,

where µx and σx represent the mean and standard deviation of x, σxy the cross-
correlation of x and y, C1 = (0.01×255)2, and C2 = (0.03×255)2. The SSIM is only
applied on the luma, and this local measurement is applied to an entire image using
a sliding window approach to obtain a quality map. The final SSIM score is the
average of that quality map.

The SSIM is essentially a windowed correlation factor between original and
distorted images, and, as such, yields results on [−1, 1], but for our application we
constrain the measure on [0, 1], with any negative values mapped onto 0 (negative
structural similarity values corresponding to cases where the local image struc-
tures are inverted [46], which should not occur when scaling or applying JPEG
compression). Constraining the SSIM on [0, 1] allows us to use the following ob-
jective function to represent the visual quality of the overall message:

Q(M,T ) =
n∏

i=1

Q (mi, T (mi, ti)) , (1)

where M={p ; m1,m2, . . . ,mn} is the message to be adapted, with presentation
p, and composed of the n images mi, with resolutions R(mi)=(wi, hi), and where
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T ={t1, t2, . . . , tn} is the series of transcoding parameters to be applied to the
images. The transcoding parameters ti = (qi, zi) are such that 06qi6100 is the
output quality factor (using the semantics proposed by the IJG [2]) and 0<zi61
a scaling factor used to resize the image. The function T (mi, ti), the transcoding
function, applies transcoding parameters ti on image mi, yielding an image with
resolution zR(mi)=(ziwi, zihi) compressed with quality factor qi.

Finally, 06Q (mi, T (mi, ti))61 compares the original image mi to its
transcoded version T (mi, ti) using the SSIM, as previously discussed. Since
the images mi and T (mi, ti) may differ in resolution, that is, whenever z 6=1, the
image T (mi, ti) is rescaled to the original resolution R(mi) before comparison,
estimating the viewing condition of the sender. Other strategies could be consid-
ered; for example, comparing at the scale reproducing the viewing condition of the
receiver, or at an intermediate scale between sender and receiver conditions [13].
However, it seems realistic to use the sender’s viewing conditions for the compari-
son, in order to estimate degradation in some absolute sense. Further, comparison
is limited to the luma in order to avoid issues related to color subsampling. In
fact, JPEG can use several chroma subsapling schemes [7, 32, 43], but 4:2:0 is
the one most commonly used, leaving most of the image-quality information in
the luma plane. In all cases, image scaling is performed using a Blackman filter,
chosen because of its spectral properties [9].

Eq. (1), as a measure of the quality of the transcoded message, is to be max-
imized by a transcoding operation series T under the constraints of a device D.
The first constraint is that the total size of the transcoded images (plus the pre-
sentation metadata) must not exceed the maximum size allowed by the device for
a message. The second constraint is a resolution constraint, where all the images
must have a resolution lower than or equal to the device’s maximum resolution.

The size constraint is expressed by

S(T (M,T )) =
n∑

i=1

S (T (mi, ti)) 6 S(D)− P (M,D) , (2)

where S(T (M,T )) is the file size in bytes of the transcoded message, S (T (mi, ti))
the file size in bytes of the transcoded image T (mi, ti), S(D) the maximum message
size in bytes for device D, and P (M,D) the size, also in bytes, of the presenta-
tion information necessary for the adapted message M to display correctly on
device D. MMS uses the Synchronized Multimedia Integration Language (SMIL)
as the presentation language. SMIL defines markup for the timing and layout of
the audiovisual information, with enough flexibility to describe a slide show of
several images, with text and audio [29]. The left-hand side of eq. (2) determines
the capacity, the portion of the allowable byte budget used by the message using
transcoding parameter series T . Let us also note that we will not interest ourselves
further in the quantity P (M,D), which would require adaptation of the presenta-
tion to estimate correctly. The presentation information is rather supposed to be
a small, essentially negligible, part of the message budget.

The image resolution constraints for message M and device D are given by the
orientation-independent resolution constraints

zi max(wi, hi) 6 max(wD, hD) ,

zi min(wi, hi) 6 min(wD, hD)
(3)
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where R(D) = (wD, hD), the receiving device’s maximum image resolution, which
is independent of the device’s actual screen resolution. We therefore suppose that
the receiving device scales and rotates the pictures on-screen for best viewing
conditions.

