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Abstract In this paper, we propose a gesture-based interface designed to interact
with panoramic scenes. The system combines novel static gestures with a fast hand
tracking method. Our proposal is to use static gestures as shortcuts to activate
functionalities of the system (i.e. volume up/down, mute, pause, etc.), and hand
tracking to freely explore the panoramic video. The overall system is multi-user, and
incorporates a user identification module based on face recognition, which is able
both to recognize returning users and to add new users online. The system exploits
depth data, making it robust to challenging illumination conditions. We show through
experimental results the performance of every component of the system compared
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to the state of the art. We also show the results of a usability study performed with
several untrained users.

Keywords Interactivity · Panoramic display · Human-machine interfaces

1 Introduction

The need of gesture control interfaces emerges due to the increasing complexity of
the functionalities of information systems and the current demand of more natural
user interfaces. Commercially available display sets, for instance, offer larger degrees
of freedom to manipulate the appearance of the displayed content. As the rendering
capabilities of the terminal evolve, users tend to feel constrained by traditional
interfaces, such as remote controls. This compromises the principle of a natural
user interface [19, 20], which should become effectively invisible to its users as a
communication modality.

A human gesture is a non-verbal, natural communication made with a part of the
body [2]. Gestures may have several phases, and different ways for kinematic and
functional coding [15], that can be tracked [33] and detected [17]. Gesture interfaces
may not require physical buttons, multi-touch devices or second screens that could
tangle up the users in the interaction process. In the particular case of user interaction
with TV sets, the need for enabling interaction with new types of data, such as
high-quality panoramas or 3D/FVV video, has fostered the study of new control
modalities. Remote controls have two major drawbacks: they can be misplaced or
out of reach of the user, and they require a lot of attention by the user as its control
functionalities increase. Commercial innovations in the field of TV sets is focusing
on natural user interfaces based on gesture and speech recognition [24] to overcome
such drawbacks. Such commercial innovation follows studies from the generic field
of Multimodal Human Computer Interaction (MMHCI).

In the last years, video transmission has experienced significant transformations.
Internet technologies and new workflows are currently challenging traditional busi-
ness models for the broadcast industry. New paradigms in the audiovisual sectors aim
at offering new possibilities to the viewers from professional content providers.

Currently, viewers expect to enjoy video content in a variety of displays, such
as high-resolution cinemas, TVs, tablet, laptops, smart-phones, etc. Furthermore,
they are increasingly expecting to be able to control their audio-visual experience by
themselves. This opens the path to going away from a fixed production and selecting
one of several suggested regions of interest (ROIs), or even by freely exploring the
audio-visual scene.

Combining advanced panoramic rendering and gesture recognition tools allows
the viewer a larger degree of freedom to select the way the contents are displayed and
to freely exploit the scene in a natural and non-intrusive way. The European project
FascinatE [7] investigates a Format-agnostic Approach for Production, Delivery and
Rendering of Immersive Media. Such approach requires a level of interactivity at
the user end that may hardly be satisfied with remotes, speech commands or second
screens, and will be used as experimental setup for the gesture control interface
introduced in this paper.
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With this purpose, we propose a novel interaction paradigm exploiting the com-
bination of shortcuts to activate control functions, and a grasp-release navigation
to explore a panoramic scene. In our approach, shortcuts are implemented with
robust static gestures, whilst navigation is based on a fast hand tracking system.
We show that the use of intuitive and easy-to-learn static gestures allows to include
more functionalities to the system, while keeping the interface simple. In addition,
navigation and static gestures are easily combinable, adding flexibility to the system
design.

The paper is organized as follows. Next section gives an overview of the related
work in the field of user interaction, commercial sensors and gesture interfaces.
A proposed system design for a gesture control interface, with its component
architecture and state diagram, is presented in Section 3. The technological system
components are further detailed in Section 4, including Head Tracking, Hand Track-
ing, Gesture Localization and Face Identification. Section 5 introduces a setup for the
user evaluation of the proposed system. Experimental results are provided for every
main component of the system, evaluating accuracy and performance. Furthermore,
overall results are provided by means of a usability study with untrained users.
Finally, Section 6 outlines the conclusions and possible extensions of the proposed
system.

2 Related work

MMHCI is a widely studied field and some surveys have been previously pub-
lished [12, 30]. Moreover, MMHCI is at the crossroad of several related areas
extensively studied such as face detection and identification [38], facial expression
analysis [23], eye tracking [13], gesture recognition [34], human motion analysis [25]
or audio-visual automatic speech recognition [26].

The recent commercialization of new game console controllers as Kinect or
Wiimote, has been rapidly followed by the release of proprietary or third part drivers
and SDKs suitable for implementing new forms of 3D user interfaces based on
gestures [8]. On the one side, several authors propose gesture control interfaces
based on accelerometers as the Wii controller [16, 29]. On the other side, the
Kinect depth sensor allows for device-less interfaces. Some solutions as ZigFu [39] or
GesturePak [11] use the skeleton tracking SDKs [14, 22] as input for gesture recogni-
tion based on skeletal poses. Thus, such approaches require a human pose estimation
step, which is a complex task with high computational cost, often prone to errors
in presence of clutter. Alternatively, several approaches make use of raw Kinect
depth data as input for hand pose and gesture recognition methods [27, 28, 35].
In contrast to 2D color video, the use of depth data makes such methods robust
to illumination changes and suitable for dark environments. Moreover, depth data
provides 3D information valuable to account for scale invariance of human body
parts. In general, these features make depth based methods perform better than its
color-based counter part.

