Abstract One of the main difficulties in video tracking of people arises in sce-
narios where targets are repeatedly and extensively occluded by other moving
objects. These types of occlusions significantly affect the measurements of the
person’s position, motion, shape and appearance, posing major challenges to
correct tracking and data association. In this paper, we present a method for
tracking people in videos based on a simplified part-based model only loosely
associated with body parts. Data association is provided by a layered data
association approach which performs association at feature, part and global
levels in a hierarchical fashion. Occlusions are detected and managed at the
part level, with corresponding model update strategies. In addition, the tracker
does not make any assumption on the target’s motion direction, thus allowing
tracking to withstand abrupt sideways movements and changes of directions
that frequently occur in busy scenes. Experimental results against popular
trackers such as mean shift, particle filters and the recent k-shortest paths
(KSP) tracker based on a variety of performance indicators and datasets in-
cluding ETISEO, AVSS 2007 and PETS 2009 show the effectiveness of the
proposed tracker.

Keywords Video Tracking - Layered Data Association - Tracking Under
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1 Introduction and Related Work

People tracking is a critical component of many computer vision applications
such as surveillance, human-computer interaction, media annotation and sev-
eral others. However, tracking in visual data is intrinsically challenged by view
occlusions obscuring the target from the camera. The view occlusion problem is
especially serious in situations where multiple targets are present at once such
as in public environments: pedestrians repeatedly occlude each other either
partially or completely as they walk or stand in the area, form groups, stop
to interact with others or simply are temporarily occluded by the infrastruc-
ture in the scene. Almost invariably, this situation leads to the eventual loss
of the target. Despite being the focus of recent research ([2,11,19,24,21,18],
amongst others), tracking people under repeated and substantial occlusions is
still a partially unresolved problem in computer vision.

The question we address in this paper is whether a simplified representation
of the target can provide an adequate basis for tracking humans under frequent
and extensive occlusions such as those occurring in moderately crowded en-
vironments. In our reference scenarios, humans are typically 50 to 200 pixels
in height, are occluded repeatedly and extensively by other walking or stand-
ing humans, and change directions often and unpredictably in order to avoid
collisions. These are the typical viewing conditions of wide-area surveillance
cameras in shopping centers, train stations, airports, with usual frame rates
in the order of 15 to 30 frames per second.

To this aim, in this paper we propose a target model based on parts loosely
associated with the human’s head, left torso and arm (with respect to the view-
point), right torso and arm, left leg, and right leg. Each part is represented by
a rich set of features including the part’s color histograms and shape descrip-
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tors. Data association between the target model and observations in successive
frames is based on a layered data association approach which performs asso-
ciation at feature, part and global levels in a hierarchical fashion. Occlusions
are detected and managed at the part level: whenever a major occlusion is
detected over a model’s part, its model is kept unchanged until the occlusion
has ceased. Conversely, the models of unoccluded parts are updated mean-
while. In addition, the tracking algorithm does not make any assumption on
the target’s motion direction, only searching for the best candidate within an
adjustable spatial window in order to withstand sudden changes in direction.

Part-based approaches are becoming increasingly popular for detection of
deformable objects thanks to their intrinsic ability to adjust to deformations.
In [4], Felzenszwalb et al. applied a part-based model for the detection of
objects subject to major deformations (i.e. humans). In [12,11], the authors
have proposed a hierarchical part-template matching approach to simultaneous
human detection and segmentation, and its integration with a tracker [19]
for tracking purposes. The main difference with our approach is that we do
not seek accurate segmentation of the tracked humans at any stage and can
therefore rely on algorithms which are simpler and faster in principle. Zhao
et al. in [24] and Wu and Nevatia in [21] have also proposed approaches for
part-based human tracking. The main difference of the method proposed in
this paper is that it always imposes a constraint of global integrity to the
matching of the individual parts. In other words, the proposed method only
detects humans globally, not parts individually. The most recent paper on part-
based tracking we are aware of was presented by Shu et al. in 2012 [18]. Their
method adopts a sophisticated, 8-part model requiring high-resolution videos
(in the order of 1920 x 1080 frame size) to be fitted effectively. Conversely, our
method is based on a simpler model designed to work with the the low-medium
frame resolution typical of commercial surveillance systems.

