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Abstract The cumulative mean squared error (CMSE) is a widely used measure of distor-
tion introduced by a slice loss. We propose a low-complexity and low-delay generalized
linear model for predicting CMSE contributed by the loss of individual H.264/AVC encoded
video slices. We train the model over a video database by using a combination of video
factors that are extracted during the encoding of the current frame, without using any data
from future frames in the group of pictures (GOP). We then analyze the accuracy of the
CMSE prediction model using cross-validation and correlation coefficients. We prioritize
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the slices within a GOP based on their predicted CMSE values. The performance of our
model is evaluated by applying unequal error protection, using rate compatible punctured
convolutional codes, to the prioritized slices over noisy channels. We also demonstrate an
application of our slice prioritization by implementing a slice discard scheme, where the
slices are dropped from the router when the network experiences congestion. The simula-
tion results show that (i) the slice CMSE prediction model performs well for varying GOP
structures, GOP lengths, and encoding bit rates, and (ii) the peak signal-to-noise ratio and
video quality metric performance of an unequal error protection algorithm using slices pri-
oritized by the predicted CMSE is similar to that of the measured CMSE values for different
videos and channel signal-to-noise. We also extend the GOP-level slice prioritization to
frame-level slice prioritization and show its performance over noisy channels.

Keywords H.264/AVC · Video coding · CMSE prediction · Slice prioritization · Slice
loss · Unequal Error Protection (UEP) · Slice discard

1 Introduction

The demand for real-time video streaming over wireless networks is rapidly growing. In
order to efficiently utilize wireless bandwidth, video data is compressed using sophisticated
encoding techniques such as H.264/AVC [49], where each video frame is divided into inde-
pendently coded slices (i.e., network abstraction layer units (NALU)) that consist of a group
of macroblocks. However, the transmission of compressed video over wireless channels is
highly susceptible to congestion and/or channel-induced packet losses, resulting in error
propagation along the motion prediction path, and causing video quality degradation [22,
43, 49]. Loss of some H.264 video slices introduce higher distortion to the video quality
than other slices due to the spatio-temporal dependencies and video content.

A commonly used measure of distortion introduced by a slice loss is the cumulativemean
squared error (CMSE), which takes into account the distortion in the current frame as well
as the temporal error propagation in the future frames of the group of pictures (GOP) [10,
11, 20, 21, 29, 47]. However, computing CMSE for each slice loss introduces computational
complexity and delay because it requires decoding the current and subsequent frames of
a GOP [20, 21]. Therefore, several schemes for predicting the distortion contributed by
the slice loss have been proposed in the literature [3, 23, 24, 30, 39, 41, 48, 52]. Most of
them use video features which are extracted from the current as well as the future frames
of the GOP, to estimate the distortion introduced by the slices. The accurate prediction of
transmission distortion is, however, difficult.

In this paper, we present a novel low-complexity and low-delay generalized linear model
(GLM) to predict the CMSE contributed by the loss of individual H.264 AVC video slices.
The model uses video factors (such as motion vectors, average integer parts, slice type,
initial mean squared error, and temporal duration), which are extracted during the encoding
of only the current video frame, without using any data from the future frames in the GOP.
The CMSE prediction accuracy of the model is evaluated for test videos encoded using
different GOP structures, GOP lengths, and bit rates. This model is also used to design a
priority assignment scheme for video slices based on their predicted CMSE values. The
performance of the model is then evaluated by applying unequal error protection (UEP)
to the prioritized slices over noisy channels and slice discarding for network congestion.
Simulation results demonstrate that our model has a very satisfactory performance, given
the fact that it uses a limited set of parameters only from the current frame, without using
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any information from the future frames in the GOP. Preliminary results of the proposed
scheme were presented in [34].

This slice CMSE prediction model can be used in many real-time video streaming appli-
cations such as (i) Slice prioritization [13, 15, 16, 20, 21, 44, 53], packet scheduling in a
transmitter, and traffic shaping for streaming applications [9]; (ii) Discarding some low pri-
ority slices at an intermediate router during network congestion [26]; (iii) Designing UEP
schemes where more parity bits are assigned to higher priority slices to protect them against
channel errors [21]; (iv) Determining the optimal packet and fragment sizes in cross layer
schemes [20, 21].

The remainder of the paper is organized as follows. Section 2 presents past research
on modeling video quality and how our scheme is different. Section 3 discusses the video
factors used to model the impact of a slice loss, followed by the GLM model development
for CMSE prediction in Section 4. Section 5 discusses experimental results, followed by
a frame-level slice prioritization scheme in Section 6. We discuss an application of slice
prioritization in slice discard in a congested network in Section 7. Finally, Section 8 presents
our conclusions.

2 Related work

Video quality is influenced by various network dependent and application oriented factors,
such as packet losses, video loss recovery techniques, and encoder configurations [25, 26,
38]. Although peak signal to noise ratio (PSNR) and mean squared error (MSE) do not
always reflect perceptual quality well, they have been commonly used to measure video
quality [9, 20, 21, 36]. Kanumuri et al. [19] used a tree structured classifier that labeled
each possible packet loss in MPEG-2 video as being either visible or invisible, and also
developed a GLM to predict the probability that a packet loss will be visible to a viewer.
A versatile model was developed by Lin et al. [26] for predicting the slice loss visibility to
human observers for the MPEG-2 and H.264 encoded videos, by considering loss of one
slice at a time.

