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Abstract   This paper presents a novel base-points-driven shape correspondence (BSC) 
approach to extract skeletons of articulated objects from 3D mesh shapes. The skeleton 
extraction based on BSC approach is more accurate than the traditional direct skeleton 
extraction methods. Since 3D shapes provide more geometric information, BSC offers the 
consistent information between the source shape and the target shapes. We first extract the 
skeleton from a template such as the source shape automatically. Then, the skeletons of the 
target shapes of different poses are generated based on the correspondence relationship 
with the source shape. The accuracy and effectiveness of the proposed method is 
demonstrated through a comprehensive performance evaluation on multiple benchmark 
datasets. The results of the proposed approach can be applied to various applications such 
as skeleton-driven animation, shape segmentation and human motion analysis.  
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1. Introduction    
 

The 3D shape correspondence is to find a meaningful relation between pair of shapes 
and it has a wide range of applications in a variety of domains, such as geometric modeling 
and processing [1], shape recognition [2, 3], shape registration and shape retrieval [4, 5]. The 
representation of variations of human shapes has been an important topic in computer vision 
and graphics. Establishing a significant relationship between shape correspondences of 
similar model with different poses is a challenging task for several reasons. Firstly, among the 
different types of poses from the same model such as a person, there are many non-rigid 
deformations [6]. Secondly, the motion capture system could capture 3D postures through 
multiple cameras environment [7], but we need the meaningful relationship of shape points 
among distinctive pose shapes.  

The shape correspondence is also closely related to the extraction of the curve-skeleton 
of shape. An articulated 3D model skeleton provides an intuitive abstraction for both 
geometrical and topological shape of the objects. An extracted 1D curve-skeleton is an 
effective representation of the model, which facilitates the manipulation and understanding of 
the shape of model [8]. The skeletal representation of the model has become very popular and 
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finds a wide range of applications in shape analysis [9], surface reconstruction [10], character 
skinning through skeletal rigging [11], skeleton-driven character animation [12], object 
matching and shape retrieval [13,14] and shape deformation through skeleton [15]. With the 
capability of creating a three-dimensional representation of human models, the extraction of 
curve-skeletons for these models has become a fundamental problem in many applications. 

 A number of methods have been proposed to extract a skeleton from 3D shape [16,17]. 
Majority of these methods are geometry-based, which have a hybrid approach combining 
topology and geometry-based techniques [18]. An approach which has the combination of 
capabilities such as robust and high accuracy to extract a skeleton for different poses of same 
model is highly required. The extracted skeletons by using these methods are often not 
satisfactory due to undesirable redundant branches, complexity in joints hierarchy and manual 
approximations during extraction. Technically, in skeleton extraction of the shape, an 
extracted skeleton is of well-centered, well-define joint hierarchy joints. The accurate joint 
identification that matches the real position in every pose of the shape is a challenging task in 
computer graphics and interactive applications. A number of commercial 3D packages (such 
as MayaTM, Blender, etc.) have been developed for creating automatic skeleton for the object. 
However, the generation of skeleton by using these packages is time-consuming, labor-
intensive and the results to large extent depend on user’s skills. 

In this paper, we propose and develop an integrated framework of consistent human 
skeleton extraction based on the base-points-driven shape correspondence (BSC). The source 
and target shapes are topologically consistent, with different postures and semantically 
similar to each other. BSC establishes the corresponding relationship between two shapes 
using local maximum Scale-invariant Heat Kernel signatures as base points to embed the 
original shapes into a Euclidian space. In this space, we first compute the similarities between 
points on source and target shapes, and then build the correspondence, based on which the 
skeleton can be extracted. 

To extract the skeleton of a source shape, at first, the source shape is contracted through 
Laplacian-based mesh contraction method. A 1D curve-skeleton of the contracted shape is 
then obtained through topological thinning. The final joint-based skeleton shape is produced 
by applying geometric refinements on extracted 1D curve-skeleton of the source shape. The 
consistent skeleton of the target shape which possesses different poses of the source shape is 
then generated based on correspondence relationship between these shapes. The obtained 
target shape skeleton has the similar topology of the source skeleton such as an equal number 
of joints, approximately identical joints’ positions and hierarchy structure. 

