
Large-Scale Paralleled Sparse Principal Component Analysis

W. Liu1, H. Zhang1, D. Tao1*, Y. Wang1, K. Lu1

1 China University of Petroleum (dtao.scut@gmail.com)

Abstract

Principal component analysis (PCA) is a statistical technique commonly used in

multivariate data analysis. However, PCA can be difficult to interpret and explain

since the principal components (PCs) are linear combinations of the original variables.

Sparse PCA (SPCA) aims to balance statistical fidelity and interpretability by

approximating sparse PCs whose projections capture the maximal variance of original

data. In this paper we present an efficient and paralleled method of SPCA using

graphics processing units (GPUs), which can process large blocks of data in parallel.

Specifically, we construct parallel implementations of the four optimization

formulations of the generalized power method of SPCA (GP-SPCA), one of the most

efficient and effective SPCA approaches, on a GPU. The parallel GPU

implementation of GP-SPCA (using CUBLAS) is up to eleven times faster than the

corresponding CPU implementation (using CBLAS), and up to 107 times faster than a

MatLab implementation. Extensive comparative experiments in several real-world

datasets confirm that SPCA offers a practical advantage.

Keywords - Sparse principal component analysis, power method, GPU, large-scale,

parallel method

1. Introduction

Principal component analysis (PCA) [1] is a well-established tool used for data

analysis and dimensionality reduction. The goal of PCA is to find a sequence of

orthogonal factors that represent the directions of largest variance. PCA is used in

many applications, including machine learning, image processing, neurocomputing,

engineering, and computer networks, especially for large datasets. However, despite

its power and popularity, a major limitation of PCA is that the derived principal

components (PCs) are difficult to interpret and explain because they tend to be linear

combinations of all the original variables.

Over the past ten years, sparse principal component analysis (SPCA) has been used to

improve the interpretability of PCs. SPCA aims to find a reasonable balance between

statistical fidelity and interpretability by approximating sparse PCs. Briefly, SPCA

methods can be divided into two groups: (1) ad hoc methods [2] [3] and (2) sparsity

penalization methods [4] [5] [6] [7] [8] [9] . Ad hoc methods post-process the

components obtained from classical PCA; for example, Jolliffe [2] uses rotation

techniques in the standard PCA subspace to find sparse loading vectors, while Cadima

and Jolliffe [3] simply set the PCA loadings with small absolute values to zero.

Sparsity penalization methods usually formulate the SPCA problem as an

optimization program by adding a sparsity-penalized term into the PCA framework.

For example, Jolliffe et al.[4] maximize the Rayleigh quotient of the data covariance

matrix under the L1-norm penalty in the SCoTLASS algorithm. Zou et al.[5]

formulate sparse PCA as a regression-type optimization problem by imposing the

LASSO penalty on the regression coefficients. In the DSPCA algorithm, d’Aspremont

et al. [6] solve a convex relaxation of the sparse PCA, while Moghaddam et al.[8] and

d’Aspremont et al.[7] go on to use greedy methods in order to solve the combinatorial

problems encountered in sparse PCA. Finally, Journée et al.[9] propose the

generalized power method for sparse PCA (GP-SPCA), in which sparse PCA is

formulated as two single-unit and two block optimization problems. GP-SPCA has

optimal convergence properties when either the objective function, or the feasible set,

are strongly convex [9] .

There is ever growing collection, sharing, combination, and use of massive amounts

of data. The analysis of such “big data” has become essential in many commercial and

scientific applications, from image analysis to genome sequencing. Parallel

computing algorithms are essential for large-scale, high-dimensional data. Fortunately,

modern graphics processing units (GPUs) have a highly parallel structure that makes

them ideally suited to processing big data algorithms as well as graphics [10] .