The main contributions of the proposed approach, simply called Part-Based
Model (PBM) hereafter, are summarized as follows:

— the use of a human model striking an effective trade off between complex-
ity and fitting feasibility in medium-resolution videos typical of wide-area
surveillance cameras;

— the adoption of a layered data association approach allowing tracking to
withstand the occlusions common in moderately crowded scenarios such as
shopping centers, train stations, airports and other public premises. This
makes the proposed approach widely applicable;

— a strong experimental performance against popular trackers such as mean
shift [16], particle filters [14,17] and the recent k-shortest paths optimiza-
tion [2] over a variety of performance indicators and datasets including
ETISEO [13], AVSS 2007 [1] and PETS 2009 [15].

Despite its use of parts to provide data association, this model should not
be confused with approaches to human articulated motion tracking (see [9]
for a reference). In articulated motion tracking, the objective is to explicitly
track the human’s limbs and articulated degrees of freedom whereas in our
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approach the goal is just that of tracking the human as a global entity. In
general, articulated motion tracking requires closer views than those typical
of wide-area surveillance cameras.

2 Part-Based Model for Tracking

The framework of the proposed approach consists of a) an adaptive global
model containing the target’s location, width, height and centroid which is
updated at all frames; b) an adaptive parts model made of five body parts,
each updated if not occluded; c) a velocity model which assumes constant
velocity magnitude but no direction, and d) an algorithm for layered data
association.
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Fig. 1 Flow diagram of the proposed tracker.

Figure 1 shows the workflow of our tracking algorithm. The main steps can
be described as follows:

— Foreground segmentation: The foreground areas in each frame are ex-
tracted by background subtraction, using a Gaussian mixture background
model [6]. Subsequently, we apply morphological operations and shadow
removal to improve the quality of the detection. We care to note that this
step is not required for the operation of the tracker, but speeds it up sig-
nificantly by focussing only on relevant regions.
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— Dynamical model: prediction: the model for the tracked target (global
and parts models, Sections 2.1 and 2.2, respectively) is predicted by way
of the dynamical model (Section 3).

— Occlusion detection: occlusions are detected by comparing the target’s
predicted model and a candidate’s model (Section 3.1). In case of occlu-
sions, we align the predicted model to the candidate based on a separate
head detection procedure (Section 2.3).

— Layered data association (Section 4): at each frame, the comparison
between the target’s predicted model and a candidate’s model is carried
out through a layered data association which includes features, parts and
global layers.

— Model update (Section 4.2): upon a match, the target’s global model
is updated; its corresponding parts model is updated for the unoccluded
body parts.

2.1 The global model

The global model (GM) consists of five rectangles in approximate correspon-
dence with the head, left and right torso areas, and legs. The GM has an over-
all rectangular shape and six degrees of freedom (DOF) in the image plane,
namely: the coordinates of the top left corner, (x4, yy); the centroid’s coordi-
nates, (2., y.); and the bounding box’ width and height, (w, k). The anatomy
of the human body makes it possible to assume that the head occupies a fixed
ratio (one-seventh) of the person’s height. Such assumptions split the overall
rectangle into five sub-rectangles as shown in Fig. 2. During motion, the torso
regions provide some desirable stability to the overall model.

Xt[r Yu

Fig. 2 The global model (GM).
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A global model is maintained for the target at all frames, recording its last
validated position. A global model is also laid out over each “candidate blob”
to perform data association. The construction of the GM for each candidate
blob differs depending on the candidate blob’s status. If the candidate blob is
unoccluded, the six DOF are measured directly from the observations: (z., y.)
is computed as the blob’s centroid; (w, h) are measured as the blob’s horizontal
and vertical span; =y and yy are measured from the left-most and top-most
pixels of the blob, respectively. However, if the candidate blob contains major
occlusions, it is not possible to directly measure all the six DOF. In this case,
the model is estimated based on the results of a head detector:

— Coordinates x. and yy are taken from the top-most pixel of the detected
head.

— The width, w, and height, h, are estimated using the Kalman filter and
the search procedure described in section 3.

— The relative location of the centroid proves rather stable within the human
body despite deformations. We thus compute two ratios, a and 3, that
represent the relative position of the centroid within the bounding box.
Both ratios are updated by a running average with a window-size of a few
frames (3 to 5). The first ratio, «, is the ratio between the width of the
left-hand side body part and the total width:

xe(n) — xzy(n)
- AR AN 1
ofn) = TS (1)
whereas the second ratio, 3, is the ratio between the height of the torso
and the total body height:

_ () — ye(n) — th(n)
h(n) — Th(n)

In the case of occlusions, we use the values of o and 8 at frame n — 1 to
infer xy; from (1) and y,. from (2).

p(n) (2)

2.2 The parts model

The parts model (PM) is the model of all the body parts. Each such a part is
modelled by a set of Ny features, {F;},7 = 1...Ny, which were selected follow-
ing empirical criteria such as limited variance to pose changes, deformations,
illumination variations, and mild occlusions. The feature set includes:

— Area: number of foreground pixels within the body part. This feature is
relatively invariant to both illumination changes and body part deforma-
tions. During light occlusions, this feature is most likely to remain stable;
however, if the body part is significantly occluded, it will vary significantly.