The rest of this paper is organized as follows. In Section II, we review previous works 
on shape correspondence and human skeleton extraction. The details of our proposed BSC are 
given in Section III. Firstly, we describe the model downsampling method and how to find 
the base points. Then this section focuses on how to select the base points and identify the 
similar points on the source and target shapes. In the end of this section, some results of 
correspondence are presented. Section IV describes the extraction of the source shape 
skeleton and generation of target shape skeleton through our shape correspondence approach 
and compare it with the direct skeleton extracting method. Our experimental results 
conducted on two benchmark datasets are presented in Section V, followed by conclusion and 
future work in Section VI.                                       

 
2. Related work  

 

The extraction of a model’s skeleton should give enough information for the overall 
structure, while maintaining a certain level of details for the model. The pros and cons of 
various skeleton extraction methods and skeleton properties have been well documented in 
[19].  

In the literature, various methods have been intensively studied for extracting skeletons 
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from 3D shapes. Some methods concentrate on the pairwise skeleton correspondence [20]. 
Majority of the solutions focused only on the 1D curve-skeleton extraction from 3D objects 
which describes the abstract structure of the model [21] although some techniques try to 
compute a joint-based skeleton of the model [22]. The skeleton extracted by these methods 
generates satisfactory results for single input model. However, they suffer some limitations 
such as mismatching the location of skeletal joints with the real position of the model, failure 
to preserve the topology of the model, etc. For automatic extraction methods, the extracted 
joints hierarchy increases the complexity and fewer unwanted branches could be created. The 
generated skeletons through these methods also need to refine through skeleton pruning 
algorithms for every model. 

The use of silhouettes as input to recognize human actions [23, 24] is based on the 
representation of the contour points from human silhouette. But the silhouette is obtained 
previously by extraction techniques, e.g. background subtraction and mostly from images. 
And many previous works use edges and silhouettes as pose descriptors [25, 26]. These 
methods use only image features and are not suitable for a strong dynamic model of human 
motion. The use of the same model for skeleton extraction and motion capture depends on a 
one-to-one correspondence between estimated and ground truth joints [27]. 

Base point means prominent feature point in this paper. We need them to be consistent 
on shapes with isometric deformations. Reuter and Peinecke [28] have proved that the 
Laplace–Beltrami eigenvalues as isometry-invariant shape descriptors could be used to 
recognize the isospectral models dubbed as “Shape-DNA”. By the decomposition of the 
Laplace–Beltrami operator, Reuter got the isometry-invariant signature of a manifold from 
the eigenfunction corresponding to the first few smallest non-zero eigenvalues. But the 
“Shape-DNA” is a global feature. The heat diffusion on a manifold is the diffusion process 
whose infinitesimal generator is the Laplace–Beltrami operator[29]. Coifman and Lafon 
[29,30] have introduced the diffusion processes on manifold which formed a base for the 
recent studies about the diffusion geometry in shape analysis. Sun and Ovsjanikov [31] 
proposed an intrinsic, multi-scale and robust shape descriptor, Heat Kernel Signature (HKS). 
This descriptor is based on the physical processes of heat propagation on a shape and also 
related to the diffusion geometry proposed by Lafon. It was obtained through the heat kernel 
of different time interval. HKS is efficiently computable and provides a multi-scale way to 
capture information about neighborhoods of a given point [31]. In this approach, when time 
period is small, the HKS takes more information from the close neighbors and catches the 
local features.  

In shape correspondence, isometry is a very important clue for finding the final result. 
Fortunately, with the development of 3D data acquisition technology, the acquisition of 
parameterization-free shapes becomes popular and the data are almost in isometric. The BSC 
method in this paper is based on the invariance of geodesic distance with isometric 
deformations. To obtain the correspondence directly between two sets is an NP-hard problem. 
Many researchers have proposed various methods to simplify it and construct some models 
based on some descriptors [32, 33] and metric structure of shape [34-36]. H. Zhang et al. [37] 
proposed a deformation view of shape correspondence and proposed a deformation-driven 
method. Yusuf Sahillioğlu et al. [38] proposed a greedy optimization on the isometry cost 
model, and then took different algorithms in [39-41] to detect the correspondence. This 
approach has solved the correspondence problem with greedy optimization, but it needs a 
good initialization in order to avoid getting stuck with local maxima. Instead, our approach is 
able to avoid this by solving a minimum cost max flow problem.  