In this study we consider how to build compact, unsupervised representations of

large-scale, high-dimensional data using sparse PCA schemes, with an emphasis on

executing the algorithm in the GPU environment. The work can be regarded as a set

of parallel optimization procedures for SPCA; specifically, we construct parallel

implementations of the four optimization formulations used in GP-SPCA. To the best

of our knowledge, GP-SPCA has not previously been implemented using GPUs. We

compare the GPU implementation (on an NVIDIA Tesla C2050) with the

corresponding CPU implementation (on a six-core 3.33 GHz high-performance

cluster) and show that the parallel GPU implementation of GP-SPCA is up to 11 times

faster than the corresponding CPU implementation, and up to 107 times faster than

the corresponding MatLab implementation. We also conduct extensive comparative

experiments of SPCA and PCA on several benchmark datasets, which provide further

evidence that SPCA outperforms PCA in the majority of cases.

The remainder of this paper is organized as follows. GP-SPCA is briefly introduced in

Section 2. The implementation of GP-SPCA on GPUs using CUBLAS is described in

Section 3, and the experiments are presented in Section 4. We conclude in Section 5.

2. Generalized power method of SPCA

Let 𝐴 ∈ 𝑅𝑝×𝑛 be a matrix encoding p samples of n variables. SPCA aims to find

principal components that are both sparse and explain as much of the variance in the

data as possible, and in doing so finds a reasonable trade-off between statistical

fidelity and interpretability. GP-SPCA considers two single-unit and two block

formulations of SPCA, in order to extract m sparse principal components, with

𝑚 = 1 for two single-unit formulations of SPCA and 𝑝 ≥ 𝑚 ≥ 1 for the two block

formulations of SPCA. GP-SPCA maximizes a convex function on the unit Euclidean

sphere in 𝑅𝑝 (for 𝑚 = 1) or on the Stiefel manifold in 𝑅𝑝×𝑚 (for 𝑚 > 1).

Depending on the type of penalty (either 𝑙1 or 𝑙0) used to enforce sparsity, there are

four formulations of SPCA, namely single-unit SPCA via the 𝑙1 -penalty

(GP-SPCA-SL1), single-unit SPCA via the 𝑙0-penalty (GP-SPCA-SL0), block SPCA

via the 𝑙1 -penalty (GP-SPCA-BL1), and block SPCA via the 𝑙0 -penalty

(GP-SPCA-BL0).

Denote the unit Euclidean ball (resp. sphere) in 𝑅𝑘 by 𝐵𝑘 = {𝑦 ∈ 𝑅𝑘|𝑦𝑇𝑦 ≤ 1}

(resp. 𝑆𝑘 = {𝑦 ∈ 𝑅𝑘|𝑦𝑇𝑦 = 1}). Denote the space of 𝑛 × 𝑚 matrices with

unit-norm columns by [𝑆𝑛]𝑚 = {𝑌 ∈ 𝑅𝑛×𝑚|𝐷𝑖𝑎𝑔(𝑌𝑇𝑌) = 𝐼𝑚}, where 𝐷𝑖𝑎𝑔(∙) is

the diagonal matrix, by extracting the diagonal of the argument. Denote the Stiefel

manifold by 𝑆𝑚
𝑝 = {𝑌 ∈ 𝑅𝑛×𝑚|𝑌𝑇𝑌 = 𝐼𝑚}, and write 𝑠𝑖𝑔𝑛(𝑡) for the sign of the

argument 𝑡 ∈ 𝑅 and 𝑡+ = 𝑚𝑎𝑥{0, 𝑡}. The characteristics of the four variants are

summarized in Table 1.

Table 1. The four variant formulations of GP-SPCA.