As introduced by Wachs et al. [37], gesture-based interfaces for entertainment
applications, such as TV control, must address to major issues: intuitiveness and
gesture spotting.
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By intuitiveness, one means that the types of gesture selected should have a
clear cognitive association with the functions they perform. However, a gesture
natural to one user may be unnatural to others, due to the strong associations
with cultural background and experience. Stern et al. [32] proposed a method to
design and evaluate gesture vocabularies taking into account psycho-physiological
measures (e.g. intuitiveness, comfort) together with machine factors (recognition
accuracy). Alternatively, Nielsen et al. [18] propose a procedure to design the gesture
vocabulary based on the Wizard-of-Oz paradigm. In a Wizard-of-Oz experiment,
user interact with the system, but the response of the system is simulated by having a
person respond to the user commands. In this way, the users are the ones who decide
which gesture best represent its intentions.

Gesture spotting [37] consists of distinguishing useful gestures from unintentional
movement. This problem may be afforded by the recognition technique, by perform-
ing a temporal segmentation to determine where the gesture start and ends. How-
ever, this is a difficult problem and often the recognition methods assume temporally
segmented actions [5]. Also the recognition may require spatial segmentation of the
body parts (e.g hands) which may be also a task prone to errors. To overcome this
problem, López-Méndez et al. [17] focus on the problem of localization of static
gestures on depth data. Their method learns the local appearance of gestures, and
neither temporal nor spatial segmentation are required.

3 System design

The proposed system works in a device-less and marker-less manner allowing users
to control the content on their TV sets only using their hands (Fig. 1). It is responsible
of locating the people that want to interact with the system and of understanding and
recognizing their gestures.

The current implementation is focused on controlling the content on a high
definition TV screen situated in a home scenario. The content is composed of a
panorama image (a high resolution view of the scene) together with several audio
tracks and Regions of Interest (ROIs) associated with the panorama.

Fig. 1 Several users
interacting with the
proposed gestural interface
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The current setup of the system allows the user to be standing or seating in a
chair or coach. Although a single user is able to interact with the system at any given
time, the interface is multi-user in the sense that several users can ask for control of
the system and interact with it while the others might still be present in the scene
(Fig. 1).

In order to allow the user to interact with the TV content, the system supports the
following functionalities:

Menu selection A menu is overlaid on the current screen and the user can select
any button of the menus by pointing at it (Fig. 2).

Navigation The user is able to navigate through the panorama scene by
panning, tilting and zooming in the content.

ROI selection The system informs the user of the available ROIs in the current
view and the user is able to change between them.

Pause/resume The user is able to pause / play the content at any time.
Audio volume The user is able to increase or decrease the volume and to mute it

completely.
Take control The control of the system can be passed between users.

3.1 User experience and design aspects

The system design is a compromise between the best user experience and a feasible
solution from a technical perspective.

To ensure that the system is always providing a responsive, convenient and
intuitive experience for the user, the following design decisions have been adopted:

– Control functionalities of the system are activated with static gestures. These
gestures should be easy to learn and perform, providing a fast way to do simple
tasks (shortcuts).

– Navigation is performed in a grab-release manner. More precisely, the
panoramic scene acts as a sheet which can be grabbed (closing one hand), moved
(moving a closed hand) and released (opening the hand). This way, the interface
simulates a virtual tablet in front of the user.

Fig. 2 Detail of the displayed
content and the user feedback.
The icon on the bottom centre
(above the bar) is used to give
feedback about static gesture
commands (the icon shows
that the user is lowering the
volume). The bar on the
bottom shows the 5 available
static gestures
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– The proposed system is touch-less and the user stands far from the display. For
that reason, the interface must provide visual feedback to the user, providing
information about the system state (e.g. the identified user, the detected gestures,
or where the detected hands are located and pointing).

– To allow the social aspects of interaction with TV sets, the system provides an
easy mechanism to release, take/switch the control between multiple users. The
active user may freely move within the capture range.

– Panoramic navigation and gestures recognition modes are separated to improve
user experience and at the same time reduce false/wrong detections.

3.2 Architecture

To fulfill all the functionalities, the current system implements the architecture
depicted in Fig. 3. It is divided in three main layers. In the first layer, the Capture
component is responsible of communicating with a single Kinect camera and feeding
the images into the system. The Kinect sensors provide color and depth video with
VGA resolution that are feed into all other components of the system. The second
layer is the core of the interface. Here the processing, detection and recognition
algorithms take place. It is composed of the following components:

The Head tracking (Section 4.1), where the depth image obtained in the capture
module is analyzed to detect heads (oval areas of the same depth) [33]. The position
of the heads are used in all subsequent components to locate possible users of the
system. Other persons in the field of view of the Kinect sensor are not tracked and
their gestures do not interfere with the system.