The performance of different objective video quality assessment methods was evaluated
for the Laboratory for Image and Video Engineering (LIVE) Video Quality Database in
Chikkerur et al. in [14] and Seshadrinathan et al. [40]. Both full-reference and reduced-
reference schemes were considered in [14] and each schemewas classified based on whether
it used the natural or perceptual characteristics. Both papers found that the MultiScale-
Structural SIMilarity (MS-SSIM) index, VQM and Motion-based Video Integrity Evalua-
tion (MOVIE) index showed the best performance. Hemami and Reibaman [17] reviewed
the necessary steps to design effective no-reference quality estimators for images and video.
They outlined a three stage framework for the no-reference quality estimators that permitted
factors from human visual system to be incorporated throughout.

Recently, Zhang et al. [51] evaluated video quality by examining the impact of quan-
tization, frame discarding and spatial down-sampling for video transcoding. Further, they
proposed a no-reference multidimensional video quality metric by taking into account the
per-pixel bitrate, and spatio-temporal activity and showed its effectiveness when the frame
rate and frame sizes changed simultaneously. Lottermann and Steinbach [28] presented a
model to compute the bit rate of H.264/AVC video by using the quantization parameter,
frame rate, the GOP length and structure, and content-dependent parameters. The content
dependent parameters were computed by examining temporal and spacial activity which
was determined from uncompressed video.
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Several schemes also exist for video packet (or slice) prioritization. Typically, these
prioritization schemes can be classified into two categories, i.e., heuristic schemes or com-
putationally intensive schemes. Heuristic schemes rely on the type of the frame (or slice),
GOP structure and/or its length to determine its frame/slice priority [13, 15, 16, 44, 53].
These schemes do not lend themselves to systems that support adaptive reliability. The more
computationally intensive schemes are more accurate with the distortion estimation but have
more computational complexity. For example, the recursive per-pixel end-to-end distortion
estimate (ROPE) algorithm evaluates the expected distortion at a pixel level by consider-
ing the error propagation in intra and inter-coded macroblocks [39, 41, 52]. However this
scheme has the drawback of memory requirements as two moments have to be tracked for
each pixel.

Liu et al. [27] developed a macroblock prioritization scheme to improve the loss
resilience of parallel video streams over a two-class DiffServ network. By jointly exploiting
the H.264 flexible macroblock ordering (FMO) tool, a multi-stream macroblock ordering
framework was designed to classify all macroblocks of a super-frame into two categories:
important macroblocks as high-reliability traffic class and unimportant macroblocks as best-
effort traffic class. This scheme effectively reduced the compound transmission distortion of
the parallel video streams. Srinivasan et al. in [42] addressed the question of how many pri-
ority levels a single layer H.264 encoded bitstream required when the encoded frames were
statistically multiplexed in transport networks. The authors conducted simulations with a
modular statistical multiplexing structure. They showed that for buffered statistical multi-
plexing, frame prioritization did not significantly impact the number of support streams. In
[21], we designed a cross-layer priority-aware packet fragmentation scheme at the medium
access control (MAC) layer. The slices were prioritized based on their measured CMSE
values; no CMSE prediction model was used for the slices.

Another approach adopted in [24] determines the video distortion by taking the expecta-
tion over all possible channel realizations. The authors assume that each frame is packaged
into a single packet, which is not a realistic assumption. Their model also assumes guar-
anteed reception and decodability of I-frames, which is impractical in real time systems.
Wang et al. [48] follow a similar approach to distortion estimation by modeling the temporal
attenuation as a function of packet loss ratio and the proportion of intra-coded macroblocks.
Similar to [24], Wang et al. assume single slice per frame packetization and derive expres-
sions for distortion estimation. They discuss unequal error protection for single frame loss
by assuming an additive distortion behavior. Babich et al. [3] proposedmodels that use MSE
of consecutive frames to estimate the distortion caused by error propagation due to chan-
nel loss. The authors define decay constants in their computation, which increase memory
constraints as the frame loss history has to be tracked. Masala et al. [30] proposed a scheme
called analysis-by-synthesis, which estimates the channel induced distortion of each packet
individually. The co-impact of multiple losses is modeled additively but due to the exhaus-
tive nature of all the loss patterns, it is computationally intensive. The authors address this
issue by proposing to use their scheme to evaluate distortion in the current frame while
error propagation is estimated through another model. Li et al. [23] proposed a transmission
distortion modeling scheme for pre-encoded videos in the compressed domain, by taking
into account packet losses in the networks and the video content. This approach relies on
extracting video features which are then used in a predictive model to evaluate the distortion
caused by the video transmission under the current network conditions.