 Original form of SPCA Reformulation

GP-SPCA-SL1 𝜙𝑙1(𝛾)≡max
𝑧∈𝐵𝑛

�𝑧𝑇Σ𝑧 − 𝛾‖𝑧‖1 𝜙𝑙1
2 (𝛾)≡max

𝑥∈𝑆𝑝
�[|𝑎𝑖𝑇𝑥| − 𝛾]+2
𝑛

𝑖=1

GP-SPCA-SL0 𝜙𝑙0(𝛾)≡max
𝑧∈𝐵𝑛

𝑧𝑇Σ𝑧 − 𝛾‖𝑧‖0 𝜙𝑙0(𝛾)≡max
𝑥∈𝑆𝑝

�[(𝑎𝑖𝑇𝑥)2 − 𝛾]+

𝑛

𝑖=1

GP-SPCA-BL1 𝜙𝑙1,𝑚
(𝛾)≡ max

𝑋∈𝑆𝑚
𝑝

𝑍∈[𝑆𝑛]𝑚

𝑇𝑟(𝑋𝑇𝐴𝑍𝑁) −�𝛾𝑗��𝑧𝑖𝑗�
𝑛

𝑖=1

𝑚

𝑗=1

 𝜙𝑙1,𝑚
2 (𝛾)≡max

𝑋∈𝑆𝑚
𝑝 ��[𝜇𝑗�𝑎𝑖𝑇𝑥𝑗� − 𝛾𝑗]+

𝑛

𝑖=1

𝑚

𝑗=1

GP-SPCA-BL0 𝜙𝑙0,𝑚
(𝛾)≡ max

𝑋∈𝑆𝑚
𝑝

𝑍∈[𝑆𝑛]𝑚

𝑇𝑟(𝐷𝑖𝑎𝑔(𝑋𝑇𝐴𝑍𝑁)2) −�𝛾𝑗�𝑧𝑗�0

𝑚

𝑗=1

 𝜙𝑙0,𝑚
(𝛾)≡max

𝑋∈𝑆𝑚
𝑝 ��[(𝜇𝑗𝑎𝑖𝑇𝑥)2 − 𝛾𝑗]+

𝑛

𝑖=1

𝑚

𝑗=1

GP-SPCA has optimal convergence properties when either the objective functions, or

the feasible set, are strongly convex, which is the case with the single-unit

formulations and can be enforced in the block cases [9] .

3. GPU implementation of GP-SPCA

GPUs are typically used for computer graphics processing in general-purpose

computing. There is a discrepancy between the floating-point capability of the CPU

and GPU because the GPU is specialized for intensive, highly-parallel computation,

and is therefore specifically designed to devote more transistors to data processing

rather than data caching and flow control, as shown in Figure 1[10] .

Figure 1. The difference between GPU and CPU [10]

CUDATM is a general-purpose parallel computing architecture designed by NVIDIA,

which has a parallel programming model and instruction set architecture. CUDA

guides the programmer to partition a problem into a sub-problem that can be solved as

independent parallel blocks of threads in a thread hierarchy; Figure 2 illustrates the

hierarchy of threads, blocks, and grids used in CUDA. As well as the CUDA

programming environment, NVIDIA also supplies toolkits for the programmer:

CUBLAS [11] is one such library that implements Basic Linear Algebra Subprograms

(BLAS).

Figure 2. Grids of thread blocks[10]

Here we implement all formulations of GP-SPCA on the GPU using CUBLAS. The

data space is allocated both on the host memory (CPU) and on the device memory

(GPU). Data are initialized on the host memory before being transferred to the device

memory, after which parallel computation is performed on the device memory. The

results are then transferred back to the host memory when computation is complete.

4. Experiments

In this section, we conduct comparative experiments to evaluate the efficiency of

GPU computing and the effectiveness of GP-SPCA.

4.1 Efficiency of GPU computing

In order to compare the efficiency of GPU and CPU computing, we first conduct the

CPU implementation of GP-SPCA using GSL CBLAS [12] , which is a highly

efficient implementation of BLAS. We also compare the implementation with the

MatLab application presented in [9] .

A six-core 3.33 GHz high performance cluster was used for the CPU implementation,

and an NVIDIA Tesla C2050 for the GPU implementation. Twenty test instances were

generated for each input matrix 𝐴𝑃×𝑁 (𝑁 ∈ [5.0 × 102, 3.2 × 104],𝑃 = 𝑁/10). Here,

𝑚 = 5 is the number of sparse PCs, and 𝛾 ∈ {0.01,0.05} is the aforementioned

parameter that balances the sparsity and variance of the PCs.