 
3. Base-points-driven Shape Correspondence  
 

In this section we first review the downsampling method, Farthest Points Sampling 
(FPS) [42]. How to represent these down sampled points and eliminate the effects of non-
rigid deformations between them are major challenges for obtaining the plausible result of 
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shape correspondence. Thereafter, we introduce our improved correspondence method BSC. 
 
3.1. Downsampling methods 
 

In order to improve the efficiency of the algorithm, a limited number of points have 
been required under a certain magnitude. A downsampling algorithm FPS has been used to 
decimate the points. FPS provides almost evenly spaced sampling, the next sample is placed 
in the center of the largest empty disk on surface. In other words, the next sample is placed at 
a point that is farthest from the previous samples.  

In the FPS procedure, the points at the anchors (e.g. the feet and the hands of human or 
animal shapes) will be selected first. Various anchor points of each isometric shape will be 
corresponded and selected by FPS which obtains a well-separated covering net of the shape. 
By taking the advantage of FPS, we have obtained subsets of the shape for our shape 
correspondence method.  

 

 
 

Figure 1 Results of the FPS downsampling on two different shapes with 200 points 
 
3.2. New shape representation 
 

For a 3D surface ( ),u vS , which is a 2D manifold surface, a geodesic metric ( ),geod x y  is 
defined on it, where x, y are two points on the surface. Three or more points which are not on 
a same geodesic path are selected as the base points: p1, p2, and p3. Then arbitrary point p0 
on the surface will have an exact location. The ( )0 ,geo id p p has been computed, where

1,2,3i = . These three geodesic distance values have been taken to be the new coordinates for 
all the points on the surface ( ) ( ) ( )( )0 0,  1 ,  0,  2 ,  0,  3geo geo geoP d p p d p p d p p  in a 3D 
Euclidian space. 

After calculating a point p, we compute the geodesic distances from this point, which 
forms a field on the surface, through the geodesic function ( ) ( ) ,geof q d q p= . Every point 
only has one value. All the same value points are on a close curve, similar to the circular 
contour on the plane in Euclid space. 

In the Euclidean geometry, it has well known three points, which are not on the same 
curve, can decide one and only one plane. This can be described by the intersection point of 
three circles, which takes the base points as the centers and the distances from the base points 
as the radius respectively as shown in Figure 2. For each point of the surface, we can find the 
unique group of circles as the coordinate system. 

 



5  

 
Figure 2 Any point can be represented by the intersect point of three circles centered by three base points.  

 
We extend this method to the manifold surface with the geodesic metric. The geodesic 

distance is selected to replace the Euclid distance, and geodesic contour which is a closed 
curve is used to replace the circle, as illustrated in Figure 3. 

 

 
 (a) Geodesic contours from a source point on a human pose shape. (b) Illustration on why these contours do 

not intersect when the two geodesic contour intersect at point M. 
 

Figure 3 Example of geodesic 
 

In Figure 3(a), the geodesic contour is some close curves and there is no intersection point 
between any two geodesic contours because of a unique distance between any point and the 
source point. If there are two geodesic contours intersect at one point M, all the points on the 
two contours have the same geodesic distance. In Figure 3(b), considering a point P on the 
outer contour, the geodesic path from the source S to point P pass through the area, is 
between the two contours. When it enters into this area, there will be an intersect point Q 
within the inner contour. However, the points P and Q have the same distance. So there is no 
intersecting point between any two geodesic contours. 

Three base points are selected, all the points on the surface can be defined by geodesic 
distances between base points. Under this situation, if base points of two shapes are given in 
order respectively, a sequence of distance values can be used to represent a point on the 
surfaces. Because geodesic distances are unique, the sequence will also be unique for one 
point. It’s very important to define these consistent base points on different pose shapes. The 
following section presents our approach to find the same base points on the source and target 
shapes using an intrinsic point feature Scale-invariant Heat Kernel Signature (SIHKS) [43]. 
 
3.3. Heat Kernel and Heat Kernel Signature 
 

3D shapes representations of human posture shapes are convenient in applications such as 
rendering and visualization. But it is not suitable, at least in a direct way, for many other 
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situations including human motion comparison, motion correspondence, shape estimation, 
and recognition. In these applications, the pose shapes are considered to be similar if there 
exist rigid or isometric transformations between them. 

Considering the non-rigid deformations of these posture models, this makes it difficult to 
find their correspondence. Therefore we need a method to eliminate the influence of the 
deformations. So the HKS as the intrinsic features is chosen to find the base points. 