Recently, Schier and Welzl [38] demonstrated how the packet (i.e., NALU) priori-
tization scheme can be beneficially integrated into systems with tight time constraints.
They developed a NALU prioritization scheme to measure the impact on video quality by
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considering macroblock partitions, motion vectors, and temporal prediction dependencies
between NALUs. Baccaglini et al. [4] proposed a UEP scheme that allocated forward error
correction (FEC) codes to video slices according to their impact on the GOP distortion.
Zhang et al. [54] developed a hierarchical UEP scheme for H.264/AVC video packets; the
level of protection for a slice was determined by considering its frame number in the GOP,
the per-frame bitrate, and the data partition type. Perez and Garcia [35] studied the effect
of packet losses in video sequences by using a simple prioritization scheme to determine
a UEP strategy and demonstrate its effectiveness over a random packet drop. Miguel et al.
[32] proposed a multicast distribution system for High-Definition video over wireless net-
works based on rate-limited packet retransmission. They developed a retransmission scheme
based on the packet priority which is assigned based on the packet content and their delay
limitation.

The main contributions of our work are: (i) Our model predicts the CMSE distortion
introduced by a slice loss in real-time, which is a widely used measure of distortion [9, 20,
21, 36]. (ii) The random forest method [7] is used to determine the importance of video
factors, which also helped us in selecting additional factors based on the interactions among
the most important factors. (iii) Because the proposed scheme does not use any factors
from future frames, our model can be useful in frame-based slice priority assignment for
applications with stringent delay constraints. As discussed in Section 1, the proposed CMSE
prediction model can be used in many cross-layer network protocols for enhancing video
quality over wireless networks.

3 Video factors affecting slice loss distortion

The loss of a slice can introduce error propagation in the current and subsequent frames
within the current GOP. In order to build a model that accurately predicts the CMSE, many
video factors of the current and future frames (within the current GOP) that affect the dis-
tortion introduced by a slice loss could be used in the model. In order to minimize the
complexity of our model and avoid the delay introduced by using factors from future frames,
we only use the following factors that can be easily extracted during the encoding of the
current frame, without depending on any future frame [34]. Let the n-th original uncom-
pressed video frame be f (n), the reconstructed frame without the slice loss be f̂ (n), and
the reconstructed frame with the slice loss be f̃ (n).

– Motion Characteristics: The magnitude of the distortion induced by a slice loss
is influenced by motion. Significant motion activity between two successive frames
implies that lost slices may be difficult to conceal. For each slice, we defineMOTX and
MOTY to be the mean motion vector in the x and y directions over all the macroblocks
in the slice.

– AVGINTERPARTS: A slice loss in a complex scene, (e.g., a crowded area), can also
be difficult to conceal at the decoder, resulting in a high distortion.AVGINTERPARTS
represents the number of macroblock sub-partitions averaged over the total number
of macroblocks in the slice. If the underlying motion is complex, AVGINTERPARTS
would be high.

– Maximum Residual Energy (MAXRSENGY): First, Residual Energy (RSENGY) is
computed for a macroblock as the sum of squares of all its integer transform coefficients
after motion compensation. Then MAXRSENGY of a slice is equal to the highest
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RSENGY value of its macroblocks. If a scene has high motion, its MAXRSENGY
would also be high.

– Signal Characteristics: We consider mean SigMean and variance SigVar of the slice
luminance. We also consider the slice type Slice type, such as IDR or P or B slice. This
is treated as a categorical factor in our model discussed in Section 4.2.

– Temporal Duration (TMDR): It is defined as the maximum possible temporal error
propagation length due to a slice loss. A slice loss in a non-reference B frame has a
TMDR of 1, while a slice loss in a reference IDR slice could propagate to the end of
GOP.

– Initial Mean Squared Error (IMSE): It is computed as the MSE between the com-
pressed frame f̂ (n) and the reconstructed frame with slice loss f̃ (n)within the encoder.
Assuming that each frame has N x M pixels, the MSE introduced by a slice loss in the
n-th video frame is computed as

1
NM

N∑

i=1

M∑

j=1
(P̂ eli,j − P̃ eli,j )

2 (1)

Here, P̂ eli,j and P̃ eli,j represent the pixel intensity at co-ordinate (i, j) in frames
f̂ (n) and f̃ (n) respectively.

– Initial Structural Similarity Index (ISSIM): It is a measure of the structural similarity
between two frames [37]. Like IMSE, ISSIM is computed per slice using f̂ (n) and
f̃ (n).

Cumulative Mean Squared Error (CMSE): The loss of a slice in a reference frame can
introduce error propagation in the current and subsequent frames within the GOP. CMSE
is computed by systematically discarding one slice at a time and measuring the distortion
introduced by it as the sum of MSE over the current and subsequent frames in the GOP.
This is computationally intensive. We use the measured CMSE as the “ground truth” in our
model.

