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Abstract As the dynamic range of displays keeps increasing, there is a need
for reverse tone mapping methods, which aim at expanding the dynamic range
of legacy low dynamic range images for viewing on higher dynamic range
displays. While a number of strategies have been proposed, most of them are
designed for well-exposed input images and are not optimal when dealing with
ill-exposed (under- or over-exposed) content. Further, this type of content
is more prone to artifacts which may arise when using local methods. In this
work, we build on an existing, automatic, global reverse tone mapping operator
based on a gamma expansion. We improve this method by providing a new
way for automatic parameter calculation from the image statistics. We show
that this method yields better results across the whole range of exposures.

Keywords Reverse tone mapping · Image processing · Dynamic range

1 Introduction

The vast majority of the existing visual media, both static images and videos,
is coded in low dynamic range (LDR) format. This means that they can only
convey a limited contrast range, far from the rich contrasts found in real-
world scenes. For years, this was not much of an issue since existing displays
could only show very limited contrast ratios as well, so there was no need
for more sophisticated formats. In the last decade or so, however, there has
been a fast development in the field of high dynamic range (HDR) imaging.
Images can store increased contrast values now, orders of magnitude larger
than traditional LDR formats [5,23]. In order to visualize HDR images on
LDR displays, the data range must be compressed to fit the limited capabilities
of the display. This is the process known as tone mapping, for which a large
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Fig. 1 Di↵erent examples of common images showing di↵erent degrees of overexposure.
Contrary to what most existing rTMOs do, it is not convenient to expand the dynamic
range of these images by boosting large, saturated areas

number of algorithms and strategies have been proposed over the years, see,
e.g., [9] for a review in images and [12] for a review in video.

Modern displays can now show much higher dynamic ranges than be-
fore [25,19]. This has given rise to the inverse problem: how to correctly
visualize legacy LDR content on these modern displays, for which the data
range needs to be expanded. This is a much less explored field, generally called
reverse tone mapping (or alternatively, inverse tone mapping).

Reverse tone mapping techniques aim at increasing the dynamic range of
legacy low dynamic range images, for viewing on high dynamic range displays,
generally to produce a result that matches real-world luminances as closely
as possible [4]. Almost all existing reverse tone mapping operators (rTMOs)
follow the same strategy: they first compute some sort of expand map based
on detecting high-luminance areas of the LDR input images; pixels included
in such expand map are then aggressively expanded, while the rest are either
left unchanged or only slightly expanded. This strategy works well under the
assumption that only a small percentage of pixels are saturated and their
values need to be boosted; these usually represent light sources visible in the
scene, or bright highlights on shiny surfaces.

However, an underlying assumption of most methods based on this strategy
is that images are correctly exposed to begin with. This is often not the case,
especially for content captured by amateurs with aim-and-shoot or cell-phone
cameras (see Figure 1). Intuitively, while it makes sense to increase the value of
a few saturated pixels in an image containing a bright light bulb, for instance,
applying the same strategy to larger areas (such as a bright sky clamped to
pure white by the sensor) may produce suboptimal, overly bright results. In
those cases, it would be better to make visible details more prominent instead.
Conversely, if the image is very dark, assigning most of the available range
to the saturated or very bright areas (which will be minimal or non-existent)
might not be the best strategy.

In previous work, Masia and colleagues [17] analyzed existing rTMOs by
means of several user studies, and made the key observation that their perfor-
mance did in fact decrease significantly when the input images were overex-
posed. Based on these findings, they proposed a proof-of-concept global rTMO
based on a simple gamma expansion, which was shown to outperform more
sophisticated algorithms across a range of overexposure levels. To obtain a
suitable � value for each image, they proposed computing the key of the input
image, as an indicator of whether the scene is subjectively dark or light. This



Dynamic range expansion based on image statistics 3

computation, however, was based on a simple linear regression with the key of
the images. While it was designed for overexposed (high-key) images, it can
yield negative values for key values low enough, which need to be clamped [5].