— Perimeter: length of the contour of the foreground region that represents
the body part. This feature, too, is relatively invariant to both illumination
changes and body part deformations.
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— Color histogram: color histogram of the body part in both HSV and XYZ
color spaces. Color histograms are essentially invariant to deformations.
However, they are very vulnerable to sharp illumination changes and major
occlusions.

— Displacement: displacement between the centroid of the same body part
between consecutive frames. The values are expected to be bounded by
physical motion, whereas major occlusions may cause unexpectedly large
values.

— Amount of overlap: amount of overlap between consecutive frames. It
is expected to be somehow stable if the part is in full view or subject to
minor occlusions or deformations, but likely to vary abruptly during major
occlusions.
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Fig. 3 (a) Absolute area differences for the left arm body part over a collection of frames
from various video datasets [13,15,1] (b) Histogram of the absolute area differences (figure

3(b)).

The main goal of these features is to support correct data association
throughout tracking. As such, they must prove discriminative over the two ba-
sic cases of “matching with the correct target” and “non matching”. Modelling
statistically the non-matching case is hard as the combinations are too varied.
Instead, modelling the matching case is possible by identifying the features’
expected range of variations over single targets. To this aim, we conducted a
major preliminary experiment by manually annotating the target and its parts
in each frame of several videos from various datasets [13,15,1]. In detail, we
have manually annotated 20 video sequences over different scenarios such as
a corridor, a train station, a shopping mall, and various outdoor scenes, each
comprising between 1,000 and 4,000 frames [13,15,1] for a total of over 54,000
frames. For each frame, we have computed the absolute difference between the
features in the frame and those in the previous frame, for corresponding parts,
and modelled such differences by half-normal distributions. As an example,
Fig. 3(a) shows the differences for feature area for the left arm part over the
entire collection of frames: the distribution is clearly unimodal and short-tailed
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and suitable to be modeled as a half-normal distribution. Where unimodal-
ity was not evident from the histogram, we have used Gaussian mixtures for
modelling. Using our annotated training set, it would also be possible to add
other features to the parts models, including popular local descriptors such as
the histograms of oriented gradients and the histograms of optical flow [10].

2.3 Head detection

The head detector used in this work uses a combination of hair and skin’s
appearance models and an elliptical shape constraint based on the human
anatomy. For a broader evaluation of its performance, the reader may refer to
[23].

2.8.1 Hair color model

From a qualitative analysis, human hair colors can be seemingly clustered into
a few basic color categories, namely black, blond, red and brown. Each category
is here represented by a probability density function, in particular, a Gaus-
sian mixture model (GMM) whose parameters are fitted by an expectation-
maximization (EM) algorithm [3].

For a pixel to be labelled as a hair pixel, the likelihood of its color in the
hair distribution models must be high. Let us assume that a pixel, z, is repre-
sented as {zx,zy,zz} and {xy,zs,zv} in the XYZ and HSV color spaces,
respectively, and that H is a variable representing the hair color category,
H € {black, blond, brown, red}. The likelihoods of x given H in the XYZ and
HSV color spaces are then estimated as follows:

PV (alH) = plax|H) x pley |H) x plaz|H) 3)
p"5V (@|H) = p(ey|H) x p(zs|H) x p(ev|H). (4)

The right members of (3) and (4) are a simplification of the joint probabil-
ity assuming statistical independence between color channels. The combined
likelihood of x given H for the two color spaces is then estimated as:

Phair (x| H) = wip® Y Z (2|H) + wap™ Y (x|H) (5)

In an ideal case, p*YZ(x|H) and pV (z|H) should have very similar val-
ues; therefore, an assumption of independence in (5) would be inappropriate
and the combined likelihood is instead approximated by a weighted sum cri-
terion. The final likelihood of pixel = being a hair pixel, ppq-(2) is estimated
as:

Phair(T) = mng(phm’r(xIH ) (6)

In (6), we deliberately avoid the use of priors over the categories to not
trade off individual accuracy with higher accuracy over the entire population.
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Eventually, a binary decision is made for x based on inequality ppair(z) >
thpair, where thyg. is a threshold determined experimentally. Weights in (5)
are chosen by a search over interval [0,1] in steps of 0.1 units so as to maximize
correct hair pixel detection over a training set.