4 Development of slice CMSE prediction model

We use a database of sixteen video sequences shown in Table 1. Seven of these sequences
have a spatial resolution of 720 × 480 pixels and the remaining nine have a spatial
resolution of 352×288 pixels. These video sequences have a wide range of content, motion,
and complexity. The videos were compressed at different bitrates at 30 frames per second

Table 1 Summary of the video sequences used in database

Motion Resolution Name of Sequence

Low 720x480 Mother and Daughter, Boat

352x288 Silent, Hallway, Container

Medium 720x480 Open Ceremony, Woods

352x288 Tempete, Coastguard, Ice

High 720x480 Whale Show, News, Tiger

352x288 City, Soccer, Football
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(fps), by using the JM reference software of H.264/AVC. We used three different GOP
structures, i.e. (IDR B P ... B, IDR P P ... P, and Hierarchical) with a combination of GOP
lengths of 20, 40 and 60 frames, a fixed slice configuration, and dispersed flexible mac-
roblock ordering (FMO) with 2 slice groups. The average number of frames per sequence
is approximately 300. Since the compression efficiency is higher for the predicted P and B
frames than the intra-coded IDR frames, a slice from an IDR frame typically contains fewer
macroblocks than a P-frame slice and significantly fewer macroblocks than a B-frame slice.
At the decoder, error concealment was performed using temporal concealment and spatial
interpolation. The type of error concealment used depends on the frame type and the type of
loss incurred. If the entire frame is lost, motion copy is performed, where the motion vec-
tors are copied from the previous reference frame and all the macroblocks are reconstructed
from it. When a slice from P or B frame is lost, error concealment is performed by first ver-
ifying if the motion vectors of the neighboring macroblocks/macroblock sub-partitions are
available and whether the number of available motion vectors is greater than a pre-defined
threshold. If sufficient motion information is available, motion copy is performed else the
co-located macroblocks from the previous reference frame are directly copied [5, 50]. Any
slice loss from an IDR frame is concealed through spatial interpolation. Figure 1 shows our
proposed CMSE prediction scheme. Once the database is formed, a model can be developed
as discussed in the next section.

4.1 Overview of model development

In this paper, we use a GLM to predict the CMSE contributed by a single slice loss. The
GLMs are an extension to the class of linear models [31]. The advantage of using a GLM is
that it allows the response variable to follow any distribution as it may be difficult to estimate
the true nature of the underlying probability distributions from a sample of observations.

Fig. 1 The proposed CMSE prediction scheme
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This facilitates easy modification of the model should the response variable change. Let
Y = [y1, y2, ..., yN ]T be a vector of our response variable, i.e., measured CMSE values.
The linear predictor of the response variable is described as a linear combination of the
video factors described in Section 3. Here, X is an N × (m + 1) matrix of covariates (i.e.,
video factors), where each row, [1, x1, x2, ..., xm] corresponds to a single observation from
Y. Let β = [β0, β1, ..., βm]T be a (p + 1) × 1 vector of unknown regression coefficients
that need to be determined from the data. The link function denoted as g(·) describes a
function of the linear predictor, g−1(Xβ). The regression coefficients are estimated through
an iteratively re-weighted least squares technique [12]. After estimating β , we use it to
predict the response variable vector Y, computed as E(Y) = g−1(Xβ).

4.2 Model fitting

In model fitting, a subset of covariates (i.e., video factors) is chosen for the best fit of the
response variable. We use the statistical software R [45] for our model fitting and analysis.
The procedure for selecting the order of covariates is given below.

Evaluating the Distribution of the Response Variable: A visual analysis of our
response variable (i.e., measured CMSE) shows that low CMSE values occur more
frequently than higher CMSE values. The maximum CMSE value in our database is
3500. Figure 2 shows the measured CMSE values. CMSE values greater than 500 are
not shown in the figure because their probability density is very low. Non-parametric
density estimation was performed using a normal kernel with a bandwidth chosen based
on cross-validation. We hypothesize that the measured CMSE follows a distribution
from the exponential family of distributions.
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Fig. 2 Probability density estimate of slice CMSE values for videos in database
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We used the Anderson-Darling test [2] to examine whether the measured CMSE has a
Gaussian-like distribution. Let n be the number of slices in our database and ui = F(xi)

be the cumulative distribution function (CDF) of the CMSE as denoted by xi . The test
statistic is then calculated as A2

n = −n − 1
n

∑n
j=1(2j − 1)[logui + log(1− un−j+1)] =

467.31. This test statistic has a corresponding p-value of 0.001. This suggests that the
exponential family with identity as the link function is a reasonable choice. Figure 3
shows the binned measured normalized-CMSE fitted to a Gaussian distribution. Here,
the normalized CMSE values greater than 0.2 correspond to a CDF value of 1.

Choosing Covariates: We use the Akaike information criterion (AIC) [1] index to deter-
mine the order of the covariates to be fitted because the dimensionality of the covariate
matrix is not high [8]. The decrease in information criterion (IC) value during covariate
selection is indicative of a good model fitting process. The IC takes into account the num-
ber of potential covariates (m), the number of observations (n), and the log-likelihood of
the model (Lmax). The AIC is computed as −2 log(Lmax)+2m. A GLM withm parame-
ters has 2m potential models. We let Yk represent the model with a subset of k covariates.
The i-th data point in Yk , yk

i , where i = 1, 2, ..., N is expressed as:

yk
i = βk

0 + βk
1xi1 + βk

2xi2 + . . . + βk
k xik + εi (2)

Here, β0 is the intercept, βk
j , j = 1, 2, ..., k are the regression coefficients, xij repre-

sents the j -th covariate for the i-th observation in Yk , and εi the random error term. The
response variable vector is computed as E(Y) = g−1(Xβ) with E(ε) = 0. The simplest
model is the null model having only the intercept βk

0 whereas the full model has all the
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Fig. 3 CDF of the normalized-CMSE for the binned observations and fitted Gaussian distribution
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m covariates, k = m. We use the forward stepwise approach to choose the covariates
[46].