In this work, we aim to obtain an rTMO with the following desired char-
acteristics: i) it does not rely on the assumption that the input images are
correctly exposed; ii) it is simple enough that modern displays can compute it
on the fly; and iii) it is a global operator, to avoid possible artifacts that arise
from local approaches, especially prone to cause problems in the case of poorly
exposed content [17]. We choose a �-based approach as in Masia et al.’s work,
since it has been shown to have beneficial characteristics for our particular
problem: � functions tend to darken the overall appearance of images while
increasing contrast, which has been shown to be preferred by viewers [20,24].
We thoroughly explore simple image statistics, and propose new, robust mod-
els that are straightforward to compute, while showing a higher correlation
with the data gathered in previous user studies [17]. In particular, based on
the new statistical analysis in this work, di↵erent parametric regressions are
obtained together with various metrics, to assess how well they fit the data.
Both multilinear regression based on linear least squares, and a robust regres-
sion based on iteratively reweighted least squares are tested, always seeking to
obtain the best trade-o↵ between accuracy and simplicity of the model. Based
on these, we propose an expansion that yields consistent results over a range
of exposures, and show that it outperforms that of Masia et al., especially for
lower exposures.

2 Previous Work

As stated before, most previous rTMOs follow the same basic approach: first,
the brightest areas of the image are identified (usually by simple thresholding),
yielding some sort of expansion map. This includes all pixels clamped to pure
white due to limitations in the sensor. Those bright areas are then significantly
expanded by applying di↵erent dynamic range expansion functions, whereas
the rest of the pixels of the image are left untouched or only slightly modified.

One of the pioneering works in the field is that of Banterle et al. [6,8], who
define their expansion map by density estimation of the bright areas in the
input image, and use the inverse of Reinhard’s tone mapping operator [22] to
boost the dynamic range. A further extension of the method allows handling
video by ensuring temporal coherence of the expansion map between frames [7].
Meylan and colleagues [20,21] opt for a similar yet simpler approach, applying
a steep linear expansion to saturated areas, and a less steep linear expansion
function to the rest. Rempel et al. [24] define a brightness enhancement func-
tion (BEF), similar to an expansion map, computed by blurring a mask of all
saturated pixels. Carefully selected edge-stopping functions ensure that con-
trast is maintained along strong edges in the input image. In another work, a
bilateral grid is used to compute this edge-preserving BEF in real time [14];
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this work is later improved to be able to handle a wide range of exposures of
the input image, and to be compatible with any bilateral filtering strategy [15].

While all the methods discussed above are automatic, other works exist
that rely on user input. In the work by Didyk and colleagues [10], a trained
classifier labels bright image areas as belonging to one of four di↵erent cate-
gories: di↵use surfaces, light sources, specular highlights and reflections. This
allows the system to apply di↵erent expansion functions to di↵erent parts of
the image, even though their saturated values may be the same. Masia et
al. [18] present two di↵erent approaches. In the first, the image is classified
according to Ansel Adams’ Zone System [1], while in the second saliency de-
tection models predict the most important parts of the image. In both cases,
the user can then control di↵erent expansion functions to specific areas of the
image.

The work of Masia et al. [17] evaluated a number of existing rTMOs for
varying degrees of exposure of the input images, and formally showed that their
performance decreased for increasingly overexposed imagery, to the extent
that sometimes the original LDR image was preferred over an expanded HDR
version. The problem of exposure in rTM was first identified by Martin et
al. [16], where the authors correlate user preferences for di↵erent scenes and
exposures with first order image statistics. The authors do not to develop a new
rTMO, and instead conclude that deeper statistical analysis should be carried
out for that purpose. Masia et al. do propose a content expansion method:
They make the observation that a simple, global rTMO can outperform more
complex strategies in these situations, and propose an expansion based on a
simple gamma curve. In this work, we do opt for a global method to avoid
the risk of artifacts, which are more prone to appear in suboptimal input
content such as the one we are dealing with, and in particular we build on
the proposal of Masia et al. [17], based on a gamma curve, since it proved
to work well on ill-exposed content. However, we improve on the automatic
computation of the gamma value (�) for this curve. To obtain the specific
value of �1 for each image, Masia et al. simply employ its key value, which
gives an intuition of its overall brightness; however, as mentioned before, it is
intended for overexposed content and thus its performance decreases for dark
(low key) images. We propose a better computation of the � value that works
well across a wide range of exposures while ensuring the absence of artifacts
thanks to being a global operator.