Let M  be a compact Riemannian manifold without boundary, the amount of heat at a 
point p M∈  at time t is defined by ( , ) :u p t M + +×ℜ → ℜ . So at time 0, the heat at every 
point could be represented as the function :f M +→ ℜ . Moreover the diffusion of heat on 
M  is governed by the heat equation as follows:  

 ( ) ( , ) 0M u p t
t

∂
∆ + =

∂
  (1) 

Here M∆  is a Laplace-Beltrami operator of M . If the heat distribution f at time t  is 
given by the heat operator tH , then the following equations are satisfied: 

0limt tH f f→ = , and ( , ) ( )tu p t H f p=  
And these two operators have the relation Mt

tH e− ∆= . 
The heat kernel is a function as described in the following equation: 
 ( , ) :tk p q M M+ +ℜ × × → ℜ   (2) 

It satisfies ( ) ( , ) ( )t tM
H f p k p q f q dq= ∫  for all p M∈  and measures the amount of heat 

transferred from p  to point q  in time t . According to the eigen-decompositon of Laplace-
Beltrami operator and the relation of M∆  and tH , the spectral expansion of heat kernel on 
any compact manifold M has the following form: 

 
0

( , ) ( ) ( )it
t i i

i
k p q e p qλ ϕ ϕ

∞
−

=

= ∑   (3) 

Here iλ  and iϕ  are -thi  eigenvalue and its corresponding eigenfunction of Laplace-
Beltrami operator respectively. From Eq. (3), we can see that, the heat kernel is symmetric

( , ) ( , )t tk p q k q p= . The HKS is also isometry-invariant for the shapes with isometric 
transformations. Inversely if two shapes have the same HKS, then they are isometric.  

( ) :HKS p +ℜ → ℜ , ( , ) ( , )tHKS p t k p p=  is exactly the Heat Kernel Signature defined 
on the point p of the manifold M. It could be represented as: 

 2

0
( , ) ( )it

t i
i

k p p e pλ ϕ
∞

−

=

= ∑   (4) 

As a local shape descriptor HKS has also many properties such as multi-scale property 
especially sampled at a finite set of time 1, , nt t : 

 
1 2

( ) ( ( , ), ( , ), ( , ))
nt t tHKS p k p p k p p k p p=    (5) 

In order to deal with global and local scaling transformations, we need a scale-invariant 
method which could be achieved by [43-45]. In this paper, the Scale-invariant Heat Kernel 
Signature has been employed for defining the base points. According to Bronstein [43], shape 
scaling factors could be removed by the logarithmically sampling, discrete derivative and 
discrete-time Fourier transforms. This approach created scale-invariant feature descriptors, 
and the SIHKS extend the heat kernel signature to deal with global and local scaling 
transformations. By means of the scale and pose invariant properties of SIHKS, we could find 
the consistent base points on two shapes with isometric deformations by the local extreme of 
the SIHKS. Figure 4 shows some results of the base points (marked with pink balls) on the 
same person with different poses. These points are taken from the local maximum SIHKS in 
the range of a fixed geodesic distance on shapes.  
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(a) Base points (pink balls) on a standing pose. (b) Base points on the squatting pose. (c) Base points on 

the dancing pose. 
Figure 4 Example of base points on different shape poses 

 
3.4. Identification of similar points 
 

In this subsection, we describe the method to compute the correspondence of points on 
the source and target shape. The base points are selected, and they have been matched to each 
other. Now that the geodesics from these base points are computed, we take the order of the 
base points to be the order of new coordinate in Euclidian embedding space. The geodesic 
distances matrix 1M  and 2M  have been computed by using the fast marching algorithm [46]. 

After embedding the shape into Euclidean space through setting the matched and ordered 
points of original shapes as base points, two new shapes are achieved which have the same 
location and the same surface, as shown in Figure 5. The correspondence problem then 
becomes to find the closest pairs of points between two point sets. 

 

 
(a) Standing pose and its representation. (b) Crane pose and its representation.  