Stopping Criterion: The model is fitted with covariates until the best model with
k + 1 covariates has a higher AIC value than the model with k covariates. With our data,
the stopping criteria was not satisfied even when we fitted the full model (i.e., k = m)
because our model only relies on factors derived from the current frame and not the
future frames of the GOP. As discussed in Section 1, the CMSE also depends on the
future frames of the GOP. We improved the performance of our model by introducing
interactions between the most important covariates by using the random forest approach
as discussed below.

Random Forest: We determine the importance of the factors by using the random forest
(RF)[6], a tree structured classifier that estimates the measured CMSE from a subset of
video factors. RF consists of decision trees (typically 100,000 or more) that are grown to
the full extent using a binary recursive partitioning. We computed the covariate impor-
tance using 100,000 trees. Figure 4 shows that the maximum increase in the node purity is
achieved by IMSE, followed by TMDR, MAXRSENGY andMOTX. We also introduced
two interactions between the first three covariates, i.e., IMSE and TMDR, and IMSE and
MAXRSENGY. Adding additional interactions did not improve the performance of our
model significantly.

The regression coefficients of our model are reported in Table 2. The magnitude of the
prefix of the regression coefficients is indicative of the range of values that the covariate can
take. The sign of a regression coefficient does not always provide an insight into its impact
on CMSE [33]. However, the order in which the factors are added to the model gives an
indication of their importance.
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Table 2 Final model coefficients

Factor No. Factor Regression Coefficient

1. Intercept 1.74 × 101

2. IMSE 3.93 × 10−1

3. TMDR −9.41 × 10−1

4. MAXRSENGY −1.10 × 10−8

5. MOTX 3.32 × 10−1

6. SigMean −2.95 × 10−2

7. AVGINTERPARTS −2.51

8. a Slice type.f2 −5.34 × 101

8. b Slice type.f3 −6.95 × 101

9. ISSIM 5.44 × 101

10. SigVar 3.58 × 10−3

11. MOTY −2.67 × 10−1

12. IMSE × TMDR 4.93 × 10−1

13. IMSE × MAXRSENGY 7.71 × 10−10

5 Performance of CMSE prediction model

We compare the performance of our CMSE prediction model with the measured slice CMSE
values. Specifically, the performance of our model is evaluated by studying (i) the good-
ness of fit using the “leave-one-out” cross validation to compute the normalized root mean
squared error (NRMSE) of the predicted CMSE, and (ii) the correlation coefficients ρ of
the predicted vs. the measured CMSE values. The model is then used to compute the mis-
classifications in the slice priority assignment with respect to the measured CMSE and to
evaluate UEP performance of the prioritized data over an AWGN channel. For this, four
test video sequences are used, which were not used during training, each with approxi-
mately 300 frames, Akiyo (352×288, slow motion), Foreman (352×288, mediummotion),
Bus (352 × 288, high motion), and Table Tennis (720 × 480, high motion). These video
sequences are encoded at various bitrates and GOP structures. The correlation coefficients
are evaluated for various GOP structures, whereas the misclassification in the slice priority
assignment and UEP performance are evaluated for only one GOP structure.

5.1 Model accuracy

We study the model accuracy by examining the NRMSE as factors are added to the null
model. The NRMSE is defined as the ratio of the root mean squared error (RMSE) to the
range of the measured CMSE of the training set. The range of measured CMSE is 3500,
which corresponds to the maximum CMSE value in our database. The decrease of NRMSE
indicates an improved performance of the CMSE prediction. The NRMSE for the null model
is 3.56. As factor 2 (from Table 2) (IMSE) is added to the null model, the NRMSE decreases
significantly from 3.56 to 0.875. This decrease is further enhanced by adding factors 3
(TMDR) and 4 (MAXRSENGY). Next, as interaction factors 12 (IMSE × TMDR) and 13
(IMSE × MAXRSENGY) are added to the model, a further drop in NRMSE is observed.
The decrease in NRMSE becomes more gradual when the last three factors 9 (ISSIM), 10
(SigVar) and 11 (MOTY) are added. Adding additional interactions from other factors gave
negligible improvement in NRMSE.
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5.2 Slice CMSE prediction accuracy

The Pearson’s correlation coefficients of the measured and predicted CMSE values are used
to demonstrate the prediction accuracy of our model. The correlation coefficients for the test
video sequences Akiyo, Foreman, and Bus (encoded at 1Mbps), and Table Tennis (encoded
at 2Mbps) are 0.96, 0.78, 0.89, and 0.88, respectively. For Akiyo, Foreman and Bus encoded
at a lower bit rate of 512 Kbps and Table Tennis encoded at 1Mbps, the correlation coef-
ficients are 0.96, 0.83, 0.90 and, 0.91 respectively. Note that these test sequences were not
used for model training. Here, a GOP structure IDR B P B... was used, with GOP length of
20 frames and dispersed mode FMOwith two slice groups. The performance of our model is
also examined for other encoder configurations, as discussed below. When the GOP length
was increased from 20 frames to 40 frames, the correlation coefficients for the sequences are
0.92, 0.74, 0.73, and 0.87, respectively. When the slices were formed without using FMO,
the correlation coefficients for the four sequences were 0.96, 0.87, 0.94 and 0.93. For the
GOP structure IDR P P ... P, and GOP length of 20 frames, the correlation coefficients are
0.96, 0.80, 0.77, and 0.83. For the Hierarchical GOP structure, the correlation coefficients
are 0.84, 0.74, 0.82, and 0.78. This indicates that our model performs reasonably well when
video characteristics and encoder configurations are changed.