3 Multilinear Models for Gamma Expansion

Our goal, as mentioned, is that of building an automatic, global rTMO based
on a gamma expansion; this section aims at finding the best method for auto-
matically obtaining the � value for the expansion on a per-image basis. This

1 From this point on, we will use the symbol � to refer to the parameter of the expansion
curve, and the word gamma when referring to the expansion method or the type of curve.
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is done by fitting manually-obtained values of � available for a set of images
to a function of image statistics using multilinear models.

3.1 Input data

We use the image database provided by Martin et al. in their study on the
perception of exposure [16] (see Figure 2) for learning image statistics for our
model. This database was also used in Masia et al.’s work [17], so it allows us
to directly compare our results to theirs in terms of which model fits better
the data.

Our goal is to find a gamma-based rTMO, for which we need a way to
compute the specific � value for each given image. We follow a similar ap-
proach as previous works, and use manually-adjusted values of � for each
image as ground truth: These were obtained in a pilot study, asking partici-
pants to tweak the � curve until they found the subjective best rendition of
the image [17]. Table 1 shows the results of this manual process. Columns 1 to
4 indicate increasing exposure, while rows correspond to the di↵erent scenes
captured. Images corresponding to this table are shown in Figure 2.

Fig. 2 The images used in this work for training the model, showing increasing degrees of
overexposure. From top to bottom: building, lake, sunset, gra�ti and strawberries [16]

To compute image statistics from which to derive an expression to obtain �

for each image, we first linearize sRGB values and then compute luminance [23]
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Table 1 Manually-adjusted � values (adapted from [17])

Scene 1 2 3 4

Building 1.22 1.5 1.75 2.6
Lake 1.1 1.2 1.5 2.25
Sunset 1.1 1.35 1.4 1.75
Gra�ti 1.2 1.35 1.5 1.75
Strawberries 1.22 1.35 1.55 1.9

L as:
L = Y = 0.2126R+ 0.7152G+ 0.0722B, (1)

where L is in the range [0..1].
The first statistical values we compute are both the arithmetic and the

geometric mean luminance (referred to as Lavg and LH , respectively). The
arithmetic mean is simply obtained by averaging the luminance value of all
pixels (Lavg = 1/N

PN
i=1 L(i), with N being the total number of pixels in the

image); the geometric mean, known to reduce the contribution of outliers, is
obtained as follows [5]:

LH = exp

 
1

N

NX

i=1

log(L(i) + ")

!
, (2)

where " is a very small positive number to prevent singularities in black pixels.
We additionally compute the logarithm of this quantity, simply logLH .

The key of the images is also obtained, using the following equation [2]:

k =
logLH � logLmin

logLmax � logLmin
. (3)

In this equation Lmax and Lmin are the maximum and minimum luminance
values, respectively, once a percentage of outlier pixels (both on the dark and
bright sides) has been eliminated. We calculate two key values, k5 and k1,
considering 5% or 1% of the pixels as outliers, respectively.

Additionally, both the median, Lmed, and a series of central moments, are
computed for the luminance of the images. These include variance VL (and
standard deviation �L), skewness (skewL) and kurtosis (kurtL). Finally, we
compute the percentage of overexposed pixels for each of the images, defining
overexposed pixels as those with L · 255 � 254; we will refer to it as pov.

Tables 2 and 3 include the values obtained for each of the aforementioned
statistics for the images of our dataset. These values are the ones used for the
regressions explored in the following subsections.