The Face identification component (Section 4.4) recognizes users. Faces are de-
tected using a modified Viola-Jones detector [36] on the color images and recognized
using a temporal fusion of single image identifications. The recognized users will
determine the number of people able to control the system.

Fig. 3 Architecture of the gesture control interface
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Once users are detected, hands are tracked by the Hand Tracking component
(Section 4.2) using a 3D virtual box in front of the head of the user with control of
the system. 3D blobs in the virtual box are segmented and treated as hands [33].

The Gesture localization component (Section 4.3) is responsible of detecting
and classifying static gestures (gestures performed with still hands). In this case,
the classification of the gesture is purely done using the shape and position of the
hand, extracted using only the depth data provided by the Capture component. The
classification is based on random forests [4], aiming at accurately localizing gesture
and object classes in highly unbalanced problems.

We remark that the functional distance range between the kinect and users is
between 1m and 3.5m. If placed closer, it is difficult to have the user’s head and
hands framed. If placed farther, the Kinect resolution is not enough to ensure a good
performance of the proposed system. Nevertheless, the proposed algorithms adapt
to scale, providing a consistent performance within the suggested distance range.

Finally the third layer of the architecture contains the Application Control
component. This module is responsible of acquiring all the detections and tracking
information obtained by the components in the middle block (head, hands, user
recognized and classified gestures) and mapping them into the functionality listed
in the previous section. It communicates with the TV to perform all the needed
interactions (select ROIs, change volume, pan-tilt-zoom the panorama, etc.). It
controls the user interface and provides all the needed feedback through the GUI
overlaid in the TV (Fig. 2).

3.3 State diagram

This section describes the state diagram of the current system and further explains
the relation between the different components in the system architecture. Each state
in the diagram allows users to perform specific gestures to control the system. The
Application Control module is responsible of controlling the general status of the
system and performing the transition between states. The end user does not need to
be aware of the general state diagram or the current state as the Application Control
component informs the user about the available commands at each stage through
feedback in the GUI overlay. Figure 4 shows the different states possible. The arrows

Fig. 4 State diagram for the
gestural interface
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and yellow boxes indicate the gesture or timeout that will transition the interface
from one state to the other one.

– The system always starts in idle mode. In this state no menu is shown in the
screen and the only gesture available is the OK or take control gesture (Fig. 9). In
this state, the Gesture Localization component only recognizes the OK gesture
and all other components are suspended. If the OK gesture is detected by the
Gesture Localization component, the user doing the gesture takes control and
the interface transitions to the next state. In all following states only the user
in control is recognized and other users might be present in the scene without
affecting the system.

– The command mode is the principal state where users interact with the system.
In this state all the components (Head and Hand Tracking, Gesture Localization
and Face Identification) are started and report to the Application Control.
The Head Tracking ensures that the user is followed and that all sub-sequent
components only focus on the user controlling the system. The Hand Tracking
tracks the position of a single hand which is used to access the menus of the GUI
overlay. The selection is done by pointing a single hand to the menu item, wait for
a few seconds until an arrow is shown, and then moving the hand in the direction
of the arrow (like grabbing the menu item to the centre of the screen). The
Face Identification recognize users and allows them to access specific options
or interactions with the system.
Finally, the Gesture Localization component recognizes 5 static gestures (Fig. 9)
and the Application Controls maps them to the following functionalities:

◦ The OK gesture (the same one the user used to take control of the system)
is used to go back to idle mode.

◦ The volume can be increased by locating the finger on top of the mouth and
lowered by putting the hand on the ear.

◦ The volume can be completely muted by doing a cross sign in front of the
mouth.

◦ The video can be paused or resumed by closing the hands together (similar
to clapping).

By selecting any of the menus shown in the GUI overlay, the interface can
transition to the states of navigation, ROI selection or new user. From all these
states the user can go back to command mode by doing the OK gesture or by
waiting several seconds without doing anything to trigger a timeout.

– The navigation mode allows the user to navigate freely through the panorama.
In this mode no menus are shown in the screen and only the hands of the
user are overlaid in the screen. The user can then pan and tilt the panorama
by using one hand and grabbing the scene and zoom in or out by using both
hands (such as done in maps applications on tablets). The Hand Tracking
component is responsible of tracking this movements and, in this state, no
Gesture Localization is performed as experimental results showed an increase
of false/positive detections.

– The ROI mode allows the user to navigate through the available ROIs by moving
your hand left to right or right to left. Also, the Hand Tracking algorithms is
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responsible to track the hands of the user to detect grabbings and movements in
this state with no possibility of doing static gestures.

– Finally, the new user mode is used to add new users to the system.
This mode creates new user models to be used in the Face Identification
component.

4 System components

This section further describe each of the components (Head and Hand tracking,
Gesture Localization and Face Identification) presented in the architecture of the
system.

4.1 Head tracking

The head tracking algorithm is composed of three steps: head size estimation, head
localization and a search area resizing (Fig. 5).