5.3 Accuracy of priority assignment for slices

The slice CMSE prediction allows us to design a flexible scheme for assigning the priorities
to different video slices. The slice priorities are beneficial in designing efficient cross-layer
network protocols such as routing, fragmentation, assigning access categories for IEEE
802.11e, and for investigating UEP over error prone channels [20, 21]. We divide all the
slices of each GOP into four equally populated priority classes (P 1, P 2,P 3, and P 4), where
priority P 1 corresponds to the highest CMSE values. We call the predicted CMSE based
slice priority scheme as Predicted CMSE GOP and the measured CMSE based slice prior-
ity scheme as Measured CMSE GOP. Table 3 shows the percentage of slices contributed
by each frame type in the encoded bitstreams. The L after the sequence name indicates a
low bitrate of 512 Kbps and the H indicates a high bitrate of 1 Mbps. On average, 25 %,
53 % and 22 % of slices belong to the IDR, P and B frames, respectively. The percentage of
IDR slices is higher for the slow motion Akiyo and decreases with increase in motion of a
video sequence. Table 3 also shows the contribution of each frame type (as a percentage of
the total number of slices in the GOP) towards the four priorities. Approximately 51 % and
30 % of IDR slices belong to the two highest priorities P 1 and P 2, respectively. However,

Table 3 Percentage slices contributed by IDR, P, and B frames to different priorities for Akiyo, Foreman,
and Bus

Sequence IDR(P1/P2/P3/P4) P (P1/P2/P3/P4) B(P1/P2/P3/P4)

Akiyo(L) 27.7(19.2/6.7/1.8/0.0) 51.0(5.8/17.0/16.5/11.7) 21.3(0.0/1.0/8.5/11.8)

Akiyo(H) 27.4(19.2/6.8/1.3/0.1) 53.0(6.0/16.4/15.5/15.1) 19.6(0.0/2.0/6.8/10.8)

Foreman(L) 25.3(14.8/7.7/2.3/0.5) 52.7(9.6/14.6/15.5/13.0) 22.0(0.4/2.8/7.7/11.1)

Foreman(H) 23.3(15.4/6.3/1.5/0.1) 55.4(9.0/17.2/16.7/12.5) 21.3(0.6/1.7/6.7/12.3)

Bus(L) 23.4(10.8/9.7/2.4/0.5) 54.0(14.1/14.7/9.6/15.6) 22.5(0.0/0.5/13.0/9.0)

Bus(H) 21.1(11.2/6.7/2.9/0.3) 54.3(14.0/16.1/13.0/11.2) 24.7(0.0/2.2/8.9/13.6)
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the contribution of IDR slices to the highest priorities decreases with increase in motion
of the video sequence. An average of 18 %, 30 %, 27 %, and 25 % of the P slices belong
to priorities P 1, P 2, P 3 and P 4, respectively. The contribution of IDR slices to the lower
priorities is much less than that of the P or B frames. Approximately 39 % and 52 % of
the B slices lie in the lower priorities P 3 and P 4, respectively. IDR slices have the highest
contribution to P 1 priority followed by P slices. The P slices have the highest contribution
towards the remaining three priorities.

Next, we discuss the priority misclassification of slices in Predicted CMSE GOP com-
pared to Measured CMSE GOP. We let pj = i for i ∈ {1, 2, 3, 4} represent the priority
of the j -th slice assigned using measured CMSE. Then we define the first degree (1◦) mis-
classification if that slice were assigned a pj = i + 1 or pj = i − 1 priority using the
predicted CMSE. For example, if pj = 1 then a first degree (1◦) misclassification would
result in pj = 2. Likewise, a second degree (2◦) misclassification would result if the slice
is assigned a priority of pj = i + 2 or pj = i − 2 using the predicted CMSE. In a third
degree (3◦) misclassification, a slice with the highest priority is assigned the lowest priority
or vice versa. Table 4 shows the percentage misclassification of Akiyo, Foreman, and Bus
video slices from each priority. Most of the misclassified slices belong to 1◦ and approxi-
mately half of them are in lower priorities P 3 and P 4. Only about 5 % of these misclassified
slices belong to the highest priority P 1. The 2◦ misclassification is less than 4 %, and 3◦
misclassification is less than 1 % . We will show in the next section that our slice prior-
ity assignment scheme is able to achieve considerable accuracy for our UEP scheme over
additive white Gaussian noise (AWGN) channels.

5.4 Performance of UEP scheme for prioritized slices over AWGN channels

We designed a UEP FEC scheme for AWGN channels to compare the performance of slice
priority assignment schemes based on predicted and measured CMSE values. We use the
following formulation to find the optimal rate compatible punctured convolutional (RCPC)
code rate(s) for the UEP schemes.