2.3.2 Skin color model

Skin colors are distributed differently from hair colors, spreading more con-
tinuously, yet within a bounded range [5]. As we found that the illumina-
tion conditions have a greater influence on detection of skin than they do on
hair, we decided to model the skin colors based on three illumination cate-
gories, namely, bright, standard, and dark. A Gaussian mixture is fitted based
on training data for each category in both XYZ and HSV color spaces. The
model’s equations are identical to those used for the hair colors and thus not
repeated here.

2.8.8 Shape constraints

After detection of pixels from either the hair or skin model, a morphological
closure is first applied to the resulting image. Then, a set of ellipses is fitted in
order to find the best-fitting ellipse: the fitting is registered to the top position
of the image (see Fig. 4(b)) and the ellipse with highest occupancy ratio is
chosen to represent the detected head.

(a) (b)

Fig. 4 Illustration of the head shape modelling and fitting procedure.

The head detector presented in this section is essentially designed to detect
uncovered heads. For tracking, the targets’ heads do not need to be detected
in all frames thanks to the predictive capability of the Kalman filters and the
robust data association. Therefore, transient and localized lighting changes
and occlusions could be well tolerated. However, detection will likely fail in
the presence of head coverings such as hats and veils. For such cases, it could
be possible to integrate this detector with a more generic detector such as [20].



10 Zui Zhang et al.

3 Dynamical model

The dynamical model of our tracker is based on two dedicated Kalman filters.
They are used in two distinct processes, namely gating and target’s size. The
gate is defined as the rectangular region in which the target is expected to ap-
pear in the current frame given its location in the previous frame (see Fig. 5). A
suitable gate estimate proves fundamental for correct data association and for
limiting the computational load. We assume the direction of human movement
to be unpredictable (sudden changes of direction can occur due to interference
with other targets), while speed magnitude is approximately constant because
of the intentionality of motion. Therefore, the gate’s center is assumed to be
the target’s location in the previous frame; this equates to a zero-order predic-
tion of the location. The gate’s size in both directions is assumed proportional
to the target’s speed magnitude which, in turn, is estimated by a constant-
velocity Kalman filter. The target’s measurement vector and state vector are
based on its centroid’s coordinates as follows:

(a) (b)

Fig. 5 Gating (wider rectangle): (a) normal event; (b) occlusion.

KF :Z, = {xcvmc}; X1 = {xcuycaicvic} (7)

In this way, this Kalman filter simulates a random walk, but the target’s
speed can also be kept updated by way of suitable filter’s parameters. In the
case the target was not successfully tracked in the previous frame the gate’s
size is doubled, and enlarged accordingly in the following frames until either
the target is tracked again or eventually lost. A blob is considered within the
gate if its centroid falls within the gate boundaries.

Prediction is also applied to estimate the size, (h,w), of the global model
in the current frame. This prediction is, too, carried out by way of a Kalman
filter of measurement vector and state vector:

KFy: Zy ={h,w}; Xy ={h,w,h,w} (8)
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The estimation of the target’s current size is critical as it supports detec-
tion of occlusions: a foreground occlusion typically results in a merged blob
significantly larger than the target’s predicted size. Any background occlusion,
conversely, leads to a blob of smaller size.

In all the experiments reported in this paper, the target and its initial
position were selected manually in order to study the performance of tracking
over a variety of cases of interest. For selection and initialization, the user just
drew a bounding box around the chosen target. At run time, this procedure
can be replaced by any usual heuristics such as the first appearance of a new
blob or the detection of a split event [22].

3.1 Occlusion detection and management

For tracking and data association purposes, the algorithm needs to establish
when a foreground blob is occluded. To this aim, an occlusion is declared if the
difference between the target’s predicted width and height and the candidate
blob’s width and height are above a significant threshold (set to 50% in either
increasing or decreasing direction). This simple rule covers all the cases of
merging blobs, overlapping blobs, major segmentation errors and occlusions
due to the background scene.