Head size estimation For every foreground pixel, an elliptical template (E) of the
size of a regular adult head (about 17 × 23 cm) is placed at the pixel’s depth level
d and projected onto the camera image plane, obtaining an ellipse of the apparent
head size (Hx, Hy) in pixel dimensions (see Fig. 6). This ellipse is called template or
E is then used to find a head location estimate.

We assume that people interacting with the TV will either stand-up or be seated,
keeping their head more or less vertical.

Head localization Aiming at finding the image region which better matches (E),
a matching score between (E) and the global foreground mask (F) is calculated at
every pixel position (m, n) of the image. Matching is calculated within a rectangular
search area of size Rx × Ry, by sliding E across the image. The matching score
is calculated according to conditions Ck presented in (1), where b = background
and w = f oreground. Conditions are checked at every pixel position (u, v) ∈ E
of the template, which is itself centered at (m, n). When a condition Ck is sat-
isfied, Ck = 1, otherwise Ck = 0. The final matching score for the pixel (m, n) is

Fig. 5 Head matching score values using a Kinect sensor. Different situations are presented (from
left to right): back view, side view (with slight head tilt), far person and long-haired person. In all
these cases, the matching score presents a maximum in the head zone
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Fig. 6 Head tracking snapshots. Head templates (ellipses), search areas (rectangles) and obtained
head locations (crosses)

calculated as the sum of all the scores obtained on the template pixels, as shown
in (1) (Fig. 5).

C1
u,v : (Eu,v = b) ∧ (Fu,v = b)

C2
u,v : (Eu,v = w) ∧ (Fu,v = w) ∧ (|du,v − dHi | < dmax)

C3
u,v : (Eu,v = b) ∧ (Fu,v = w) ∧ (|du,v − dHi | > dmax)

Mm,n =
∑

∀(u,v)∈E
(C1

u,v + C2
u,v + C3

u,v) (1)

The pixel (m, n) with a higher score MH is selected as the best head position esti-
mation p̂H in a given search area. Conditions C2 and C3 provide robustness against
clutter and partial occlusions, incorporating depth information to the matching score.

Search adaptation The position and size of the search area (Rx, Ry) is adapted to
the head position variance (σx, σy), and also to the confidence on the estimation M̄ =
MH

Mmax ∈ [0, 1], as described in (2).

Rx = σx + (1 + μ) · Hx

Ry = σy + (1 + μ) · Hy
with μ = e

−M̄
1−M̄ (2)

Such resizing is effective against fast head movements. For example, horizontal
movements will enlarge the search area along the horizontal axis. Furthermore, in-
cluding the matching score in (2) makes the system robust against noisy estimations.

4.2 Hand tracking

Hand detection The hand tracking system relies on the robust head estimation
presented in Section 4.1. Hands are supposed to be active in a space placed in front
of the body. We define a HandBox � as a virtual 3D box, which is attached to the
head position p̂H so that it follows the user’s head at every time instant, as shown in
Fig. 7.

Dense clusters are searched in � by means of a kd-tree structure, which allows fast
neighbor queries in 3D point clouds [9]. A list of candidate clusters is obtained and
filtered according to the following criteria:

Merging Two clusters are merged as a single cluster if the Hausdorff distance
between them < δmin

Size filtering The resulting merged clusters are filtered by size, keeping the
largest ones (size > smin) as hand candidates.
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Depth filtering Clusters that fulfill the previous criteria are sorted by depth, keep-
ing those closer to the camera (up to two).

Thresholds δmin and smin should be tuned depending on the type of camera and
scene. For example, two hands are being detected in Fig. 7.

Open/closed hand detection The interactivity of the viewer with the rendering node
may be increased by determining whether the user opens or closes hands.

We propose to compute the area of the detected hands (Section 4.2) and threshold
it to quickly decide if it is closed or not. Such strategy assumes that the observed area
is reasonably perpendicular to the camera. Therefore, the depth of each pixel may
be replaced by the mean depth of the observed region, simplifying the physical area
calculation.

The physical area of an open hand perpendicular to the camera is about 70–90 cm2,
whilst that of a closed hand is about 20–30 cm2. It seems reasonable to set a threshold
of 50 cm2 to determine the hand status.

Dynamic gestures The pan, tilt and zoom angles of the panoramic viewport are
controlled through gesturing. Navigation across the panoramic video is performed by
a series of gestures consisting of grabbing (close hand), moving (while hand closed)
and releasing, as if the screen was a piece of tissue. The pan and tilt angles are
calculated depending on the current position of the hand in the HandBox �.

For the zooming case, once grabbed (both hands closed), the distance between
hands is calculated. The zoom angle is proportional to that distance.

In addition, a family of dynamic gestures based on trajectory is included. In this
setup, for example, horizontal movements with a considerable speed (user-defined)
are utilized to shift between ROIs in the ROI mode. Temporal segmentation of
these gestures is performed using the entry and exit points in the HandBox, and also
assuming a low initial speed if the hand was already in the HandBox.