3.2 Multilinear Regression

The term multilinear regression refers to a linear regression with multiple
variables as predictors. Restricting ourselves to linear regressions was decided
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Table 2 Statistics for the images in the dataset (1/2)

Image � Lavg LH logLH k5 k1 Lmed

Building01 1.22 0.3493 0.1182 -2.1352 0.5743 0.6019 0.0762
Building02 1.5 0.4853 0.2485 -1.3922 0.6472 0.6775 0.2076
Building03 1.75 0.5792 0.4052 -0.9033 0.6865 0.7265 0.4176
Building04 2.6 0.7105 0.6196 -0.4787 0.7392 0.7806 0.7399
Lake01 1.1 0.1188 0.0338 -3.3881 0.4963 0.5612 0.0248
Lake02 1.2 0.1662 0.0570 -2.8651 0.5151 0.5721 0.0473
Lake03 1.5 0.3689 0.2020 -1.5996 0.5545 0.6418 0.1827
Lake04 2.25 0.4977 0.3613 -1.0182 0.5975 0.6874 0.3668
Sunset01 1.1 0.2088 0.0719 -2.6319 0.4857 0.5622 0.0784
Sunset02 1.35 0.2633 0.1143 -2.1688 0.5252 0.6170 0.1361
Sunset03 1.4 0.3930 0.2259 -1.4875 0.5884 0.6907 0.2675
Sunset04 1.75 0.6633 0.5505 -0.5969 0.6891 0.8009 0.7168
Gra�ti01 1.2 0.2891 0.1568 -1.8525 0.6213 0.6726 0.2744
Gra�ti02 1.35 0.5020 0.3335 -1.0981 0.6659 0.7405 0.5732
Gra�ti03 1.5 0.6796 0.5449 -0.6071 0.7201 0.8074 0.8761
Gra�ti04 1.75 0.8091 0.7415 -0.2991 0.7761 0.8591 0.9949
Strawberries01 1.22 0.1718 0.0954 -2.3501 0.5646 0.6074 0.1075
Strawberries02 1.35 0.3381 0.2240 -1.4962 0.5713 0.6335 0.2544
Strawberries03 1.55 0.5304 0.4098 -0.8921 0.6235 0.6884 0.5048
Strawberries04 1.9 0.6961 0.6046 -0.5033 0.6942 0.7524 0.8147

Table 3 Statistics for the images in the dataset (2/2)

Image � VL �L skewL kurtL pov

Building01 1.22 0.1357 0.3684 0.5261 1.6310 5.9764
Building02 1.5 0.1774 0.4212 0.1879 1.1346 20.04220
Building03 1.75 0.1527 0.3908 0.0275 1.1750 40.1717
Building04 2.6 0.0912 0.3020 -0.4495 1.7895 44.3981
Lake01 1.1 0.0256 0.1601 1.1686 2.6714 0.0003
Lake02 1.2 0.0450 0.2121 1.1497 2.6493 0.0017
Lake03 1.5 0.1316 0.3628 0.8654 2.1098 17.8714
Lake04 2.25 0.1225 0.3500 0.4138 1.5494 22.8514
Sunset01 1.1 0.0786 0.2803 1.6711 4.7589 4.0931
Sunset02 1.35 0.0888 0.2980 1.3072 3.5468 5.0731
Sunset03 1.4 0.1152 0.3394 0.6207 1.9193 9.4525
Sunset04 1.75 0.1025 0.3202 -0.3523 1.6076 29.5133
Gra�ti01 1.2 0.0557 0.2361 0.3878 1.8997 0.0039
Gra�ti02 1.35 0.1110 0.3332 -0.0818 1.4351 1.0967
Gra�ti03 1.5 0.1158 0.3403 -0.5197 1.5827 21.1744
Gra�ti04 1.75 0.0692 0.2631 -1.0777 2.8062 51.2861
Strawberries01 1.22 0.0283 0.1681 1.2238 3.6194 0.0000
Strawberries02 1.35 0.0729 0.2700 0.7483 2.3469 0.0781
Strawberries03 1.55 0.1037 0.3220 0.1416 1.5362 8.9808
Strawberries04 1.9 0.0934 0.3057 -0.4674 1.6204 26.5756
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to keep the model as simple as possible; if a good model could not be found
assuming a linear relationship, we would move on to more complex fittings.
We initially used ordinary least squares to do the fittings. This implies a series
of assumptions over the errors, mainly that they are normally distributed,
with constant variance, and independent of each other. It also implies that
the independent variables are free of error, or that their error is insignificant
compared to the error of the dependent variable.