If the blob’s size is larger than the target’s predicted size, the target needs
to be located within the blob. In this situation, our core assumption is that the
tops of the heads are visible most of the time. Such an assumption is widely
utilized in the tracking literature [22]. Therefore, we use the head as an anchor
for aligning our human model onto candidate regions inside the blob: for each
detected head in the blob, we generate a set of widths and heights, (w;, h;):

@i=w+6xi, i=-2-1,01,2 (9)
ﬁi:h+5><7;, i=-2,-1,0,1,2 (10)

where § is fixed to 0.05 and w and h are the predicted width and height of
the target in the current frame, respectively, which we use to carve a region
inside the blob from the top of the head, down. For each width and height pair,
we compare a matching score between the region and the target. Amongst the
set of widths and heights, we choose those returning the highest matching
score. Empirically we found that the use of heads as anchors and these basic
assignment rules between models and blobs provide equivalent information to
depth ordering in most cases.

If the blob’s size is smaller than the target’s predicted size, we look for a
head in the blob and attempt alignment with the target’s model. If detection
or alignment fails, the candidate is dismissed.
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4 Layered data association

In the proposed tracker, data association is performed with a layered approach.
The matching between the target and a candidate is referred to as global match
whereas the matching between corresponding body parts of the target model
with the candidate model is referred to as local match. Local matching is based
on direct feature comparison while the global match is inferred from the results
of the individual local matches.

The overall matching process is described by the following steps:

1. For each candidate, divide its blob region into five parts as described in
Section 2.1. Extract features for each part.

2. Apply part-by-part feature comparison between the target’s parts model
and the candidate’s parts to calculate local match scores.

3. Infer the global match based on the scores of the local matches.

4. Choose the candidate providing the highest global match score. This score
must also be above an assigned threshold and provide an adequate ratio
against the runner-up candidate (if any).

5. If multiple, nearby candidates result in similar global match scores, apply
multiple-response pruning.

6. Update the target’s model based on the selected candidate and a part-by-
part feature update scheme.

The matching and updating processes are further described hereafter.

4.1 Local and global matches

For each body part, the difference between each of its features for the candidate
and the target’s models is computed as follows:

dij = |fij — Fyl,i = 1..Np,j = 1..N, (11)

where f;; is the value of feature ¢ of part j and Fj; is the corresponding
feature for the target’s model. The number of parts is set to N, and the number
of features, equal for each part, to Ny. In order to determine the probability
of matching for d;;, we make use of the p(d;;|6;;) model of the ground-truth
differences between successive target’s values described in section 2.2; 6;; are
the model’s parameters. The part match score is then computed as:

Ny
pj = Zwip(di_jwij)’j =1..N, (1)

=1

according to a weighted average fusion rule [8]. The weights in (12), w;,
have been trained with maximum cross-validation accuracy by a search over
interval [0,1] and normalized to add up to 1.
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The global match score is eventually inferred as the weighted average of
the part match scores:

p=3 ) (13

The weights, v;, have been set empirically to reflect our prior belief in the
stability of the features and the probability of occlusions over the different
body parts.

The candidate with the highest (and sufficient) probability is eventually
flagged as the current position of the target. However, if multiple potential
candidates in nearby locations have similar global match scores or all their
global match scores are weak, a final decision is not made at this stage. Rather,
multiple-response pruning is applied as follows: the most likely reason for hav-
ing multiple responses is the presence of several misaligned candidates built
around the target, typically due to inaccurate head detection nearby the lo-
cation of the target’s head. As correction, an image template of the target’s
head is exhaustively matched in a local neighborhood until a refined position
for the head is found. The matching candidate is then updated accordingly.

4.2 Model update

Updates are performed at both the global and local levels. Update at the global
level requires updating the six DOF’s of the global model. If the candidate is
unoccluded, such DOF’s are simply replaced by those of the matching candi-
date. In the presence of occlusions, the six DOF’s are not completely replaced
by the candidate’s. Rather, an average over a sliding temporal window is used
to update their values. The parts’ update instead depends on the part’s match
score. For each part, a decision is made as whether the part matches or not
based on score thresholding of (12). If the part matches, a partial update of
its area, perimeter, color histogram, and amount of overlap is performed by
using a running average. The update weight for each feature is based on its
matching probability: the higher the matching probability, the higher is the
update weight for the measurement, and vice versa. In the case of “no match”
all features remain unchanged in the model.