The optimal transcoding series T ∗ for a message M and a device D is therefore
given by

T ∗ = arg max
T∈T (M,D)

Q(M,T ) , (4)

where T is the set of all possible series of transcoding parameters satisfying the
constraints of eq. (2) and eqs. (3). The cardinality of T (M,D) can be very large
(even infinite), if we do not constrain the transcoding parameters to a rather small
set of discrete values to avoid a combinatorial explosion in the number of states
examined by the algorithm solving eq. (4). The quality factor, as defined by the
IJG, is an integer that takes values from 0 to 100 inclusive, but the scaling factor
0<zi61 can take an infinite number of values. We solved this problem in previous
work [12,13,33] by constraining the two transcoding parameters to take at most ten
distinct values, that is, the quality factors were limited to the set {10, 20, . . . , 100}
and scalings to {0.1, 0.2, . . . , 1}, limiting the number of possible transcodings to
100. We use the same values in the experiments in this work.

To illustrate the notations that we have introduced, let us suppose that
an MMS message is sent to an Image Basic class device D (with a maxi-
mum resolution of R(D)=(wD, hD)=(160, 120) and maximum message size
S(D)=30 KB. The MMS message M comprises a SMIL presentation part p of size
P (M,D)=2 KB and two JPEG images, m1 with a resolution of (w1, h1)=(640, 480)
of size S(m1)=50 KB, and m2, with a resolution of (w2, h2)=(320, 240) of size
S(m2)=25 KB. We want to find, for each image, the best transcoding parameters
t1 =(q1, z1) and t2 =(q2, z2) (quality factor and scaling) that meet the following
constraints (from eq. (2) and eq. (3)):

S (T (m1, t1)) + S (T (m2, t2)) 6 S(D)− P (M,D) = 30 KB− 2 KB = 28 KB

and

z1 max(w1, h1) = z1 × 640 6 max(wD, hD) = 160 ,

z1 min(w1, h1) = z1 × 480 6 min(wD, hD) = 120 ,

z2 max(w2, h2) = z2 × 320 6 max(wD, hD) = 160 ,

z2 min(w2, h2) = z2 × 240 6 min(wD, hD) = 120 ,

where T (m1, t1) is the transcoded version of the first image using transcoding
parameters t1 =(q1, z1), and similarly with T (m2, t2) for the second image. Com-
bining these conditions, we obtain

S (T (m1, t1)) + S (T (m2, t2)) 6 28 KB ,

z1 6 0.25 and z2 6 0.5 .

Note that images m1 and m2, of size 50 + 25=75 KB, need to be reduced to
occupy at most 28 KB (about a third of their original combined size). Among
the transcoding parameters that satisfy these constraints, we select the set of
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parameters that optimizes the objective cost function expressed by eq. (1), which
we can rewrite in our example as

Q(M,T ) = Q (m1, T (m1, t1))×Q (m2, T (m2, t2)) .

The overall message’s visual quality, as expressed in eq. (1), is the product of the
visual quality of each transcoded message component. In this context, the product
is more suitable than the sum, since the various qualities Q (mi, T (mi, ti)), 16 i6n
are not compensatory, meaning that, if a transcoded component is of very poor
quality, the overall message quality will be perceived as poor, no matter how good
the quality of the other transcoded components. In fact, before combining two or
more quality attributes to arrive at a single measure that reflects the nature of the
problem at hand, these attributes should first be classified as either compensatory
(i.e. can be summed) or non compensatory (i.e. can be multiplied). This is an
aspect that is widely studied in the marketing and decision making fields [14,20].

While maximizing eq. (1) is not the same as maximizing the average quality of
the transcoded images, the expected average quality increases, and necessarily so,
with increases in eq. (1), as a consequence of

n∏
i=1

Q (mi, T (mi, ti)) 6 min
{
Q (mi, T (mi, ti))

}n
i=1

,

where {xi}ni=1 denotes the sequence {x1, . . . , xn}. The nature of Q will furthermore
cause the maximization of eq. (1) to reduce its variance [18, 41, 42]. Therefore,
maximizing the proposed objective function will have the side effects of finding
solutions with higher expected average quality and lower variance. Lower variance
is particularly interesting, as it translates into a reduction of the risk of finding
solutions where one transcoded image is of very poor quality and all the others
are of good quality, in favor of solutions where quality is balanced among all the
images.

The objective function eq. (1) is convex and separable, making it a Bellman
equation [8], and therefore amenable to efficient optimization using dynamic pro-
gramming. More specifically, the optimization problem considered in eq. (4) is
a distribution of effort problem, where a finite quantity of resources is allocated
strategically in order to maximize a gain function [8, 17]. For the current prob-
lem, the resources are transcoded file sizes, the sum of which is constrained by
the maximum message size as stated in eq. (2); the gain from the allocation is the
quality obtained as determined by the objective function, eq. (1), under the addi-
tional constraints of maximum resolution, as given by eqs. (3). This general class
of problems has been studied extensively, and efficient polynomial-time algorithms
exist to find which allocation of resources maximizes the objective function under
the given constraints [17,31].