Once the type of model (i.e., linear) has been chosen, the problem which
arises when working with multiple predictors is knowing which of the possible
predictors (i.e., the independent variables, in our case the calculated image
statistics) should be included in the model and which should be left out. The
way in which we deal with this is performing F-tests over the possible models.
Computing the R2 value or another goodness-of-fit metric and comparing their
values for both models is typically not enough. The reason for this is that given
two models, A and B, with pA and pB terms, respectively, if pA > pB , model
A will always fit the data at least as good as model B. Thus, what has to
be found out is if the addition of that extra parameter(s) to model A gives a
significantly better fitting; as mentioned, we make use of F-statistics to assess
that. In the following we describe this process in detail, while Appendix A
describes the use of F-tests in the construction of multiple variable models.

3.2.1 Building multiple variable models

A stepwise regression is used to build the possible multilinear models [26].
The idea is to start from an initial model, typically with the single variable
showing the highest correlation with the data. Then, the steps described below
are performed iteratively until no more variables can be added.

– Step 1: Test all variables independently with partial F-statistics. The vari-
able with the lowest p-value is added to the model (as long as the p-value is
lower than the significance level, p-value < ↵). This step is repeated until
no more variables can be added.

– Step 2: Since the addition of a new variable can cause a previously intro-
duced value to be non-significant, a partial F-statistic is computed for each
variable currently in the model as if it were the one introduced in the last
place. The one with the largest p-value is removed (as long as the p-value is
larger than twice the significance level, p-value > 2↵), and a new iteration
begins with Step 1.

The process ends when, in Step 2, no variables are removed because there
are no variables whose p-value is larger than the significance level (which
implies that no variables can be added either). Please note that even though
some combinations of variables may not have much sense (e.g. having k5 and
k1 both included in a regression) we initially make exhaustive tests without
taking into consideration these constraints, which will be evaluated over the
final model selected.
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It is clear from the procedure above that the initial model selected and the
order in which variables are selected to be introduced or removed from the
model determines the final model reached. For this reason, we repeated the
algorithm for stepwise regression starting from every possible single variable
initial model. This yields di↵erent final models, for which a series of metrics
are computed in order to evaluate the accuracy of the fitting. In particular we
compute the RMSE and the overall F-statistic for each model obtained (see
Appendix B for a definition of these parameters). Based on them we select the
best model, which yields the following equation for the regression:

� = 3.8872 + 0.3752logLH � 2.9941k1 + 0.0160pov. (4)

Figure 3 shows the observed � values against the � values predicted by this
model. Additionally, it compiles di↵erent metrics assessing the accuracy of the
previous regression, including R

2 and R̃

2 (see Appendix B for a definition of
R̃

2) as well as the already mentioned RMSE and F-statistic with its associated
p-value.

Fig. 3 Predictive accuracy of the regression shown in Equation 4. The x-axis shows observed
� values, while the y-axis depicts the values predicted by the regression. The cyan line shows
the quadrant bisection (i.e., y=x)

3.3 Robust regression

When performing an outlier analysis over the residual of the model obtained in
Section 3.2, there are two observations which systematically appear as outliers
in the fitted models (the 95% confidence interval for the mean of their residuals
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does not include zero). One option is therefore to remove these two values
(Building04 and Lake04 ) from the data and re-do the multilinear regression
fitting.

An alternative to eliminating the observations regarded as outliers is to
retain all the observed data but weight their influence when computing the
regression. To do this, we perform a new regression with the same predictors as
in Equation 4 using iteratively reweighted least squares. The weight function
used is a bisquare function. The new regression is thus given by the following
equation:

� = 2.4379 + 0.2319logLH � 1.1228k1 + 0.0085pov. (5)

Figure 4 shows the predictive accuracy of the model obtained by robust re-
gression compared to Ordinary Least Squares, both with all the observed data
(left) and after outlier removal (right). Additionally, if we compute a robust
RMSE estimate for this last regression [11], we obtain an estimate of 0.0962
(while estimates for the previous ones, OLS with and without oultiers, were
0.2208 and 0.0664 respectively).