Fig. 7 Caption of the
proposed approach, where
both hands are detected inside
the (green) HandBox
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4.3 Gesture localization

The gesture localization builds upon the method proposed by [17], which is based on
class-specific (one-vs-all) random forests using depth data. Random forest localiza-
tion in depth data renders an efficient localization algorithm that can operate in real-
time under realistic conditions. This implies detecting gestures with high accuracy in
the presence of clutter and unintentional motion.

The localization problem is challenging due to two main reasons. Firstly, there is
a high unbalance between gesture and non-gesture classes, since non-gesture classes
contains the set of other gestures, as well as clutter and unintentional poses. Secondly,
without accurate segmentation, it is difficult to accurately model the appearance of
clutter using a limited number of training samples. The gesture localization approach
used in our system addresses these issues with two main components:

– Clipping: In order to better capture the local appearance of static gestures, we
automatically clip the depth data in a local vicinity of the training samples. In
this manner, training is less prone to over-fitting problems caused by learning
the specific backgrounds of training data.

– Boosted learning: We use a specific learning approach to deal with the high
unbalance of training data [17]. We take advantage of the learning strategy on
random forests to efficiently mine the most meaningful samples of the negative
class.

For the sake of completeness, in the following of this section we summarize some
details of the approach proposed in [17] (extended version currently submitted to
IEEE Trans. MM).

Clipping binary tests Random forests [4] are an ensemble of m randomized trees,
which are binary trees. Each tree is trained separately with a small subset of the
training data obtained by sampling with replacement. Learning is based on the
recursive splitting of training data into 2 subsets, according some binary test f and a
threshold θ . The binary test is a function of the feature vector v obtained from each
training example. At each node of the tree, a test f and a threshold θ are randomly
generated, and the one that maximizes an information gain criteria is selected.

We define our binary tests based on [31], but we introduce an auxiliary parameter
that clips the depth of the available training examples. In such manner, tests are more
robust to changes in background, while avoiding a segmentation step. Specifically,
the clipping parameter is a value that represents the maximum and minimum relative
depth with respect to the depth value of the center pixel. Formally, let κ denote the
clipping parameter. Then, for a given pixel x the test f has the following expression:

fθ (I, x) = max
(

min
(

dI

(
x + u

dI(x)

)
, dI(x) + κ

)
, dI(x) − κ

)

− max
(

min
(

dI

(
x + v

dI(x)

)
, dI(x) + κ

)
, dI(x) − κ

) (3)

where dI is the depth map associated to image I and u and v are two randomly
generated pixel displacements that fall within a patch size. Pixel displacements are
normalized with the depth evaluated at pixel x in order to make the test features
invariant to depth changes.
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Boosted learning of random forests In the localization problem posed in this paper,
gesture and non-gesture classes are naturally unbalanced. On the one hand, in real
applications users are not constantly performing gestures. On the other hand, the
actual appearance of a gesture may be represented by a relatively low number of
pixels. Summing up, the distribution of gesture classes (positive) with respect to non-
gesture (negative) is biased towards the latter. This unbalance makes that low false
positive rates constitute actually a large number of false positive votes. Taking into
account this phenomenon is important during the training phase of a random forest
since, under such unbalance, it will be difficult to optimize the information gain.

In order to overcome this problem, we adopt a boosted learning scheme, designed
in a tree-wise manner as follows:

We train the first tree with a balanced set of samples from each class. Once the tree
is trained, we evaluate it against the out-of-bag set [4]. The wrongly classified samples
are added to the training set of the second tree (up to a maximum number of training
samples). This new training set is completed by sampling with replacement from the
full training set until balance is achieved. We train the second tree with this training
subset and we repeat the process until the forest is fully trained.

Gesture localization For gesture detection and localization, a set of patches are
provided to the detection forest, which casts a vote whenever a positive class has
more probability than the negative class and other positive classes. Figure 8 illustrates
the casted votes for a positive class in a class-specific learning example. To detect a
gesture, we first estimate a probability density using the votes within a frame and
we take into account temporal consistency by recursively updating this distribution
with votes aggregated from past time instants. In order to construct the probability
density, we use a Parzen estimator with Gaussian kernel. In order to account for the
time component of the approximated density, we sequentially update such density
p(c|It) as follows:

p′(c|It) = αp(c|It) + (1 − α)p′(c|It−1) (4)

(a) (b)

Fig. 8 Gesture localization with random forests (best viewed in color). a A number of votes (green
dots) are casted for the target gesture b votes are aggregated to estimate a probability density
(overlaid in red on the input depth map) and a localization is estimated (green square)
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This is a simple yet effective method to keep temporal consistency of the casted
votes, as it requires storing a single probability map. An adaptation rate α = 0.8
works well in practice, as it prevents several false positives while avoiding a delayed
response.

Finally, we compute the pixel location gc of a gesture class c > 0 as the pixel
location with maximum probability. We ensure that such a maximum represents
a target gesture by thresholding the probability volume V computed by locally
integrating the estimated pseudo-probability measure:

V =
∑

x∈S
p′(c|It(x)) (5)

where S is a circular surface element of radius inversely proportional to the depth,
and centered at the global maximum. In this way, the localization is depth-invariant.