5 Experimental results

In this section, we report the performance of the proposed tracker over three
diverse and challenging datasets and compare it with that of three tracking al-
gorithms representative of the state of the art for various tracking approaches:
the mean-shift tracker (MS), representative of appearance-based trackers [16];
the connected-component mean-shift with particle filter tracker (CCMSPF),
representative of particle filters [14,17]; and the multiple-object tracker us-
ing k-shortest paths optimization (KSP), representative of trackers optimizing



14 Zui Zhang et al.

data association over multiple frames [2]. At the time of conducting these ex-
periments, we did not have access to other part-based trackers and only a
qualitative comparison is addressed in this section. Moreover, since the KSP
tracker requires a calibration stage, it had to be simulated “a posteriori” from
the elements of the scene; this was only possible for one of the datasets (i.e.,
ETISEO).

5.1 Video sets

The first video set is the PETS 2009 sparse crowd people tracking dataset which
contains multiple videos of an outdoor scene captured from different locations
at different times [15]. The video used in our experiment was captured with
a stationary camera looking toward a T-intersection pathway in a campus (6,
left column). The frame size is 720 x 576 and the sampling rate is 25 fps.
The video contains overall 939 frames and 26 targets causing frequent and
extensive mutual occlusions. In addition, the pedestrians in this video walk
in a very unpredictable way: moving backwards, with sudden turns, uneven
motions, ‘u’ turns and ‘s’ shape trajectories.

The second video set, called AVSS 2007 i-LIDS abandoned baggage detec-
tion, is taken as a part of CCTV surveillance footage from a railway station
platform [1]. The frame size is 720 x 576 with a sampling rate of 25 fps. The
video selected for the experiment is classified as of medium crowdedness, with
prolonged and heavy occlusions and overall 4,833 frames (see Fig. 6, mid col-
umn). We have selected three targets to be tracked for the experiment, each
of which contains a long-term occlusion.

The third video set is called ETISEO [13]. Amongst all the videos, we
selected the video recorded in the central hall of a metro station for its chal-
lenging occlusions (see Fig. 6, right column). The frame size is again 720 x
576 and the sampling rate 25 fps. In addition, the sequence is of very poor
video quality. There is only one target that remains in the scene for the entire
sequence. This target is walking around the center of the lobby, with frequent
changes of pose and direction, and is also frequently occluded by passing pedes-
trians. This makes it an ideal choice for comparing tracking performance in
an extremely challenging environment. To provide calibration for the KSP
tracker, we exploited the regular tiling pattern visible in Fig. 6.

5.2 Performance evaluation: accuracy analysis at the trajectory level

Performance evaluation of trackers often utilize the popular CLEAR’s MOTA
and MOTP metrics [7]. These metrics compound the tracking accuracy in
a single figure and are useful for comparison across the literature. However,
in this paper we choose to provide a more comprehensive analysis to better
understand the potential and failure of the compared trackers. To measure
tracking accuracy on a trajectory basis, we define the following criteria:
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Fig. 6 Example frames from the three video sets. Left column: PETS 2009; mid column:
AVSS 2007; right column: ETISEO.

— the number of mostly-tracked trajectories (tracked frames greater than
80%)

— the number of mostly-tracked trajectories with a single ID (tracked frames
greater than 80% and a single ID assigned to the target over the entire
trajectory)

— the number of mostly-lost trajectories (tracked frames less than 40%)

— the number of missed trajectories (trajectory being completely missed)

— the number of under-segmented trajectories (target being identified as an
existing trajectory rather than initialized with a new ID)

— the number of over-segmented trajectories (multiple IDs assigned to a single
trajectory)

— the frequency of identity switches (ID swapping between two trajectories
during their intersection; should be zero)

— the average number of unique IDs per trajectory (should be one)

— the average number of unique IDs per frame (should be one)

For this type of analysis, we used a set of trajectories from the PETS 2009
video set involving challenging occlusions and sudden changes in direction.
Table 1 reports the results: the performance of the PBM tracker is significantly
better than that of both the MS and CCMSPF trackers for all criteria. The
CCMSPF tracker, at its turn, proves more accurate than the MS tracker. We
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believe that the main reason for the good performance of PBM is its lack
of assumptions on the direction of motion which helps it withstand sharp
direction changes.

Table 1 Comparison between different trackers (challenging trajectories) for sequences from
PETS 2009.