Solving eq. (4) exactly is possible, but would require for all transcoding pa-
rameters examined by the algorithm that an actual transcoding is performed to
measure resulting file size and quality, clearly a prohibitive process. But rather
than performing a transcoding for every combination of transcoding parameters
examined, we will resort to fast predictors that, given a (superficial) characteriza-
tion of an image m (such as original file size, quality factor, and resolution) and
transcoding parameters t, will predict the resulting file size and quality of T (m, t),
the transcoded image m to which were applied transcoding parameters t.
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We have presented such predictors in previous works [13,33], and in this study
we use the file size and quality predictor presented in [13], which will be denoted
JQSP (JPEG Quality and Size Predictor). To assess the proposed methods’ re-
silience to prediction error, we will, in addition to JQSP, use oracular predictors,
predictors with known characteristics, discussed in the next section, section 3.

The objective function using predictors is rewritten as

Q̂(M,T ) =
n∏

i=1

Q̂(mi, ti) , (5)

where Q̂(mi, ti) is the quality predictor taking an image mi (or, more precisely, its
characterization, composed of its original quality factor, file size, and resolution)
and a transcoding operation ti, rather than using Q(mi, T (mi, ti)), which compares
the actual transcoded image T (mi, ti) with the original image mi.

The size constraint, eq. (2), must also be modified to accommodate predictors,
and is rewritten as

n∑
i=1

Ŝ(mi, ti) 6 S(D)− P (M,D) , (6)

where Ŝ(mi, ti) denotes the predictor of the size of image mi on which the transcod-
ing parameters ti were applied. Eqs. (3), however, is unchanged, as resolution re-
mains a deterministic function of zi and R(mi), and therefore contains no uncer-
tainty.

The optimal predicted transcoding T̂ ∗ is given by:

T̂ ∗ = arg max
T̂∈T̂ (M,D)

Q̂(M, T̂ ) , (7)

where the T̂ are series of transcoding parameters drawn from the set T̂ (M,D)
of all series of transcoding parameters on message M that (probably) satisfy the
constraints eqs. (3) and eq. (6) of the device D.

To summarize, we formulate the problem of adapting an image-only MMS as a
distribution of the effort problem amenable to dynamic programming. We further
propose to reduce the complexity of the problem by replacing actual transcodings
by size and quality predictors, in order to perform the optimization efficiently.
In the next section, we discuss the generation of the set T̂ (M,D), the series of
transcodings on message M that (probably) satisfy the constraints of the device D.
In the next section, we present the details of the proposed optimization algorithms
and the details of the two comparison algorithms.

3 Transcoding Algorithms

JQSP introduced in [13], differs from the predictor introduced in [33], as it does
not directly predict file sizes and quality from an image characterization and a
transcoding operation but rather predicts transcoding parameters and resulting
quality from an image characterization and a target file size. Either predictor can
be used to create a set T̂ (M,D) for a message M and receiving device D, but,
in this work, as we mentioned earlier, we use the JQSP. The JQSP predictor was
trained on approximately 70 000 JPEG images gathered from the Internet in 2008,
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using a web crawler starting at various popular sites [33]. The density of the JQSP
predictions was adjusted so that target file sizes were set 5% apart, which limits
the size of T̂ (M,D) for optimization.

Proposing optimization methods based on a specific predictor, such as the
JQSP, validates the predictor more than it validates the methods themselves. In
order to show the properties of the proposed methods, such as resilience to pre-
dictor error, and ultimately determine the upper bound on attainable quality, we
use oracular predictors. The oracular predictor “predicts” the exact file size and
quality resulting from transcoding parameters applied to an image by actually per-
forming the transcoding corresponding to the transcoding parameters. To further
demonstrate that the proposed methods are resilient, that is, degrade gracefully
in the presence of increasing errors in the predictors, we use predictors derived
from the oracular predictor with a relative gaussian error on file size and quality
of 1%, 2%, 5%, and 10%, 95% of the time. To populate T̂ (M,D) using the orac-
ular predictors, the transcoding parameters are limited to the quality factors of
{10, 20, . . . , 100} and to scalings of {0.1, 0.2, . . . , 1.0}, which limits the number of
transcoding parameters to at most one hundred per image. We now present the
details of our two proposed solutions to the problem of adaptation of JPEG-only
messages, followed by those of the two comparison methods.