For efficiency reasons, we approximately segment the scene into relevant and non-
relevant pixels by thresholding the depth using two values znear = 0.8 m and zfar =
3.5 m. Once a user get the control by performing gesture OK, we employ the head
tracking algorithm result (Section 4.1) to compute a region of interest, where the
other 4 gesture class-specific forests are evaluated. In this way, we can run detection
forests in real-time. Besides, the region of interest helps in discarding gestures of
interest that other users may perform, thus increasing the detection accuracy (Fig. 9).

4.4 Face identification

The purpose of face identification is to allow users to select preferences based on the
identity and to enable the system to establish a hierarchy of users that can be used in
applications such as parental control.

The continuous monitoring environment offer the possibility of video-based face
recognition. This permits improving the performance of face recognition from single
image captures.

The workflow of face ID system is the following: faces are detected in first place
and forwarded to the face recognition module. The face ID compares each test image
with a set of models consisting of images of each person, created off-line with images
from previous recordings. For each test face, a set of scores defining the probability it
represents the persons in each model is produced. Finally, the fusion module combine
the individual results for a temporal group of images of the same person into a final
decision.

Fig. 9 Examples of successful localization results using our approach (κ = 15 cm) volume down,
volume up, Take Control, mute and pause
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In the following, we will analyze each module (detection, still image identification
and temporal fusion).

Face detection The face detection module is cascaded with the head tracking
module, described in Section 4.1. Face detection is only performed inside a reduced
region defined by the head tracker. This allows reduced computational complexity
and a very low probability of false positives.

We use the OpenCV [3] face detection module that relies on the adaboosted
cascade of Haar features, i.e. the Viola-Jones algorithm [36]. In our application,
the users generally interact with the system facing the camera. The system is thus
restricted to detect frontal faces, allowing for some pose variations.

Single image face recognition For face recognition, a set of meaningful face charac-
teristics are first extracted to form a feature vector. This vector should convey all the
relevant information in a face. A feature extraction technique based on Local Binary
Pattern (LBP) [21] is used. LBP operator is a non-parametric kernel which represents
the local spatial structure of an image. It provides high discriminative power for
texture classification and a good amount of illumination invariance, because it is
unaffected by any monotonic gray-scale transformation which preserves the pixel
intensity order in a local neighborhood.

At each pixel position, LBPP,R is defined as an ordered set of binary comparisons
between the intensity of the center pixel and the intensities between the center pixel
and its P surrounding pixels, taken over a circumference of radius R. The decimal
form of the resulting LBP code can be expressed as follows:

LBP(xc, yc) =
P∑

n=1

s(in − ic)2n (6)

Where ic corresponds to the grey value of the center pixel (xc, yc), and in to the grey
values at the P surrounding locations. Function s(x) is defined as:

s(x) =
{

0 x < 0
1 x ≥ 0

(7)

Our method is based in [1] For each pixel of the luminance component of the
face, its LBP8,2 representation is computed, that is, using 8 samples taken over
a circumference of radius 2 from the pixel. The resulting transformed image is
partitioned into non-overlapping square blocks of 7 × 7 pixels. The feature vector
is formed by concatenation of the histograms of the LBP values of each block. This
results in 49 local 64 bins histograms (face image was resized to 49 × 49). The final
feature vector dimensionality is thus 3,136.

A k nearest neighbor (kNN) classifier [6] is used to obtain the final decision. In
our system kNN is modified so that a vote is penalized by the inverse of the distance
between the test vector t and the selected neighbor, in such a way that the bigger
the distance, the more penalization. The ki inverse distances are normalized by the
overall sum of the k nearest neighbor inverse distances of all classes, leading to the a
posteriori probability for each class [6].

These probabilities for each class allow the classifier to give an estimation or score
on how confident the classification of the test vector is.
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The Chi-Square distance (8) is used to compare feature vectors because it is shown
that it performs better than the Euclidean one when using histogram based features.

χ2(v1, v2) =
∑

i

(v1,i − v2,i)
2

v1,i + v2,i
(8)

where v1 and v2 are feature vectors.
Models for all individuals in the database should be created off-line, by using

sequences of images collected in a different session than the testing recordings.
150 training images per subject are used, extracted automatically from small ad-hoc
recordings.

Temporal fusion As face detection is cascaded with head detection and this module
performs a temporal tracking of the detected heads, we can ensure that the identity
of the person is maintained along the track, so that video based recognition can be
used. Temporal fusion combines the information of several images to perform the
recognition.

After face detection, each track is composed of T consecutive face images of
the same individual. The face identification algorithm is used to compute a vector
of scores si for each single frame. A simple score fusion scheme is used, based on
averaging the scores along the track. The instantaneous final decision is computed
by taking an average of the last Ns score vectors and selecting the class with highest
score.

5 Experimental results and user evaluation

The evaluation of the proposed system is divided into two different parts. In the first
one, an objective evaluation of the different technical components is performed. In
this case, all head and hand tracking, gesture localization and face identification are
evaluated using objective metrics against other similar methods from the state of the
art. In the second part, the entire system is evaluated subjectively by end users with
low or no prior knowledge of the system.

