

Advanced Free Viewpoint Video Streaming Techniques

Árpád Huszák

huszak@hit.bme.hu

Budapest University of Technology and Economics, Department of Networked Systems and Services, Hungary

Abstract

Free-viewpoint video is a new type of interactive multimedia service allowing users to control their viewpoint and generate new views of a

dynamic scene from any perspective. The uniquely generated and displayed views are composed from two or more high bitrate camera

streams that must be delivered to the users depending on their continuously changing perspective. Due to significant network and

computational resource requirements, we proposed scalable viewpoint generation and delivery schemes based on multicast forwarding and

distributed approach. Our aim was to find the optimal deployment locations of the distributed viewpoint synthesis processes in the network

topology by allowing network nodes to act as proxy servers with caching and viewpoint synthesis functionalities. Moreover, a predictive

multicast group management scheme was introduced in order to provide all camera views that may be requested in the near future and

prevent the viewpoint synthesizer algorithm from remaining without camera streams. The obtained results showed that even 42% traffic

decrease can be realized using distributed viewpoint synthesis and the probability of viewpoint synthesis starvation can be also significantly

reduced in future free viewpoint video services.

Keywords: Free Viewpoint Video, multicast streaming, viewpoint prediction, distributed networks

1. Introduction

Free viewpoint video (FVV) is an interactive multimedia

service offering similar functionalities that are known from

3D computer graphics. FVV allows users to choose own

viewpoint, viewing direction and interactive free navigation

within a visual scene likewise 3D computer graphics

applications. The main difference is that FVV targets real

world scenes, captured by real cameras, without using 3D

graphical models. Slightly different viewing angles can be

requested by the customers as they control their own

viewpoint position and perspective, e.g. by moving or

turning their head or changing position in a room. The

customers of these interactive multimedia services may

control the viewpoint and generate new virtual views of a

dynamic scene continuously. The uniquely generated and

displayed views are composed from several high bitrate

camera streams that must be delivered from the cameras to

the viewpoint synthesis algorithm that can be deployed at

the media server, at the client or in the network. The free

viewpoint video experience becomes more realistic as the

number of camera views used to sample the scene

increases. On the other hand, more camera streams requires

higher network capacity, because the network traffic load

increase, as well. Without advanced stream delivery

schemes, the network bandwidth required to transmit

multiple camera views for the viewpoint synthesizer

deployed in the user equipment can overload the links of

the network.

FVV has been drawing more and more attention due to

promising features and various application scenarios. Free

viewpoint streaming with its advanced features is foreseen

as the next big step in 3D video technology beyond

stereoscopy. However, a commercial free viewpoint

television (FTV) service will be similar to the IPTV

solutions, the difference is that not only one stream belongs

to a TV channel, but several video streams [1]. The other

difference is that the displayed media content is also

dissimilar due the individual viewpoints of the same scene

demanded be the users.

The research activity on this topic is very intensive

because the key techniques of FVV are still not efficient

enough to provide services with acceptable quality.

Viewpoint synthesis is a very computational hungry

process, therefore the existing algorithm are still trying to

find the tradeoff between the video quality of the

synthetized view and the processing time of the algorithm.

Two methods can be used to synthase an individual

viewpoint from the camera sequences: Light Field

Rendering (LFR) [2] and Depth Image Based Rendering

(DIBR) [3]. The LFR algorithm interpolates a virtual view

from multi-camera images, while DIBR uses fewer images

and a depth map to establish new views [4].

 For transmission over limited channels FVV data must

be compressed efficiently. Multi-view video compression

techniques have been widely studied and powerful

algorithms were proposed. Although many efforts have

been done to compress LFR and DIBR, transmitting issues

have not been deeply investigated.

Although different approaches have been used to

generate 3D video, all these approaches make use of

multiple views of the same scene. Delivery of multi- view

FVV is different from traditional video streaming in the

following points. An FVV service requires several video

streams captured by different cameras recording the scene

from different locations. Hence, the streaming costs more

bandwidth than single video stream, therefore scalable

quality of service is an important issue. In order to support

more multi-view videos in IP networks, a simple approach

is to minimize the bandwidth consumption by transmitting

only the minimal number of views required. Current IP

multicast routing protocols (e.g. PIM-SM) exploit shortest

path tree logical layout for point-to-multipoint group

communications that significantly reduces the network

bandwidth. To synthesize a view using DIBR, the user

must receive two continuously changing camera views

instead of one due to viewpoint variance of users.