PETS 2009 GT | PBM | MS | CCMSPF
No. of mostly-tracked trajectories 10 10 8 5
No. of mostly-tracked trajectories (single ID) 10 10 0 2
No. of mostly-lost trajectories 0 0 0 0
No. of missed trajectories 0 0 1 1
No. of under-segmented trajectories 0 0 1 0
No. of over-segmented trajectories 0 0 5 3
Average freq. of ID switches per trajectory 0 0 3.11 1.44
Average no. of unique IDs per trajectory 1 1 3 2.33
Average no. of unique ID per frame 1 1 1.61 1

5.3 Segmentation accuracy

To evaluate the segmentation accuracy, we define four basic metrics for the
relative difference between the position of the target’s centroid as determined
by a tracker, (z¢,y.), and that of the ground truth, (z,,y,), and the relative
difference between the size of the target’s bounding box as determined by
a tracker, (w,h), and that of the ground truth, (wgy, hy). All differences are
averaged over multiple trajectories, multiple frames and the possibly multiple
responses of a tracker in each single frame.

Table 2 reports the differences for the PETS 2009 tracks. The table shows
a major difference in segmentation accuracy between the results of the PBM
tracker and those of the compared trackers. PBM is capable of tracking the
target accurately with an average difference of 3.0% and 1.8% for the centroid’s
position and 13.1% and 5.2% for the bounding box’ size. For the MS and
CCMSPF trackers, such differences are much larger.

Table 2 Segmentation accuracy of the different trackers (PETS 2009)

PBM MS CCMSPF
. difference 3.0% 5.1% 14.2%
yc difference 1.8% 21.0% 23.1%
Width difference | 13.1% | 25.9% 23.1%
Height difference | 5.2% | 24.8% 20.1%

Table 3 reports the differences for the AVSS 2007 video. In this video,
the differences in accuracy between PBM and the other two trackers are even
more remarked, especially in the estimation of the the bounding box’ size
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which reaches errors of 32.8% and 44.8% with CCMSPF and MS compared to
11.2% for PBM.

Table 3 Segmentation accuracy of the different trackers (AVSS 2007)

PBM MS CCMSPF
x. difference 2.5% 12.3% 17.8%
y. difference 2.8% | 17.2% 24.2%
Width difference | 11.2% | 36.5% 33.5%
Height difference | 8.0% | 44.8% 32.8%

In the more challenging ETISEO video, the MS and CCMSPF trackers
substantially fail to track the target after the initial frames as the occlusions
become more severe. This is given evidence in Table 4 where the errors from
these two trackers reach values of 48.6% and 66.0%. Instead, the PBM tracker
achieves errors comparable to those of the simpler PETS 2009 and AVSS 2007
videos. The KSP tracker reports a better performance than the proposed PBM
tracker for two types of errors and worse for the other two. However, we note
that the KSP avails of a geometry calibration stage from the 3D scene to the
image plane that is instead not required by the proposed tracker.

Table 4 Segmentation accuracy of the different trackers (ETISEO)

PBM MS CCMSPF KSP
. difference 2.1% 7.8% 15.8% 6.6%
y. difference 7.7% 15.6% 24.5% 4.5%
Width difference | 11.6% | 66.0% 51.4% 12.2%
Height difference | 11.1% | 53.2% 48.6% 3.2%

5.4 Accuracy analysis at the frame level

The analysis in this section aims to provide an in-depth comparison of the
tracking performance of the different trackers for some selected, challenging
tracks within each of the videos. To evaluate the performance, the position and
size of the tracked target in each frame are compared against the corresponding
measurements in the ground truth.

PETS 2009 - The target object in this trajectory follows a downwards ‘oo’-
shape path. The challenges in this trajectory are frequent occlusions, frequent
changes in direction, similar color appearance of the target with the occluding
person, and significant variations in the target’s size in the image plane. A
collection of frames in Fig. 7, left column, shows the target (the person with
dark pants in the top frame) and the tracking results with PBM as the area
with the five rectangular regions superimposed. These frames give evidence of
the correct tracking of the selected target.
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Fig. 7 Snapshots of selected trajectories and their corresponding tracking results from the
three video sets.

Figure 8 shows the comparison of the extracted tracks with the ground
truth in terms of target’s centroid position. The plot shows that the PBM
tracker is capable of accurately tracking the target throughout the trajectory
while the other trackers report a major failure. The reason for PBM’s perfor-
mance is that it attempts data association at various bounding box’s sizes and
the layered approach proves capable of selecting a plausible size in most cases
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(for this sequence, its relative error on the estimate of the bounding box’s
width and height is within {—0.28,40.38} and {—0.12,+0.20}, respectively).
Conversely, the MS tracker assigns multiple IDs to the target during the ma-
jority of the trajectory. The CCMSPF tracker’s performance proves the worst
in terms of both accuracy and continuity.