For the experimental results, the proposed system has been implemented and a
complete gesture control interface for panoramic TV content has been created as a
standalone demonstrator. As described, the demonstrator is composed of multiple
algorithms that must be connected in different ways; some can run independently in
parallel, others need some signaling and synchronization and others must run serially
after another one. Therefore, careful signaling must be shared between them. The
demonstrator is implemented in the following hardware:

– A Microsoft Kinect sensor to capture depth and color video
– A laptop with 8 CPUs (at least 6 are needed) and 8GB of RAM

It uses the Debian operating system and the following open-source libraries:

– OpenNI as capture drivers for the Kinect sensor
– SmartFlow as a transport and communication middleware
– OpenCV as a support for the face detection algorithm
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– PointCloudLibrary (PCL)
– Boost C++ Libraries

All algorithms described in Section 4 (Head and hand tracking, gesture local-
ization, face recognition and application control) are implemented in C++ in an
internal library.

5.1 Objective evaluation of technical components

This section evaluates the performance of each individual component presented in
the system.

Head tracking evaluation We analyze the convenience of conditions C2 and C3 in
(1), and how robustness is increased by including depth data queues. We compare
the proposed scheme with a limited version which only verifies condition C1. This
way, the contribution of C2 and C3 is shown. The head location error between a
ground-truth (manually marked) head position gH and the estimated head location
is calculated as ε = |gH − p̂H|, and presented in Fig. 10 for the two versions of the
algorithm. Note that, even if C1 plays the role of 2D method, depth data is used for
the initial head size estimation.

Figure 10 shows the frame by frame error of the C1 + C2 + C3 compared to C1.
The C1 version loses target twice, a reset of the algorithm being needed (frames 74
and 398). The labeled arrows in Fig. 10 correspond to adverse clutter and occlusion
situations. Our proposed algorithm presents an error that does not go above 10
pixels, which is about the head radius.

Hand tracking evaluation Table 1 summarizes the average error for different one-
hand and two-hand trajectories, computed as the average 3D error (with respect to

Fig. 10 Error between the obtained head location estimates and the ground-truth
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Table 1 Hand detection 3D
accuracy on different gestures

Trajectory # frames Error R hand Error L hand
(cm) (cm)

Push 30 2.62 –
Circle 30 6.61 –
Replay 35 2.86 –
Hand up-down 115 5.87 –
Separate hands 75 2.36 3.80

the ground-truth hand positions) along the duration of the movements. Ground-truth
trajectories have been extracted by hand, selecting a reasonable hand center which
may vary in some cm along frames. Despite these adverse noisy conditions, the hand
estimation error rarely goes above 10 cm.

The average error is higher for fast movements, resulting in about 6 cm of error.
For the other gestures, the error is of about 3 cm, which is fairly adequate given the
size of a human hand. For the sake of illustration, a sample of the zooming gesture is
included in Fig. 11, showing the detection error between the ground-truth trajectory
and the detected one.

Gesture localization evaluation We conduct experiments of the gesture localization
method to provide a quantitative performance of the approach and determine
optimal clipping parameters. We focus on the gestures defined in Fig. 9. We record
5 training sequences where 5 different actors perform a set of gestures and actions,
including the 5 target gesture classes. Additionally, we record 6 test sequences with
4 additional actors that were not included in the training set.

The employed detection forests have 15 trees with maximum depth 20, and each
tree is trained with approximately 20,000 examples per class.

Fig. 11 Ground-truth and estimated trajectories of the (R)ight and (L)eft hands. The estimated hand
positions are nicely close to the reference ground-truth positions. Only the XY projection of these
3D trajectories is shown
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Table 2 Average Area Under the Curve (AUC) for different learning approaches

Method Volume down Volume up OK Mute Pause Average

Boosted [10] 0.17 0.10 0.31 0.14 0.02 0.15
Ours 0.17 0.10 0.31 0.20 0.25 0.21
Ours + κ = 15 cm 0.58 0.53 0.81 0.47 0.11 0.50
Ours + κ = 30 cm 0.69 0.50 0.54 0.27 0.14 0.42
Ours + κ = 50 cm 0.59 0.46 0.61 0.24 0.18 0.41

Bold entries correspond to the best method for each column key

In all cases, we employ squared patches of size 85 × 85 pixels. We train class-
specific forests with the boosted learning method. Additionally, in order to compare
the learning method, we implement a boosted approach based on [10].

To measure the accuracy of the proposed methods, we consider a correct localiza-
tion if the estimated gesture and the actual gesture belong to the same class and if the
estimated location is within a radius of 10 pixels. We compute the curves representing
1-precision vs recall to then compute the Area Under the Curve (AUC). Average
AUC’s per gesture class are shown in Table 2.

The comparison of different training approaches with and without clipping
(κ parameter) shows that the proposed boosted learning yields an overall better
performance. The proposed learning approach outperforms the boosting scheme
proposed in [10].