 
Figure 5 Embed two new shapes into the same Euclidean space 

 
Let’s denote the 1 1 1(V ,F )M  and 2 2 2(V ,F )M  as the source shape and the target shape 

respectively, where ( )1,2iV i = is the set of new points, which can be written as

( )1 2 3, , , , kv v v vv  , k  is the number of the base points. Fi  is the face from the original 
shape, i.e. the topology of the original and the new shape are same. Now we just find the 
nearest points between the two sets. The greedy strategy can be taken to find the nearest point 
from 2M  for each point in 1M . However, it just meets the local optima. Our aim is to find a 
map 1 1 1 2 2( ) :v v M v MΨ ∈ → ∈ , which is given below: 

 ( )
( )

( )( )
1 2

2
,Ψ 1

Ψ argmin ,Ψ
i i

N

i i
v M v M i

L vv v
∈ ∈ =

= ∑   (6) 
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Here ( )( )2 ,Ψi iL v v  is the 2L  distance and N  is the number of 1M . Now this problem 

changes to an optimization problem, which could be solved by the following minimum-cost 
maximum flow problem. The minimum-cost flow [47] is an important and typical problem in 
the field of graph theory, and is the core of network optimization problems. 

This problem can be described as follows. Giving a flow network, that is, a directed graph
( ),G V E= , with source point s V∈  and a target point t V∈ , each edge ( ),e i j E∈  has an 

associated cost ija  that denotes the cost per unit flow on that edge. A flow 0ijf ≥  and a 
capacity 0ijc >  are associated with every edge. We can send a flow f  from s  to t .  

The minimum-cost flow problem is an optimization model formulated as follows: 
 

( , )
ij ij

i j E
Minimize a f

∈
∑   (7) 

Subject to , , 0ij ij ij ji ij
j V

f c f f f
∈

≤ = − =∑  for all i s≠ , i t≠  and sj it
j V i V

f f d
∈ ∈

= =∑ ∑ . 

Based on this, if the point set, except s  and t , can be separated into two sets with the 
edges, we call this graph is a bipartite graph. Then with a weight to every edge, we get the 
minimum weight graph, which will be used in our method to solve the correspondence 
problem. 
 
3.5. Correspondence results 
 

Some of our correspondence results are illustrated in Figure 6. We represent the 
correspondence between each pair of shapes by the lines. The distances are computed 
between each correspondence points in k  dimensional Euclidian space (in our experiment

5k = ). After that we take the average of these distances as the measure standard to test the 
quality of the result. 

Figure 6 also shows the sparse and dense correspondence results. Sometimes the coarse 
correspondence may lead to less computation time, but this will result in reduced accuracy for 
skeleton extraction. So the dense correspondence is more suitable for our case. 

 

 
(a)  Sparse result. (b) Dense result. 

 
Figure 6 Result of the correspondence 

 
4.  Skeleton extraction through shape correspondence 
 
After the establishment of the correspondence between target and source shapes, we want to 
extract the target shape skeleton by using the source one. The process of extracting target 
shape skeleton consists of two steps. At first, a skeleton has been extracted from one of the 
correspondence shape (source shape). Then a similar plausible skeleton is generated of target 
shape based on the source shape skeleton. The obtained target skeleton maintains equal 
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number of joints and preserves similar hierarchy of the source skeleton joints. 

4.1. Source shape skeleton extraction 
 
The suitable source shape skeleton has been extracted using the method in [10]. At first 

the source shape is contracted through Laplacian-based mesh contraction which converts the 
geometric model into the skeletal shape of the input model. The contracted mesh consists of 
approximate zero-volume that is visually skeletal representation of that shape. This 
contraction process preserves the original topology and maintains the real shape of the model. 
The linear system of vertex positions is iteratively solved during the mesh contraction by 
using Eq. (8) below:  

 
0

'C

AA

W L
V

WW
   

=   
  

  (8) 

where cW  and AW  are the constraints of contraction and attraction respectively. The 
contraction and attraction constraints have been minimized through quadratic energy function 
by using Eq. (9). 

 2 2 2
,|| || || ||C A i i i

i
W LV W v v′ ′+ −∑   (9) 

In this equation the first part relates to contraction constraints and the second part 
describes the attraction constraints. ,A iW  is the attraction weight for every point i  after each 
iteration. L  is the n n×  Laplace operator with elements, and 'V represents the contracted 
vertex of the source shape. In order to get more accurate results of the skeleton extraction, we 
may apply minimum user intervention. 