3.1 Dynamic Programming

The first of our proposed methods, which we refer to simply as “dynamic program-
ming”, is to solve eq. (7) directly by dynamic programming to obtain the predicted
optimal transcoding parameter series. The optimal transcoding parameters found
by explicit optimization are then used to perform message adaptation. If the adap-
tation yields a message larger than the maximum message size for the receiving
device due to size prediction error—it cannot yield a message with images having
incompatible resolutions—a new, smaller, maximum message size is set for the de-
vice and adaptation is retried. The maximum message size is adjusted by a factor
α1 (set to 0.95 in our experiments) at each iteration, that is, we rewrite the size
constraint eq. (6) as

n∑
i=1

Ŝ(mi, ti) 6 αk−1
1 S(D)− P (M,D) (8)

for the kth iteration; at the first iteration, k = 1, the constraint is equivalent to
eq. (6).

3.2 Step Dynamic Programming

However, as we discuss further in section 5, the experiments show that using
dynamic programming as described above, prediction error cumulates, rather than
being cancelled out—especially when the predictor is biased. The second of our
proposed methods, which we refer to as “step dynamic programming”, mitigates
error propagation by proceeding by iterative refinement of the solution, again
based on dynamic programming. Step dynamic programming first optimizes the
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message globally and determines the predicted optimal transcoding parameter
series, but transcodes only the first image (in attachment order). After the first
image has been transcoded, its actual file size is observed and the budget for the
remaining images is adjusted to take into account the transcoded image—and
the corresponding prediction error. The remaining images are optimized jointly,
and, again, only the first of the remaining images is transcoded, its transcoded
size observed, and the budget adjusted, and so on, until all the images have been
transcoded. Eq. (8) becomes

s−1∑
i=1

S(T (mi, t
∗
i )) +

n∑
i=s

Ŝ(mi, ti) 6 αk−1
1 S(D)− P (M,D)

at step s (with s=2, 3, . . . , n− 1, while at s=1, we use eq. (8)) of the kth (with
k>1) iteration. The t∗i denote the transcoding parameters already chosen (but not
necessarily optimal in an absolute sense). The next step of optimization proceeds
by solving the modified objective function on the last n−s terms, correspond-
ing to the images yet to be transcoded. The objective function eq. (5), at step
s=2, 3, . . . , n− 1, becomes

Q̂s(M,T ) =

(
s−1∏
i=1

Q
(
mi, T (mi, t

∗
i )
))( n∏

i=s

Q̂(mi, ti)

)
, (9)

where the left part corresponds to images already transcoded (and therefore of
known quality—which we do not necessarily need to observe), and the right part
corresponds to the objective function to be maximized. At s=1, eq. (9) reverts to
eq. (5).

Readjusting budget and re-optimizing at each transcoded image greatly reduces
the propagation of prediction errors, with the consequence that, as we will see in
section 4, the algorithm makes better use of capacity.

3.3 Comparative Algorithms

To compare our two proposed and novel solutions, we use two algorithms inspired
by the fixed profile adaptation strategy of Mohan et al. [23], which, to the best of
our knowledge, is the only relevant previous work.

The first comparative algorithm, “successive profiles”, applies increasingly re-
strictive profiles to all the images until the transcoded message satisfies the con-
straints of the receiving device. For this algorithm, a profile defines both the quality
factor and the maximum resolution. For example, a profile could limit the reso-
lution to 640×480 with a quality factor of 90. The next profile could use the
same resolution, but a quality factor of 80, the next could reduce the resolution to
320×240, but keep a quality factor of 80, and so on, each successive profile being
more restrictive than the preceding one, reducing resolution, the quality factor, or
both. The number and determination of useful profiles in this context depends on
the performance objectives that are expected. The profiles used in our experiments
are shown in Table 1. However, we will see in the next section that it is not useful
to merely have a greater number of profiles.
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Table 1 Combination of resolution and quality factors to form the profiles used for the “suc-
cessive profiles algorithm”.

Resolution Quality Factors

640×480 90, 80, 70, 60
320×240 90, 80, ..., 50
160×120 90, 80, ..., 40

The second comparative algorithm, “successive scaling”, adjusts only the scal-
ing, and using a fixed, but reasonable, quality factor of 85. Starting with the
maximum resolution allowable for the receiving device, the algorithm successively
scales down all the images (and compressing using the fixed quality factor) until
the adapted message satisfies the device constraints. For each image mi, the largest
allowable scaling factor 0<zi61, such that ziR(mi)6R(D), is found. Adaptation
proceeds by adjusting, at iteration k = 1, 2, . . ., a global parameter βk (initially
β1 = 1) that is applied to every image, so that the scaling factor of image mi at
step k is βkzi, which yields an image of resolution βkziR(mi). As scaling controls
quadratically the file size (a scaling z yields an image of relative surface z2), a
reasonable adjustment βk+1 (for k>1) is given by

βk+1 = α2

√
S(D)− P (M,D)

Sk
,

where α2 is a dampening factor (arbitrarily set to 0.95 in our experiments) to
ensure that the budget is reduced further at each iteration and that the number
of iterations is limited, S(D) is the maximum message size for the receiving device
D, P (M,D) is the size of the presentation of message M on device D, and Sk is the
size of the message obtained at step k. The adaptation terminates when a message
satisfying the device constraints is produced.