Fig. 4 Predictive accuracy of the model obtained by robust regression against the ones
obtained by ordinary least squares, with all the observed data (left) and after outlier removal
(right). The abscissae show observed � values, while the y-axes depict the values predicted
by the regression. The cyan lines mark the quadrant bisection

4 Results

We evaluate the results of our multilinear model with a collection of images
from the HDR Photographic Survey [13], di↵erent from the set of images we
used to learn our model. For a collection of LDR images with di↵erent levels of
exposure we perform the expansion with the � estimated with our multilinear
robust regression model (Equation 5) as well as with the � prediction from the
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linear model proposed by Masia et al. [17]. The images used for this evaluation
can be seen in Figure 5.

Fig. 5 Images used in this work for the evaluation of the model showing, from left to
right, increasing degrees of exposure. From top to bottom: Chapel, Frontier, Hoovergarage,
McKeesPub, and Redwoodsunset [13]

We first compute the � values for all the test images and compare them
with the � values predicted in Masia et al.’s work. Figure 6 reveals that, while
estimated � values in bright images (higher key) are very close in both models,
when images become darker, the two di↵erent predictions tend to di↵er. To
find out which of these models yields better results we perform an expansion
of the set of LDR images with the � values obtained from Masia et al.’s
linear model and those obtained with our multilinear model (Equation 5),
and then evaluate the visual improvement of the expansion with respect to
the original LDR image. For this purpose we use the image quality metric
proposed by Aydin et al. [3], which identifies visible distortions between two
images independently of their respective dynamic ranges. The metric uses a
model of the human visual system, and visible changes between a reference
and a test image are classified into three types of structural changes: loss of
visible contrast (when contrast visible in the reference image becomes invisible
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Fig. 6 Estimated � values with Masia et al.’s linear model and with our multilinear model.
The x-axis depicts the key of the image with 1% of the darker and brighter pixels removed.
It can be seen that, the lower the key is, the more the two models tend to di↵er. Figure 7
later shows how the � values obtained by our regression yield comparable results to those
of Masia et al. for brighter images while clearly performing better for dark images

in the test one), amplification of invisible contrast (when invisible contrast in
the reference image becomes visible in the test one), and reversal of visible
contrast (when contrast polarity is reversed in the test image with respect to
the reference). It is important to remember that, as noted by Rempel and
colleagues [24], contrast enhancement usually increases perceived quality and
is therefore a desired output of the rTMO. The results of this metric for two
of the images of the test collection for a variety of exposures can be seen
in Figure 7 (for the results corresponding to the rest of the images tested
please refer to the supplementary material2). The metric reveals that, while
performing similarly good in bright images, our multilinear model performs
better in dark images. We have observed that, the lower the key of the image,
the better our performance is compared with the model proposed by Masia et
al. [17].

Finally, we show in Figures 8 and 9, for the lower exposures of our test
set, the tonemapped HDR resulting from the expansion with the � calculated
with our multilinear model as well as with Masia et al.’s linear model and we
confirm the visual improvement, especially in terms of improved contrast, of
our model over Masia et al.’s work, specifically for under-exposed content.

2 Available at:
http://webdiis.unizar.es/~bmasia/downloads/MMTA_Masia_SupplementaryMaterial.zip
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Fig. 7 Comparing the results with the image quality metric [3]. Expansion with the �

obtained in [17] and our �, for the images Chapel and Frontier [13]. For each image we show
the original LDR for di↵erent degrees of exposure together with its key k1 and the result of
the metric together with the � value used for the expansion. Green, blue and red identify loss
of visible contrast, amplification of invisible contrast and contrast reversal respectively. Our
gamma expansion shows a better performance the darker (lower key) the image is (recall
that amplification of contrast is desirable [24]), while yielding comparable results in high-key
images. Please refer to the digital version of the article for full appreciation of the details
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Fig. 8 Original LDR image and tonemapped result of the expansion with the � obtained
in [17] and our �. From top to bottom: Chapel, Frontier, and Hoovergarage [13]. Note the
increased contrast yielded by our method. Please refer to the digital version of the article
for full appreciation of the details

Fig. 9 Original LDR image and a cropped region of the tonemapped result of the expan-
sion with the � obtained in [17] and our �. Top row: McKeesPub; bottom row: Redwood-
sunset [13]. Note the increased contrast yielded by our method. Please refer to the digital
version of the article for full appreciation of the details
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5 Conclusions

In this work we have presented an automatic, global rTMO, fast enough to
be computed on the fly and based on a simple gamma expansion following
insights by Masia et al. [17] about user preferences on expanded content. We
have computed image statistics from a set of varied images and have derived
a multilinear model that fits this data and estimates the � value to be used to
expand the LDR content.