Face identif ication evaluation Evaluation of face recognition has been done at
two levels. In the first place, the single-frame face ID algorithm has been tested.
This measures the ability to recognize persons given a unique test frame. Then, we
evaluate the performance using the fusion algorithm, where the use of face tracking
allows combining consecutive individual results into a more robust decision.

The system is designed to work in small groups of people that share the access
to a TV set (for instance, a family). Having this in mind, 12 individuals have been
recorded while using the demo in two sessions: the first one is used to create the
models while the second one is used for testing. As some gestures involve putting
the hands between the face and the camera, there are a good number of partial face
occlusions. Pose is mostly frontal but with variations as the users look at the different
corners of the screen. There is also a medium degree of expression variability since
the users are asked to behave normally while using the system.

Table 3 shows the results either for single frame and for temporal fusion face ID.
Due to occlusions and the restrictive settings, there are good number of frames where
no faces are detected. This is not a problem in this setup as a decision is only provided
at regular intervals (currently, each one or two seconds). It can be seen that even
using single frame, the identification results are very good, with only 37 errors in
6,605 detected faces. When using the temporal fusion, the identity of the person in
each segment is always given correctly.

Table 3 Face ID results # frames Detected Error (%)

Single frame 8,716 frames 6,605 frames 0.56
Temporal fusion – 266 segments 0.0
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Table 4 Usability questionnaire

Questions Mean Standard
deviation

1. I liked using the interface 4.13 0.96
2. The interface was pleasant to use 3.81 0.98
3. It was simple to use this system 4.00 0.73
4. It was easy to learn to use the system 4.31 0.79
5. The organization of information presented by the system was clear 4.25 0.68
6. The information provided by the system was easy to understand 4.50 0.52
7. Navigation in panoramic video was pleasant to use 3.47 0.99
8. Navigation through interface menu items was comfortable 3.94 1.00
9. The system responded effectively to my gestures 3.19 0.98
10. Task 1 (zoom into a specific part of the scene) was easy to perform 3.88 1.31
11. Task 2 (change audio volume) was easy to perform 4.13 1.36
12. Task 3 (region of interest selection) was easy to perform 4.00 0.89
13. I felt comfortable using the system 3.63 0.89
14. Overall, I am satisfied with this system 3.69 0.87

Sentences and Mean and Standard deviation of the responses of 15 participants (stronglydisagree =
1, . . ., stronglyagree = 5)

Tests performed with the system with more users show that good results (above
96 % recognition rate) can be obtained for up to 50 people.

5.2 Usability evaluation

In order to validate the design of the interface we conducted a usability study. We
selected a set of participants, who were asked to interact with the system and then
they answered a questionnaire. This usability study is derived from similar studies
that have been recently conducted to evaluate a gesture controlled interface for
elderly in [2].

The procedure was the following:

1. First, users watched a short video about how to use the interface.1

2. Then, they interacted freely with the system to familiarize with its functionalities.
3. They were asked to perform 3 specific conceptual tasks: To change the volume

(up, down and mute); To zoom into a defined part of the scene; To select certain
ROI.

4. Finally, they answered the questionnaire.

In total, the number of participants were 15. The questions had 5 answer choices
according to the degree of agreement with the sentence (Strongly Disagree = 1,. . .,
Strongly Agree = 5). The sentences and the mean and standard deviation results are
shown in Table 4.

In general, users were satisfied with the system and they could perform effectively
the assigned tasks in a short amount of time. The most successful aspects of the
user experience are related to the use of static gestures to activate several control

1The video is available at http://vimeo.com/55432492.

http://vimeo.com/55432492
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functions. As reported by participants, the system is simple to use, easy to learn
and the GUI is clear. From their response and according to our observation of the
participants, we can conclude that the selected gestures are intuitive and easy to
perform. Moreover, the use of static gestures as shortcuts to perform actions reduce
the amount of information required in the GUI, improving its clarity. Navigation
through panoramic video was not so successful. The reason seems to be due to
the fact that the interaction paradigm chosen for zooming and panning (i.e hand
gestures with hands open or closed to simulate touching a virtual tablet in front of
the user) results not being comfortable and intuitive by participants. Further research
is required to improve the usability of the system and such study offers insights into
a better user experience.

6 Conclusion and future work

This paper has presented a gesture recognition interface designed to control a TV set
providing immersive viewing functionalities, such as navigating a panorama. It works
in a device-less and marker-less manner allowing users to control the content on the
display by only using their hands. It automatically locates the people that want to
interact with the system and understands and recognizes a small set of natural and
easy-to-learn gestures. An objective evaluation of the technologies integrated in the
system show results competitive with similar techniques in the state of the art. The
complete integrated system has been evaluated subjectively by a group of 15 users
which where overall satisfied by the simplicity and intuitiveness of the interface.

Our future work include the extension of the gesture localization part to success-
fully detect and recognize fingers, in order to explore ways to include finger gestures
within the pre-defined gesture database. Performing further user evaluation studies,
we plan to improve the usability of the navigation through the panoramic video in
order to improve the responsiveness of the system and to limit the fatigue caused to
the users.
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