We formulate the total expected video distortion of our prioritized data as in [20]. Let
RCH be the transmission bit rate of the channel. The video is encoded at a frame rate of
fs frames per second, and the total outgoing bit budget for a GOP of frame length LG is
RCH LG

fs
. The RCPC code rates are chosen from a candidate set R of punctured code rates

{R1, R2, R3, ...,RK }. We aim to minimize the sum of weighted slice loss distortion over
the AWGN channel. In the sum, the CMSE distortion D(j) contributed by the loss of the
j -th slice is weighted by the probability of losing that slice, which depends on the slice size

Table 4 Percentage slice misclassification by degree (1◦, 2◦, and 3◦) for each priority for Akiyo, Foreman,
and Bus

Sequence 1◦(P1/P2/P3/P4) 2◦(P1/P2/P3/P4) 3◦(P1/P2/P3/P4)

Akiyo(L) 3.6/18.4/7.8/4.2 0.2/2.4/0.2/0.0 0.0/0.28/0.0/0.0

Akiyo(H) 2.7/7.8/15.8/5.6 0.1/2.5/0.2/1.0 0.2/0.0/0.0/0.4

Foreman(L) 4.9/9.3/10.0/4.9 0.4/0.3/1.0/0.7 0.0/0.28/0.0/0.0

Foreman(H) 5.2/10.2/9.5/11.0 0.4/0.2/1.0/0.5 0.0/0.0/0.0/0.0

Bus(L) 4.9/9.8/9.0/3.9 0.6/0.2/0.5/1.7 0.0/0.0/0.0/0.2

Bus(H) 4.9/10.1/8.4/3.5 0.5/0.4/0.6/1.1 0.0/0.0/0.0/0.0
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S(j) in bits and on the bit error probability pb after channel decoding. Here pb depends on
the channel signal to noise ratio (SNR) and on the RCPC code rate ri selected for the slice
priority i. The optimization problem is formulated as [34]:

minr

{
∑4

i=1
∑ni

j=1

[

1 − (1 − pb(SNR, ri))

(
S(j)
ri

)]

D(j)

}

subject to

(1)
∑4

i=1
∑ni

j=1
S(j)
ri

≤
(

RCH LG
fs

)

(2) ri−1 ≤ ri for i = 2, 3, 4

(3)

Here ni is the number of slices of priority i. The formulation only considers slice loss dis-
tortion and ignores compression distortion. Constraint (1) is the channel bit rate constraint
and constraint (2) ensures that higher priority slices have code rates which are at least as
strong as the code rates allocated to the lower priority slices. The optimization problem is
solved using the Branch and Bound (BnB) algorithm with interval arithmetic analysis [18]
to yield the optimal UEP code rates.

The mother code of the RCPC code has rate 1/4 with memory M = 4 and punctur-
ing period P = 8. Log-likelihood ratio (LLR) was used in the Viterbi decoder. The RCPC
rates were {(8/9), (8/10), (8/12), (8/14), (8/16), (8/18), (8/20), (8/22), (8/24), (8/26), (8/28),
(8/30), (8/32)}. The channel bit rate used for videos encoded at 1Mbps (2Mbps) is 2Mbps
(4Mbps). Figures 5, 6, 7 and 8 show the average PSNR and video quality metric (VQM)
score computed over 100 realizations of each AWGN channel SNR for Akiyo, Foreman,
Bus and Table Tennis. A VQM value of 0 (1) represents the best (worst) video quality.
The UEP performance of Predicted CMSE GOP scheme closely follows that of the Mea-
sured CMSE GOP. This demonstrates that our predicted CMSE based priority assignment
scheme performs well. The other two schemes shown in these figures will be discussed in
the next section.

6 Frame-level slice priority assignment schemes

The GOP-based slice priority assignment scheme Predicted CMSE GOP requires the pre-
dicted CMSE values of all the slices of a GOP before it can assign priority to them. This
introduces the delay of at least one GOP time, which may not be acceptable in applications
with stringent delay constraints, such as video conferencing. In this section, we present
a frame-level slice priority assignment scheme, denoted Predicted Average Frame, which
determines the priority of the slices of a frame based on their predicted CMSE, the frame
type and location within the GOP. This enables “on-the-fly” slice prioritization, without
requiring the slices of future frames in the GOP.

Using all the videos in our training set (shown in Table 1) encoded at different bit rates,
we use the Measured CMSE GOP scheme to compute the average percentage of slices in
each priority class contributed by each frame within a GOP for a specific GOP length and
configuration. Our GOP structure (IDR B P ... B) has a length of 20 frames and consists of
one IDR frame, nine P frames and 10 B frames. Since the B frames are not used as reference
frames, we have combined them together to get one set of ratios for the priorities. Table 5
shows the details of the prioritization ratios at a frame level. For example, the ratios for an
IDR frame are (53 % , 28 % , 14 % , 5 % ). This means that 53 % (5 % ) of the slices with
the highest CMSE in every IDR frame are assigned to P1 (P4). These ratios will vary when
different encoding configurations are used.
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(a)

(b)

Fig. 5 (a) Average PSNR and (b) Average VQM performance of GOP and frame-level slice priority schemes
over a 2Mbps AWGN channel for Akiyo encoded at 1Mbps
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(a)

(b)