Both comparative algorithms attempt to heuristically maintain a reasonable
balance between quality factors and image scaling—one by using a fixed but rel-
atively high quality factor, adjusting only resolution, and the other by using pre-
defined profiles—in order to provide better image quality. We could also conceive
of an algorithm where the images are reduced to R(D), the maximum resolution
for the receiving device, and where further adaptation is achieved only by using
increasingly coarse quality factors until the message satisfies the receiving device
constraints. However, that strategy would lead to the undesirable result of rela-
tively high resolution images compressed with very low quality factors, showing
conspicuous blocking artifacts. This algorithm would likely produce worse results
than either of the proposed comparative algorithms, and so is not worth pursuing,
in our opinion.

4 Experimental Results

For our experiments, we created four groups of 1000 MMS, with two (being the
minimum to qualify as a “multipart” message) to five attached images. The im-
ages with resolutions between 320×200 and 3000×2000 were uniformly randomly
chosen from a database of 370 000 images obtained by crawling the Web in the fall
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Fig. 3 MMS adaptation validation architecture.

of 2010 [35], rather than from the database used in previous works [13, 33]. The
profile chosen to test adaptation in our experiments was “Image Rich” (supporting
images with resolutions up to 640×480 and a maximal message size of 100 KB).
Forcing messages into the “Image Rich” profile from the original MMS (with an
average message size of 284 KB, 563 KB, 790 KB, 1.2 MB, and 1.4 MB, for 1, 2,
3, 4, and 5 attachments respectively) demonstrates that the various algorithms
tested were stressed with adaptation ratios of up to ≈14:1. The overall test archi-
tecture is shown in Fig. 3. For each number of attachments and each optimization
algorithm and predictor precision level (varying from 1% to 10%, and then using
JQSP), the MMS Composer created 1000 MMS messages M that were transcoded
in the MMS Optimization and Transcoding module to generate T (M,T ). The Mes-

sage Quality Assessment module then measured the resulting objective function as
in eq. (1), and defining the average message quality as

AVG(M,T ) =
n∑

i=1

Q (mi, T (mi, ti)) .

The Message Capacity Assessment module measured the relative difference
between the maximum message size S(D) and the transcoded message size
S(T (M,T )). Finally, the number of transcodings performed, as well as the number
of retries, was measured. All these recorded statistics made it possible to compare
the various MMS transcoding (optimization) algorithms.

Let us describe the validation process in greater detail. The MMS in all groups
(number of attachments) were transcoded using each of the compared algorithms.
All the experiments used the same series of MMS, and the oracular predictors with
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Table 2 Summary for 2 attachments.

Optimization Predictor Average Average Average Average Objective
Algorithm Transcodings Retries Capacity Quality Function

Dynamic Oracle 2.00 0.00 0.95 0.85 0.73
Programming ±1% 2.04 0.03 0.93 0.85 0.72

±2% 2.08 0.05 0.90 0.85 0.72
±5% 2.16 0.08 0.84 0.84 0.71
±10% 2.25 0.13 0.79 0.83 0.70
JQSP 2.00 0.00 0.45 0.80 0.64

Step Oracle 2.00 0.00 0.95 0.85 0.73
Dynamic ±1% 2.02 0.01 0.93 0.85 0.72

Programming ±2% 2.03 0.01 0.89 0.85 0.72
±5% 2.04 0.02 0.81 0.84 0.71
±10% 2.06 0.03 0.75 0.83 0.69
JQSP 2.00 0.00 0.45 0.80 0.64

Scalings — 4.55 1.28 0.93 0.82 0.67
Profiles — 6.90 2.45 0.86 0.83 0.69

gaussian noise (described in section 3) used the same seed (and therefore the same
pseudo-random sequence). Furthermore, in all the methods compared, we scaled
images using a Blackman filter [9], with the actual image processing performed
by ImageMagick’s Magick++ library [1]. The experiments were performed on a
Dell PowerEdge R210, with an Intel i3 540 CPU running at 3.07GHz, 4GB RAM,
Ubuntu 11.04 with kernel 2.6, Magick++ 6.6.2, and G++ 4.5.2., a plausible setup
for a transcoding node at the time of writing.