Figure 3 shows the average running time of different input matrices using different

parameters. The x-axis indicates the size of the input matrix and the y-axis denotes

computation time. The difference in processing time (between CPU and GPU)

increases with increasing size of the input matrix, with up to eleven times

improvement in speed over the corresponding CBLAS implementation, and up to

107-times over the MatLab implementation.

a. GP-SPCA-SL0, 𝑚 = 5, 𝛾 = 0.01 b. GP-SPCA-BL0, 𝑚 = 5, 𝛾 = 0.01

c. GP-SPCA-SL1, 𝑚 = 5, 𝛾 = 0.05 d. GP-SPCA-BL1, 𝑚 = 5, 𝛾 = 0.05

Figure 3. A comparison of GP-SPCA performed on a GPU (Tesla C2050) and a CPU

4.2 Effectiveness of GP-SPCA

To evaluate the effectiveness of GP-SPCA in practice, we next conducted GP-SPCA

and PCA experiments on several benchmark datasets, including the USPS database

[13] , the COIL20 database [14] , and the Isolet spoken letter recognition database

[15] . For each experiment, we used GP-SPCA and PCA to learn the project functions

using training samples, before mapping all the samples (both training and test samples)

into the lower dimensional subspace where recognition is performed using a nearest

neighbor classifier.

Figure 4. Examples of handwriting in the USPS database

USPS database:

The USPS database [13] is a handwritten digit database containing 9298 16×16 pixel

handwritten digit images in total (Figure 4). The database was split into 7291 training

images and 2007 test images as in [16] [17] , with the parameter 𝛾 set to 0.1.

The results of SPCA and PCA in recognizing the ten handwritten digits are shown in

Figure 5, from which we can see that SPCA outperforms PCA in most cases.

Figure 5. Recognition of SPCA and PCA on USPS

COIL20 database:

The COIL20 database [14] contains 1440 images of 20 objects (for examples, see

Figure 6). The images of each object are taken five degrees apart as the object is

rotated on a turntable, and as a result each object is represented by 72 32 × 32 pixel

images. We randomly selected two groups of 24 and 36 examples of each object as

training sets, and used the remaining images for the test sets. The parameter 𝛾 was

set to 0.3 for 24-example group, and 0.1 for the 36-example group. All the

experiments were repeated five times.

Figure 7 shows that SPCA outperforms PCA in both cases. Figure 8, which shows the

recognition rate of selected objects, demonstrates that SPCA outperforms PCA in

most cases.

Figure 6. COIL20 examples

Figure 7. The average recognition rates of SPCA and PCA on COIL20 data

Figure 8. The recognition results of selected objects

Isolet spoken letter recognition database:

The Isolet spoken letter recognition database [15] contains 150 subjects, each of

whom speaks each letter of the alphabet twice. The speakers were grouped into five

sets of 30 speakers; three were used for training and two for testing in the first

experiment and four groups for training the other for testing in the second experiment

(to evaluate robustness). The parameter 𝛾 was set to 10−6 for the first experiment

and 0.02 for the second, and each experiment was repeated five times.

Figure 9. The average recognition rates of SPCA and PCA on Isolet data

Figure 10. Recognition rates for each character

Figures 9 and 10 show the average recognition rates and recognition of each character,

respectively. SPCA is superior to PCA in the majority of cases.

5. Conclusion

Sparse PCA is a reasonable method for balancing statistical fidelity and

interpretability. In this paper, we present a paralleled method of GP-SPCA, one of the

most efficient SPCA approaches, using a GPU. Specifically, we construct parallel

implementations of the four optimization formulations for the GPU, and compare this

with a CPU implementation using CBLAS. Using real-world data, we experimentally

validate the effectiveness of GP-SPCA and demonstrate that the parallel GPU

implementation of GP-SPCA can significantly improve performance. This work has

several potential applications in large-scale, high-dimension reduction problems such

as video indexing[18] [21] and web image annotation[19] [20] , which will be the

subject of future study.