Fig. 6 (a) Average PSNR and (b) Average VQM performance of GOP and frame-level slice priority schemes
over a 2Mbps AWGN channel for Foreman encoded at 1Mbps
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(a)

(a)

Fig. 7 (a) Average PSNR and (b) Average VQM performance of GOP and frame-level slice priority schemes
over a 2Mbps AWGN channel for Bus encoded at 1Mbps
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(a)

(b)

Fig. 8 (a) Average PSNR and (b) Average VQM performance of GOP and frame-level slice priority schemes
over a 4Mbps AWGN channel for Table Tennis encoded at 2Mbps
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Table 5 Percentage slices contributed to different priorities by each frame type and location within the gop

Frame Type %Slices (P1/P2/P3/P4)

IDR (53/28/14/5)

P Frame 1 (36/34/20/10)

P Frame 2 (34/37/19/10)

P Frame 3 (30/38/20/12)

P Frame 4 (25/35/27/13)

P Frame 5 (19/35/29/17)

P Frame 6 (14/31/33/22)

P Frame 7 (10/26/35/29)

P Frame 8 (5/20/36/39)

P Frame 9 (2/9/18/71)

B (0/10/19/71)

We also examine the performance of a simple frame type and location based priority
assignment scheme, called Heuristic, where all the IDR slices are assigned to the highest
priority P 1, all the slices of the first half of P frames of each GOP to P 2, the P frame
slices from the latter part of each GOP to P 3, and all the B frame slices to the lowest
priority P 4, without considering their CMSE values. Note that several papers in the lit-
erature use this simple scheme [13, 15, 16, 44, 53]. We use a UEP scheme to study the
performance of these frame-level slice prioritization schemes over AWGN channels for
four test videos (slow motion Akiyo, medium motion Foreman, and high motion Bus)
encoded at 1Mbps and a larger resolution video Table Tennis encoded at 2Mbps. Figures 5–8
show the average PSNR and VQM performance of the GOP-level Measured CMSE GOP
and Predicted CMSE GOP schemes, the frame-level Predicted Average Frame scheme,
and the Heuristic scheme. As discussed in the previous section, the performance of
Predicted CMSE GOP scheme closely follows that of the Measured CMSE GOP. The
frame-level priority assignment scheme, i.e., Predicted Average Frame achieves a perfor-
mance which is very close to the GOP-based slice priority schemes while the Heuristic
scheme performs significantly worse. Other videos tested produced similar results.

7 Application of slice prioritization to slice discard

In this section, we present an application of our slice prioritization schemes for slice discard
in a network affected by congestion. We consider a simple topology, where two video users
V S1 and V S2 are transmitting video data at R1 Kbps and R2 Kbps, respectively, to the
destinationD through an intermediate router. When there is no congestion, the outgoing rate
R of the intermediate router equals (R1+R2) Kbps.We study the slice discard performance
of three slice prioritization schemes Measured CMSE GOP, Predicted CMSE GOP, and
Predicted Average Frame. In these schemes, the lowest priority slices are dropped from
different frames of each GOP. We also study the performance of a Drop-Tail (DT) scheme
where the slices are discarded from the tail end of each GOP.

We use two video sequences Foreman (V S1) and Bus (V S2) encoded at 1Mbps each.
The outgoing bit rate of the intermediate router is 2Mbps. The error free PSNR values of
the two sequences are 38.9dB and 33.4dB, respectively. Table 6 shows the video PSNR
and VQM results obtained by discarding slices intelligently over the traditional DT scheme
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Table 6 Performance of the slice discard schemes

PSNR (dB) VQM

Slice Loss (%) 10 % 30 % 10 % 30 %

Slice Discard Scheme V S1 V S2 V S1 V S2 V S1 V S2 V S1 V S2

Measured CMSE GOP 34.8 28.7 31.4 25.3 0.257 0.324 0.334 0.561

Predicted CMSE GOP 33.8 28.4 30.8 25.1 0.289 0.325 0.343 0.571

Predicted Average Frame 33.5 28.0 29.8 24.7 0.290 0.382 0.357 0.591

Droptail (DT) 31.2 26.0 27.8 22.9 0.335 0.501 0.381 0.750

when the outgoing rate R drops from 2Mbps to 1.8Mbps (10 % loss) and 1.4Mbps (30 %
loss). We distribute the slice losses equally between the two users. Our slice prioritization
schemes achieve at least 2dB PSNR and corresponding VQM gain over the DT scheme,
as dropping consecutive slices of frame(s) from the tail of each GOP degrades the video
quality significantly.

8 Conclusions

We presented a low-complexity and low-delay GLM to predict the CMSE of a slice loss
using a combination of video factors that can be extracted while the current frame is being
encoded, without using any information from the future frames of the GOP. We demon-
strated the accuracy of the prediction model using cross-validation. The slices of each GOP
were classified into four priorities using the predicted CMSE values, and their performance
was close to that of the measured CMSE over AWGN channels. We extended our GOP
based slice prioritization scheme to achieve frame-level prioritization for low-delay appli-
cations. We also analyzed the priority misclassifications and showed that second degree and
third degree priority misclassifications were minimal. We also demonstrated an application
of our slice prioritization scheme towards slice discard in a congested network.
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