Tables 2 to 5 summarize the experimental results, showing, for each combi-
nation of number of attachments, optimization algorithms, and predictors, the
resulting number of transcodings performed, the average number of retries (the
number of times a new round of optimization is required because adaptation failed,
see section 3), the capacity, the average quality of the transcoded images, and the
objective function score. Figures 4 and 5 show the distribution of resulting capac-
ity and image quality, respectively, for 5 attachments using box-plots using the
usual configuration: 5% to 95% percentiles marking the whiskers, first and second
quartile marking the limits of the box, the median crossing the box, and with dots
showing outliers, observations below 5% or above 95%. Finally, table 6 presents
the average transcoding times (in seconds) for both proposed algorithms using
the JQSP predictor versus the two comparative algorithms. Figure 7 shows the
distribution of transcoding times for 5 attachments, also using the JQSP predic-
tor. Note that oracular times are excluded from the results as oracular predictors
perform a great number of transcodings in order to formulate their “predictions”.

5 Discussion

We can reasonably hypothesize that maximizing capacity (the portion of the al-
lowable message used by the transcoded images) is essentially equivalent to max-
imizing perceived quality, and vice versa. This is the hypothesis underlying the
heuristic approach involving successive scalings and successive profiles that merely
attempts to find the largest images (one considering arbitrary resolutions, the other
considering only profile-specific resolutions) that fit into the message in order to
maximize quality. However, examining Tables 2 to 5, and figs. 4 and 5, we see that
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Table 3 Summary for 3 attachments.

Optimization Predictor Average Average Average Average Objective
Algorithm Transcodings Retries Capacity Quality Function

Dynamic Oracle 3.00 0.00 0.98 0.84 0.59
Programming ±1% 3.17 0.08 0.97 0.84 0.59

±2% 3.32 0.13 0.95 0.83 0.58
±5% 3.66 0.25 0.92 0.83 0.57
±10% 3.89 0.32 0.88 0.82 0.55
JQSP 3.01 0.01 0.61 0.80 0.51

Step Oracle 3.00 0.00 0.98 0.84 0.59
Dynamic ±1% 3.05 0.02 0.96 0.84 0.59

Programming ±2% 3.06 0.02 0.95 0.83 0.58
±5% 3.13 0.04 0.91 0.83 0.57
±10% 3.11 0.04 0.87 0.82 0.55
JQSP 3.02 0.01 0.63 0.80 0.51

Scalings — 8.59 1.86 0.93 0.78 0.49
Profiles — 14.83 3.94 0.86 0.78 0.48

Table 4 Summary for 4 attachments.

Optimization Predictor Average Average Average Average Objective
Algorithm Transcodings Retries Capacity Quality Function

Dynamic Oracle 4.00 0.00 0.99 0.83 0.47
Programming ±1% 4.38 0.14 0.97 0.82 0.46

±2% 4.62 0.21 0.96 0.82 0.46
±5% 5.21 0.35 0.94 0.81 0.44
±10% 5.88 0.51 0.90 0.80 0.42
JQSP 4.03 0.03 0.70 0.78 0.38

Step Oracle 4.00 0.00 0.99 0.83 0.47
Dynamic ±1% 4.03 0.01 0.98 0.82 0.46

Programming ±2% 4.09 0.02 0.97 0.82 0.46
±5% 4.18 0.05 0.94 0.81 0.44
±10% 4.30 0.08 0.92 0.80 0.42
JQSP 4.12 0.03 0.75 0.79 0.39

Scalings — 11.94 1.99 0.94 0.76 0.34
Profiles — 23.62 4.91 0.84 0.76 0.34

Table 5 Summary for 5 attachments.

Optimization Predictor Average Average Average Average Objective
Algorithm Transcodings Retries Capacity Quality Function

Dynamic Oracle 5.00 0.00 0.99 0.81 0.35
Programming ±1% 5.57 0.17 0.97 0.80 0.34

±2% 6.08 0.29 0.96 0.80 0.33
±5% 6.93 0.45 0.94 0.79 0.32
±10% 7.75 0.60 0.92 0.78 0.30
JQSP 5.11 0.06 0.74 0.76 0.26

Step Oracle 5.00 0.00 0.99 0.81 0.35
Dynamic ±1% 5.04 0.01 0.98 0.80 0.34

Programming ±2% 5.08 0.02 0.98 0.80 0.33
±5% 5.22 0.05 0.96 0.79 0.32
±10% 5.33 0.06 0.94 0.78 0.30
JQSP 5.22 0.04 0.82 0.77 0.28

Scalings — 15.02 2.00 0.94 0.73 0.23
Profiles — 33.36 5.67 0.88 0.75 0.22
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Table 6 Times, in seconds

Number of Dynamic Step Scalings Profiles
Attachments Programming Dynamic

2 0.09 0.09 0.19 0.31
3 0.13 0.12 0.33 0.62
4 0.18 0.17 0.47 0.99
5 0.21 0.20 0.55 1.30
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Fig. 4 Box-plots of capacities resulting from the various algorithms, for 5 images per message.
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this hypothesis is not verified. While it is true that capacity and resulting message
quality are correlated, it does not suffice to maximize capacity to maximize qual-
ity. Indeed, the successive scalings adaptation method usually yield high capacity
with resulting quality only comparing to the successive profiles method, but with
much worse quality than the two proposed explicit optimization methods.