The contracted mesh is then converted into hierarchical joint-based skeleton through 
topological thinning and geometry refinements. In topological thinning we have applied edge-
contraction operation on the contracted mesh to collapse the unnecessary edges until to create 
the 1D curve-skeleton of the shape. The edge-collapse process is applied repeatedly until all 
triangles in the contracted mesh are removed and the final curve-skeleton is obtained. The 
obtained 1D curve-skeleton is then refined into hierarchical joint-based skeleton through 
geometric refinements. The refinements include: computation of skeleton joints, identification 
of the root node, establishment of the hierarchy between skeleton joints and creation of the 
graph of skeleton joints. The extracted joint-based skeleton by implementing topological and 
geometric refinements on the contracted shape of the source model is given in Figure 7(b). 

 

 
(a) Source shape. (b) Skeleton of the source shape. 

 
Figure 7 Extraction of the source shape skeleton 

 
4.2. Consistent skeleton generation for target shape 
 

The computed skeleton of the source shape is then used to extract the consistent 1D 
curve-skeleton of the target shape through computed surface correspondence of the source to 
the target shape. The joints of the source skeleton are used to calculate the skeleton-vertex 
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correspondence of source shape through the matrix D . D  is the shortest distance between 
every joint of the source skeleton with its shape point described in Eq. (10). Denote the 
source model as P  and size of the model points as m . The extracted skeleton S  consists of 
n  joints. The skeleton to shape surface relations is calculated as: 

 || ||ij i jD PS= , 1, 2, ,i m=  , 1, 2, ,j n=    (10) 

 2 2 2
1 1 2 2 3 3|| || ( ) ( ) ( )i j i j i j i jPS P S P S P S= − + − + −   (11) 

 The closest shape vertex E of source skeleton joints is determined by distance matrix D , 

ii IE D=  , where iI  is minimum distance of the every skeleton joint from its associated 
shape vertex.  

The projected nodes of the target shape skeleton have been estimated using BSC shape 
correspondence and skeleton-surface relationship E of the source shape. Our BSC approach 
computes one to one correspondence between the source and target shapes points. Thereafter, 
the similar points of the target shape are grouped into one group (cluster) based on E . Let the 
target shape points are V composed of k group corresponding such that 1 2 ... kv v v V=   . 
Denoting the size of -thj  group in target mesh points as jn ( 1, 2..., )j k= , we calculate the 
center of each group ,jv ( 1, 2..., )j k=  of the target mesh vertex using Eq. (12) as: 

 1 , 1, 2,...,

jn

ij
i

j

j

v
v j k

n
==  =
∑

  (12) 

The prototype (center) of each group is computed of target shape that represents the 
extracted nodes of the target shape skeleton { , , }i j kT v v v=   as shown in Figure 8. To 
connect the target shape nodes, a cyclic connection between nodes has been constructed 
based on shape correspondence and using rings of share vertices in target shape. To compute 
the connection between target shape nodes, at first, we compute the connected rings of the 
shape vertices.  

 

 
Figure 8 The extracted nodes of the target shape 

 
Nearest neighbor search (NNS) algorithm is applied to find the closest points in the shape 

for computing one-rings of mesh point neighbors. Numerous solutions in computational 
geometry have been proposed for NNS problems such as linear search which calculates the 
distance from a query to every data point, local sensitive hashing (make buckets of data based 
on a distance metric), greedy search (construct graph of the points from query to its 
neighborhood). We use the space-partitioning algorithm for NNS based on K-d tree data 
structure [48]. K-d tree algorithm is based on iteratively division of the search space into two 
regions. The K-nearest neighbor of mesh points is computed by using k-d nearest neighbors 
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search. At first, we compute an approximate neighborhood of target shape iV  by calculating 
its k  nearest neighbors ( )k iN V . The approximate neighbors are projected on a tangent plane 
defined by their principal components analysis. A planar Delaunay triangulation is 
constructed and defines one-ring neighbors of mesh points which are used to build the 
connection between target mesh nodes. The parameter required to define the number of 
nearest neighbors is 0.012k = . We use this parameter to estimate the tangential plan and 
bounding minimum and maximum values (neighbors) in the range of [8:30]. A similar value 
of k  has been used throughout experiments in all shapes for computing the rings of 
approximate neighbors of the mesh points. In cyclic connection, the value of connected nodes 
with its neighbor nodes is equal to 1. The generated joint-skeleton of the target shape that is 
approximately similar to source shape skeleton present in Figure 9 (b).  In addition, the 
obtained skeleton from the target shape also generates skeleton joints to surface points 
mapping that can be directly applicable to mesh skinning deformation. 