%t e oo
.
20l " . e, . .« %ee |
FIL . . « o °
. LN e e L
2o L} -~ ot
., S P h 8% 2
A oo ¥
. o
m- T e S e, e I e
> « P T
3 .. o + gV
PR
. 53, ARSIV
ol " e Shadels . *
BTt s N L
J4 t’,’f” (AR - : P
ool .f’*‘:ghs! Yt A pou
SRS 0’?‘&0&,‘,”0 N + comser
e B .. » s
K Ms-2
100 o + wss

00 20 E) 200 500 50

Fig. 8 PETS 2009: comparison of the target’s centroid position for the various trackers and
the ground truth. Horizontal axis: x-coordinate; vertical axis: y-coordinate; time is implicit.
All tracks labelled as MS-n are multiple responses from the MS tracker. Although care was
taken to make the dotted lines distinguishable, this figure and the next are better rendered
in colours.

AVSS 2007 - Example frames for this trajectory are displayed in Fig. 7, mid
column. The selected target (the man with bright shirt and bag) is partially
occluded for a certain period of time as he walks toward the camera. Fig. 9
shows the comparison of the extracted tracks with the ground truth in terms
of target’s centroid position. The plot shows that the track from the PBM
tracker is very close to the ground truth, while the track from CCMSPF is
approximately 40 pixels distant on average, certainly as an artifact of the
occlusion and the concentration of the particles’ weight on the top part of the
target. The track from MS is instead significantly delayed.
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Fig. 9 AVSS 2007: comparison of the target’s centroid position for the various trackers and
the ground truth. Horizontal axis: z-coordinate; vertical axis: y-coordinate; time is implicit.
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ETISEO - Example frames from a metro station are displayed in Fig. 7,
rightmost column. In this trajectory, the target is circling around the center of
the hall at a slow pace, but continuously changing in pose and direction. This
sequence is made extremely challenging by the frequent and unpredictable
occlusions between the target and the other subjects walking through the
hall. In addition the video suffers from poor lighting conditions. Despite such
issues, Fig. 7, right column, shows the successful tracking from PBM. Figure 10
shows the comparison of the extracted tracks with the ground truth in terms of
target’s centroid position. Only the PBM tracker proves capable of producing
an accurate and unbroken trajectory throughout the sequence. MS, CCMSPF
and also KSP produce, instead, several track fragments.
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Fig. 10 ETISEO: comparison of the target’s centroid position for the various trackers
and the ground truth. Horizontal axis: z-coordinate; vertical axis: y-coordinate; time is
implicit. All tracks labelled as MS-n, CCMSPF-n and KSP-n are multiple responses from
the corresponding trackers.

For this dataset, we have also estimated the frame rate achievable by the
proposed tracker: PBM can process 10 frames per second on an Intel Core i7
3.50 GHz PC. This performance is higher than that reported by the part-based
tracker in [18] (5 fps), mainly because the frame size we use is smaller. Our
tracker is not faster per se: rather, it can deliver a higher frame rate since
it is based on a simpler model than [18] which can be fitted on frames of
smaller resolution. In this sense, PBM proves an interesting approach for the
low-medium resolution videos typical of current surveillance systems.

6 Conclusion

In this paper, we have proposed a novel tracker (Part-Based Model, PBM)
based on a part-based model and layered data association, designed to track
human subjects in scenes with frequent and heavy occlusions. The humam
model is based on five parts which can be detected individually in order to
withstand occlusions globally. In the proposed tracker, data association is pro-
vided by a layered approach, with correspondence hierarchically built between
features (feature layer), parts (part layer) and, eventually, globally (global
layer). The experimental results reported in the paper give evidence that this
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approach is effective in the designated scenario, with accuracy generally greater
than that of the compared trackers. The experiments show that:

— the accuracy at the trajectory level (number of correct, missed, under-

segmented, over-segmented trajectories, multiple IDs etc) has proven sig-
nificantly higher for the proposed tracker (Table 1);

the accuracy in locating the target’s centroid has proven much higher for
the proposed tracker than for of MS and CCMSPF, and comparable to
that of KSP (Tables 2-4 and Figs. 8, 9, 10). A significant advantage of
the proposed tracker over KSP is that it does not require any physical
calibration stage;

a similar comparative performance applies also for the target’s estimated
width and height (Tables 2-4).

The overall conclusion brought forward by this work is that a simplified

part-based model offers a viable solution for video tracking of people in low-
medium resolution video of public environments. As this scenario is common,
the proposed solution can prove of benefit for a range of applications such as
wide-area surveillance, media annotation, intelligent domotics and others.
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