In a similar way, we could hypothesize that it suffices to maximize the average
image quality as the objective function rather than an objective function such as
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eq. (1) (or eqs. (5) and (9)). Again, while for maximization, the average and the
product of image quality are correlated, it is preferable to maximize the product
as it has the distinct advantage of rejecting solutions where one or more of the
transcoded images are of very poor quality, as maximizing the product (especially
of values between 0 and 1) also requires maximizing individual image quality,
with the side-effect of reducing variance [18, 41, 42]. Using an average or sum-
like objective function, we could find ourselves with the case of a transcoding
solution for a message with five images with four high-quality images but one
image with exceedingly poor quality (which would be unacceptable) being chosen
over a preferable solution where all five images are of approximately equally good
quality (therefore with a small variance), simply because the average quality of the
first solution is higher.

We also examined the order in which the step dynamic algorithm proceeds to
optimize attachments. There are tree possible strategies for ordering attachment
prior to optimization: images sorted in increasing file sizes, images sorted in de-
creasing file sizes, and the random order in which they are found in the message.
While our experiments show no significant difference between orderings (which is
expected when prediction error is small), we decided to rely on the natural, or
random, message order. The rationale behind this decision is that since most of
the traffic is composed of photographs, it is not unreasonable to assume that the
photographs are taken from the same device (and therefore show similar character-
istics such as resolution, file size, and compression parameters) and that, therefore,
message order will not differ significantly from any other order.

Although the predictor and optimization algorithms are disjoint pieces of
the proposed system, the expected accuracy and precision of the predictor will
nonetheless play a major role in the quality of the transcoded messages. How-
ever, we show that increased predictor error will cause the performance of the
proposed algorithms to degrade gracefully, first first by using increasingly noisy
oracular predictor, second by using a “real life” low-cost predictor, JQSP, that
exhibit prediction error. Examining Fig. 4 for capacity, and Figs. 5 and 6 for
the resulting quality, we see that, indeed, the performance of adaptation only
degrades progressively as predictor error increases. With the error-free oracular
predictor, both proposed algorithms, as expected, find very good solutions, using
essentially all capacity yielding a high average quality solution (but due to the
quantization of transcoding parameters, discussed in section 3, the oracle may not
find a solution using exactly 100% capacity). The JQSP predictor is doing much
worse than the oracular predictors (as it is biased and overestimates file size [34])
but would compare to an oracular predictor with ≈15% error.

Resilience to predictor error and bias is a major problem in optimization.
If the predictor error is symmetric (and perhaps vaguely gaussian), the errors
would tend to cancel each other out; but if, like JQSP, the errors are asymmetric,
an algorithm such as one-shot dynamic programming would not be able to cope
with accumulated errors. However, the step dynamic programming solution can
compensate for accumulated error as it transcodes a single image, observes the
transcoded size, and adjusts its size constraint accordingly. Looking at Fig. 4, it
is clear that this step-by-step strategy allows the optimization algorithm to make
much better use of the capacity (with lower variance) than the one-shot dynamic
programming approach, an effect that is also seen on the resulting average image
quality, although to a lesser extent, as shown in Fig. 5. Fig. 6 shows the distribution
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of the variance of the quality within messages, which indicates, as hypothesized
earlier, that the objective function forces the intra-message variance to remain low.

The SSIM, being a windowed correlation factor between the original and the
distorted image, is difficult to interpret intuitively. SSIM measures quality nonlin-
early, and a SSIM score of 0.85 (see, for example, table 2) cannot be interpreted
as 5% better than a score of 0.8: the difference tells us, in fact, that the first image
is exponentially better than the second one [44, fig. 8 d)]. The useful range of the
SSIM is ≈ [0.7, 1], which maps to MOS of about 30 to 100 (30 being poor, and 100
perfect). Images with scores significantly lower than 0.75 are of very poor quality,
and an adaptation algorithm could use this lower bound as an explicit constraint
for optimization. In our experiments, however, we only maximize quality explicitly,
and the form of the objective function, eq. (1), only imposes an indirect constraint
on the lower bound of image quality.