Therefore, it is desired to have a smart view selection

strategy to minimize the total bandwidth consumption in

the networks in order to provide scalable multi-view FVV

service.

The camera streams required by customers may change

continuously due to the free navigation of viewpoint, hence

the variation of visual quality due to view switching must

be also handled to avoid starvation of the viewpoint

synthesizer algorithm. Rendering FVV video streams at an

interactive frame rate is still beyond the computation

capacity of most devices. Remote rendering provides a

simple but effective solution, because both bandwidth and

computation problems can be solved by synthetizing virtual

views remotely on a powerful servers and sending the 2D

image of rendered scene back to user devices to display.

However, the distributed rendering solution can overcome

bandwidth and computational limitations, new questions

arises e.g. regarding to architectural issues.

In this paper scalable FVV viewpoint generation and

delivery schemes are proposed based on multicast

forwarding and distributed approach. To prevent the user’s

viewpoint synthesizer algorithm from remaining without

camera streams (starving), a predictive multicast group

management method is introduced in order to provide all

camera views that may be requested in the near future. We

examined the multicast groups join latency and viewpoint

movement features to find optimal threshold values that

minimizes the starvation probability but avoids unnecessary

camera stream forwarding. Multicast delivery can be used

together with the distributed viewpoint generation

approach. However, the viewpoint prediction based

multicast group management can be also efficient solution,

the localization of the viewpoint generation node is a

significant issue, as well. Hence, in this paper the

distributed viewpoint synthesis functionality was

investigated from the network layout point of view. Our

aim was to find the optimal arrangement of the distributed

viewpoint synthesis processes by allowing network nodes

to act as proxy servers with caching and viewpoint

synthesis functionalities. We also proposed a method on

order to minimize the traffic load of the FTV service

without overloading the computational and storage

resources of the network components. The performance of

the proposed streaming techniques was analyzed in Ns-2

simulations.

The rest of this paper is organized as follows. The

background of free viewpoint video viewpoint synthesis

and streaming methods are presented in Section II. In

Section III, the proposed distributed viewpoint synthesis

approach based on multicast delivery for FVV services is

introduced. The obtained performance results are presented

in Section IV. The summary of the paper and the

conclusions can be found in the last section.

2. Overview of Free-viewpoint video

Media content delivery requires high link capacity and

low latency in order to provide acceptable quality of media

streams. The transmission of traditional high resolution

single-view videos is still challenging, but in case of multi-

view videos this challenge becomes more interesting.

2.1. Multi-view video coding

To synthetize a virtual viewpoint from existing camera

views, the camera streams must be forwarded to the

renderer that can be deployed i) in the user equipment, ii) in

a media server, or iii) distributed in the network. Without

compression, the delivery of camera stream set would be

impossible.

The two-view stereo (stereoscopic) video is the simplest

scenario that consists of two videos representing the left

and right views from two slightly different viewpoints

corresponding to the distance of human eyes. Since two

nearby views have similar content, compression is based on

both adopting the traditional intra-view prediction along

each view and performing inter-view prediction between

two adjacent views.

With the advances of Depth Image Based Rendering

(DIBR) approach [3][7], the views can be reconstructed

from a video signal and a depth map. In case of video plus

depth (V+D) approach the 3D information are separated

into color and depth channels, where the depth information

can be transformed to a monochromatic, luminance-only

image taking values between 0 and 255 as shown in Fig. 1.

In general, the depth channel requires an extra 10–20% of

bit-rates to encode the depth information [8]. The free

viewpoint video technique is usually based on the V+D

representation. The most common solution requires two

video streams and corresponding depth sequences to

synthetize an individual virtual view.

Fig. 1. Video-plus-depth representation

2.2. Viewpoint synthesis

Image based view synthesis in real time is still an open

research problem that gains a lot of attention. It does not

use any 3D geometry at all. The intermediate virtual views

are generated from available natural camera views by

interpolation. The main advantage is a potentially high

quality of virtual views without 3D scene reconstruction.

However, dense sampling of the real world with a

sufficiently large number of natural cameras is necessary.

Due to large numbers of cameras tremendous amount of

image data needs to be processed. If the number of used

cameras is too low, interpolation and occlusion artifacts

will appear in the synthesized views causing reduced

quality. Several image based solutions have been proposed

[13][14][15] that often have problems in terms of both

computation time and perceptual quality of synthesized

views.