 

  
(a) Source shape, (b) Consistent skeleton of target shape. 

 
Figure 9 Consistent skeleton extraction based on source shape skeleton 

 
 
5 Results and Discussions 

 
Although, the extraction of a 1D curve-skeleton through mesh contraction gives a 

satisfactory skeleton for single shape, but it does not always generate a robust skeleton for 
every pose of the same shape. In Figure 10 we compare the extracted skeleton of the target 
shape skeleton from two approaches: one is the mesh contraction by applying topological and 
geometric refinements and the other is BSC. In Figure 10(a) it can be seen that the target 
shape skeleton in some extent is off center and has the sharp bend of the bones. A post 
processing is needed to correct the position of the skeletal joints. On the contrary, our result 
shown in Figure 10(b) is much better. The resulting skeleton remains consistent over the 
poses change of the source shape and generates analogue skeletons of the target shape as 
shown in Figure 9.  
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(a)The result of mesh contraction. (b) Result of our method. 

 
Figure 10 Comparison of our method and mesh contraction 

 
Figure 11 gives more results of the skeleton extraction and comparisons of our approach 

to the direct skeleton extraction of the target shape. We test our approach on two different 
datasets:  Vlasic et al [49] and SCAPE: Shape Completion and Animation of People [50]. In 
both datasets each single person performs multiple motions. The shapes in first column of 
Figure 11 are the source shapes with their extracted skeleton. The source shape skeletons are 
extracted through geometric contraction, topological and geometric refinements. Automatic 
generated skeletons of the target shapes by using BSC are present in second and fourth 
columns of Figure 11. The obtained skeleton of the target shape is consistent with the source 
shape skeleton. The skeletons of the target shapes have an equal number of joints as the 
source shape. They are well-centered and have similar hierarchy of the source shape skeleton 
joints. 

 
Skeleton of 

source  
Skeleton of 

target from BSC 
Skeleton of 
target from 

direct extraction  

Skeleton of 
target from BSC 

Skeleton of 
target from 

direct extraction  
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Figure 11 Comparisons with other results 

 

 
 

(a) Source skeleton (b) Result of direct skeleton extraction method (c) Result of BSC 
Figure 12 Consistency of skeleton point position 

 
Majority of the skeletonization methods may generate different skeletons for different 

postures of the same shape. As shown in Figure 11, the direct skeletons extraction approach 
obtains different skeletons of the target shape with different poses. Those skeletons have 
unequal number of joints, different joints hierarchy and do not match satisfactory position of 
joints with its original shape. Based on BSC, our approach is able to extract consistent 
skeletons of target shapes which are different poses of the source shape. And our approach 
does not require any topological, geometrical and embedding refinement for every poses of 
same shape.  There is no need to set approximation parameters for extracting a skeleton of 
same shape with different poses. The results in Figure 12 demonstrate the robustness of our 
approach. The source skeleton joints Figure 12(a) and our result Figure 12(c) are consistent 
despite of the position of the model’s pants. However, the result Figure 12 (b) obtained 
through the direct skeleton extraction is not accurate due to the pants’ position in the target 
pose is lower than that in the source shape.  
 

6 Conclusion and future work 
 
In this paper, we have proposed an automatic and pose-invariant approach to extract the 

skeleton of an articulated human model based on BSC. We apply BSC to find the consistency 
of geometric information between shapes. Based on the corresponding relationship between 
the source and target shapes, the plausible skeleton of the target shape is extracted. Our 
approach supports the reusability of the source skeleton from the same model. It does not 
require any pre-processing to shapes, such as downsampling, mesh contraction, simplification 
and etc. In the proposed solution, the skeletons of different poses of the target shapes are 
computed instead of single shape. 

The robustness of our proposed method is demonstrated through our tests on two well-
known datasets. Experiments have shown that our algorithm produces both effective and 
accurate skeletons of the target shapes. Compared with the directly extracting method, our 
approach performs better in term of consistency such as equal number of skeleton joints and 
similar hierarchy between skeleton joints for a variety of target shapes. Furthermore, the 
skeleton generated by our approach is efficient because it does not require post-processing 
such as topological and geometric refinements. In the future we will investigate and study 



14  
more efficient and robust correspondence method so that the accuracy and consistency of the 
skeleton extraction can be improved further. 
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