While absolute execution times of the algorithms are something of an imple-
mentation detail, it is nonetheless interesting to examine how implementations
compare. Consider table 6 and fig. 7. First let us compare dynamic programming
versus step dynamic programming. Times show that both variants perform essen-
tially the same number of transcodings and that the execution times are compara-
ble, and that the variance in execution time of the two proposed method is much
lower than for comparative algorithms. This means that the optimization process
is entirely dominated by the time for the actual transcodings, and that the time
spent in the optimization per se and in querying the predictors is comparatively
negligible.

For the optimization time to remain negligible compared to transcoding time,
not only do we need the optimization algorithm to be fast (i.e. well implemented),
but the predictors must be very efficiently computed as well. The JQSP predictor,
as discussed in section 3, predicts transcoding parameters from an image charac-
terization and a target file size, an operation that reduces, at worst, to a O(logN)
search if the table contains N irregularly spaced target file sizes for a given char-
acterization [13]. The cost can be further reduced, to O(1), for regularly spaced
target file sizes, if the query parameters are quantized and the quantized values
are used to index a multidimensional look-up table. Oracular predictors cannot be
considered in the context of high-volume transcoding, since they are far too ex-
pensive to invoke—as a “prediction” is formulated from actual transcodings—but,
if they cannot be used for comparing execution times, they are a good means for
measuring the graceful degradation of quality in a controlled way, as the prediction
error grows.

Another factor that will greatly influence optimization time is the number
of transcoding parameters examined while solving eq. (5). While solving eq. (5)
using dynamic programming is computationally optimal, it remains an O(nm2)
algorithm, even if we suppose the predictors to be in constant time, where n is
the number of images to adapt and m the average number of transcoding param-
eters tested per image [17, 31]. As n is fixed (therefore excluding the possibility
of dropping images), a speed-up can only be gained by the reduction of m. The
set of transcoding parameters series, whether the exact T (M,D) or the predicted
T̂ (M,D), can be pruned without affecting optimality by excluding transcodings
yielding images exceeding either the maximum message size or maximum resolu-
tion for the receiving device. We can further reduce the complexity by considering
prunings that affect the optimality of the solution. For example, one could exclude
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transcoding parameters that would yield very poor quality, defined by a user-
specified threshold. One could also prune the set of possible transcodings to have
transcoding parameters that yields (predicted) relative file sizes set at least 5%
apart, or any other such heuristic that yields a satisfactory trade-off between pa-
rameter density, optimization speed, predictor error, retries, probability of failing
to find a solution, and resulting adapted message quality.

In the same way, we could accelerate the successive profile algorithm by con-
sidering even fewer profiles. This would make it faster, but also coarser, yielding
even worse results. We could be tempted to add profiles. However, it would not
be sufficient to merely add profiles, certainly not without changing how profiles
are applied. The profiles are applied in the order shown in table 1, stepping down
resolution only when solutions using the lowest quality factors given the currently
examined resolution have been explored. A better strategy would be to consider
a profile, say, Image Rich, but with intermediate resolutions, such as 600×450
and 533×400 (or other 4:3 aspect ratio resolutions), in combination with different
quality factors. However, rather than trying a resolution with all its listed quality
factors, and then moving on to the next resolution if no solution is found, it would
be preferable to try resolution and quality factor combinations in descending order
of expected resulting file size. This would allow the successive profile algorithm to
find solutions with smaller images encoded with a larger quality factor, although
this would not speed up the transcoding process.

For a high-volume service provider, such as a telecommunications operator, an
algorithm that produces satisfactory adaptation of messages at the lowest pos-
sible computational cost (as adaptation rather mundanely translates into server
racks, floor space, and electricity bills) is the preferable algorithm. In this work,
we show that the proposed dynamic programming-based algorithms are interesting
solutions, faring significantly better than comparative algorithms (both largely in-
spired from what is currently found in commercial products and in the literature).
However, it is an open question as to how much sub-optimality—and how one
defines optimality in this context—the users are willing to accept without taking
notice of image/message degradation, and therefore which trade-off are available
to service providers. One can surely consider using varying strategies depending
on time of day and network traffic, possibly even adapting computational effort
depending on the subscribers’ data plans, network traffic, or other transient con-
siderations. All these are user-experience considerations that cannot be addressed
by the current work, but are certainly worthwhile exploring further.

6 Conclusion

In this work, we have shown that the two proposed predictor-based dynamic pro-
gramming multipart message adaptation algorithms maximize quality explicitly
(as a proxy for user experience), and also make better use of message capacity
(the portion of the allowable message size used) than the comparative algorithms
inspired by products currently on the market and described in the literature. We
have also shown that, while predictor accuracy is important, our proposed al-
gorithms degrade very gracefully with increases in predictor error, making them
robust to prediction errors. Furthermore, our proposed algorithms are significantly
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faster and better than earlier solutions, and would be of great benefit to the Mul-
timedia Messaging Service.
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