References

[1] I.T. Jolliffe, Principal component analysis. Springer Verlag, New York, 1986.

[2] I.T. Jolliffe, Rotation of principal components: choice of normalization

constraints. Journal of Applied Statistics, 22:29-35, 1995.

[3] J. Cadima and I.T. Jolliffe, Loadings and correlations in the interpretation of

principal components. Journal of applied Statistics, 22:203-214, 1995.

[4] I.T. Jolliffe, N.T. Trendafilov, and M. Uddin, A modified principal component

technique based on the LASSO. Journal of Computational and Graphical

Statistics, 12(3):531-547, 2003.

[5] H. Zou, T. Hastie, and R. Tibshirani, Sparse principal component analysis.

Journal of Computational and Graphical Statistics, 15(2):265-286, 2006.

[6] A. d’Aspremont, L.El Ghaoui, M.I. Jordan, and G.R.G. Lanckriet, A direct

formulation for sparse PCA using semidefinite programming. Siam Review,

49:434-448, 2007.

[7] A. d’Aspremont, F.R. Bach, and L.El Ghaoui, Optimal solutions for sparse

principal component analysis. Journal of Machine Learning Research,

9:1269-1294, 2008

[8] B. Moghaddam, Y. Weiss, and S. Avidan, Spectral bounds for sparse PCA: Exact

and greedy algorithms. Advances in Neural Information Processing systems

18:915-922, MIT Press, Cambridge, MA, 2006

[9] Michel Journée, Yurii Nesterov, Peter Richtárik, and Rodolphe Sepulchre.

Generalize power method for sparse principal component analysis. Journal of

Machine Learning Research, 11:517-553, 2010

[10] NVIDIA, CUDA C Programming Guide (version 4.0), 2011

[11] NVIDIA, CUBLAS Library, 2011

[12] Mark Galassi, Jim Davies, James Theiler, Brian Gough, et al. GNU Scientific

Library, 2003

[13] J. J. Hull, A database for handwritten text recognition research. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 16(5):550-554, May

1994.

[14] S. A. Nene, S. K. Nayar and H. Murase, Columbia Object Image Library

(COIL-20). Technical Report CUCS-005-96, February 1996.

[15] K. Bache and M. Lichman, UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of

Information and Computer Science, 2013

[16] Deng Cai, Xiaofei He, Jiawei Han, Thomas Huang, Graph Regularized

Non-negative Matrix Factorization for Data Representation. IEEE T-PAMI 33(8):

1548-1560, 2011

[17] Deng Cai, Xiaofei He, Jiawei Han, Speed Up Kernel Discriminant Analysis.

The VLDB Journal, 20(1), 21-33, 2011.

[18] Zheng-Jun Zha, Meng Wang, Yan-Tao Zheng, Yi Yang, Richang Hong,

Tat-Seng Chua: Interactive Video Indexing With Statistical Active Learning.

IEEE Transactions on Multimedia 14(1): 17-27, 2012

[19] Zheng-Jun Zha, Xian-Sheng Hua, Tao Mei, Jingdong Wang, Guo-Jun Qi,

Zengfu Wang: Joint multi-label multi-instance learning for image classification.

CVPR 2008

[20] Yan-Tao Zheng, Zheng-Jun Zha, Tat-Seng Chua: Research and applications

on georeferenced multimedia: a survey. Multimedia Tools Appl. 51(1): 77-98

(2011)

[21] Cheng-Chieh Chiang, Huei-Fang Yang, Quick browsing and retrieval for

surveillance videos. Multimedia Tools and Applications. 2013, DOI:

10.1007/s11042-013-1750-z

[22] Youtian Du, Feng Chen, Wenli Xu and Xueming Qian, Video content

categorization using the double decomposition. Multimedia Tools and

Applications. 2013, DOI: 10.1007/s11042-012-1213-y