We have validated our model on a collection of images di↵erent from the
ones we used to fit the model. We have demonstrated that the � value obtained
with our robust multilinear model yields results comparable to Masia et al.’s
work for overexposed content, while outperforming their linear model in un-
derexposed images. Across a wide range of exposures, we have shown greater
amplification of contrast invisible in the original LDR image while avoiding
loss and reversal of contrast.
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A F-tests for assessing the appropriateness of adding new

predictors to a model

An F-test is typically performed to decide whether or not a certain null hypothesis can be
rejected. To do this, a test statistic (the F-statistic) is needed which under the null hypothesis
follows an F-distribution. In our case, the null hypothesis is that, given two models, A and
B, with a number of predictors pA and pB (pA > pB), the two models fit equally well the
data. The F-statistic is then given by:

FpA�pB ,n�pA =
(SSB � SSA)/(pA � pB)

SSA/(n� pA)
, (6)
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where SSi, i = {A,B}, is the sum of squared residuals of model i, and n is the number
of data values [26]. It must be noted that in Equation 6, and throughout the document, pi
as a measure of the number of terms in the regression includes the constant term (i.e. the
intercept).

For the particular case of creating model A by adding one variable to a model B that
has p terms, and expressing the formula in terms of R2, the F-statistic becomes:

F1,n�p�1 =
R

2
A �R

2
B

(1�R

2
A)/(n� p� 1)

(7)

As it is well known, given a value for F in an F-test, the p-value is the probability of
obtaining a value as extreme as the F obtained, assuming that the null hypothesis is true.
As a consequence, the null hypothesis is typically rejected if the p-value is lower than the
significance level ↵ (which, in this work, has the usual value of ↵ = 0.05).

B Goodness of fit in multilinear regressions

This appendix includes the description of a series of metrics which are typically used in
regression analysis to measure the accuracy of the fitting of a certain model.

RMSE. For a multilinear regression, RMSE is computed as shown in Equation 8, where
Yi are the observed data (i.e. the given � values) and Ŷi the data predicted by the model.

RMSE =

vuut
nX

i=1

(Yi � Ŷi)2/(n� p), (8)

where, n is the data size and p the number of terms in the regression. Please recall that
in this formulation the intercept is included in p. This metric provides an intuition on the
error we would incur in when using a certain regression to estimate the value of a variable.

Overall F-statistic. The overall F-statistic is simply an F-test in which the null hy-
pothesis is that the data can be explained by a constant (which would be the mean of the
observed data), versus the hypothesis that the data can be explained by the selected model.
Therefore, a high F-statistic and, specially, a low associated p-value indicate that the hy-
pothesis that our model explains the data (vs. the hypothesis that a constant explains them)
is clearly correct.

R2 and adjusted R2. Typically used to assess how well the values predicted by a
model will adjust to the real values, in the case of linear regressions R2 is simply the square
of the correlation coe�cient between the observed and the predicted data.

However, in the case of multilinear regression, the R

2 value will always increase as new
variables are added to the model. For this reason sometimes the adjusted R

2 is used, which
corrects for the number of explanatory variables in the model. As a result, the adjusted R

2

value will only increase if the new term improves the regression more than would be expected
by chance. The adjusted R

2 value is usually denoted by R̃

2 and computed as follows:

R̃

2 = 1� (1�R

2)
n� 1

n� p

(9)

where, again, n is the data size and p the number of terms in the regression. Please recall
that in this formulation the intercept is included in p. It is well-known that the higher the
R

2 and the adjusted R

2 values, the higher the correlation between the values predicted by
the model and the values actually observed.