In case of DIBR at least two camera streams and the

corresponding depth map sequences must be available at

the renderer to generate an individual viewpoint [16][17] as

illustrated in Fig. 2. The color image and an associated

depth map along with camera calibration information, any

pixel of the image can be projected into the 3D space and

then projected back onto an arbitrary virtual camera plane,

creating a virtual image. Conceptually, this method can be

understood as a two-step process [18]: i) 3D image

warping: it uses depth data and associated camera

parameters to back-project pixel samples from reference

images to the proper 3D locations and re-project them onto

the new synthesized image space; and ii) reconstruction and

re-sampling: determination of pixel sample values in the

synthesized image.

In the first FVV solutions offline viewpoint generation

was mainly used in film production, e.g. for stop-motion

special effects in movies or for sports effects systems, like

“LiberoVision” [19]. Fortunately, the increased

computational and network resources makes interactive

real-time FVV services available, too.

Fig. 2. Viewpoint synthesis

The accuracy of the depth data significantly impacts the

quality of the generated virtual view. The amount of

distortion increases with the distance of the virtual view

from the original view, thus drastically limiting the

potential navigation range using single video plus depth.

The synthesis ability of image based representation has

limitations on the range of view change and the quality

depends on the scene depth variation, the resolution of each

view, and the number of views, as well. However, using

more than one view with corresponding depth channels, the

potential navigation range can be widened e.g. by pairwise

switching. The next step is to deliver the required V+D

streams to the renderer device that can be a server or a

client terminal with strong computational resource

constraints.

2.3. Streaming

The FVV streaming models can be categorized based on

the location of the virtual viewpoint synthesis in the

network. The first category depicted in Fig. 3.a is the

server-based model, where all the camera views and

corresponding depth map sequences are handled by a media

server that receives the desired viewpoint coordinates from

the customers and syntheses unique virtual viewpoint

stream for each user. In this case, only unique free

viewpoint video streams must be delivered through the

network. The drawback of the server-based solution is that

the computational capacity of the media server may limit

the scalability of this approach. The second solution (Fig.

3.b) is to deliver required camera streams and depth

sequences to the clients to generate their own virtual views

independently. In this approach the limited resource

capacity problem of the centralized media server can be

avoided, but huge network traffic must be delivered

0

255

zfar

znear

 a) Server-based b) Client-based c) Distributed

Fig. 3. FVV streaming model categories based on the location of the virtual viewpoint synthesis

through the network. Multicast delivery can reduce the

overall network traffic, however the requested camera

streams by a user is changing continuously that must be

also handled using advanced multicast group management

methods. The third model is a distributed approach (Fig.

3.c), where the viewpoint rendering is done in distributed

locations in the network. The distributed model can avoid

bandwidth and computational resource overloads and

handle the user requests in a scalable way.

Most of the published works assume client-based

viewpoint synthesis and focus on multi-view video

delivery. Authors of [20] are proposing a LFR based and

QoS aware FVV streaming solution. The paper focuses on

I-frame retransmission and jump frame techniques in the

application layer based on RTP/RTCP to support different

level of QoS. A streaming system for DIBR based FVV

over IP networks was introduced in [21]. The proposed

solution divides video streams into depth video, texture

video and common video, and transmits them in

RTP/RTSP individually making the service more robust

against transfer errors, however it did not solve view

switching and synchronization problems. Kurutepe et al.

[24] presented a multi-view streaming framework using

separate RTSP sessions to deliver camera views allowing

the client to choose only the required number of sessions.

The proposed scheme utilizes currently available streaming

protocols with minor modifications. Camera switching was

not investigated in their work.

Selective streaming is a method to reduce the bandwidth

requirements of multi-view video, where only a subset of

views is streamed depending on the user’s viewing angle.

To select which views should be delivered, the viewer’s

current head position is tracked and a prediction of future

head positions is calculated as reviewed in [22]. In order to

conceal prediction errors, low quality versions of other

views can be also be streamed as presented in [23].

However, the selective streaming method suffers from fast

head movements. They showed that delay in stream

switching, which is determined by the frequency of

switching frames, may degrade the perceived quality.

Very efficient way of reducing traffic load is multicast

delivery, suited for both video on demand (VoD) as well as

live multimedia applications. However, multicasting can be

applied only if a group of users are interested in the same

content in the same time. In case of FVV, the displayed

view is different for each user, but the required camera

streams can be the same. In case of FVV multicast delivery,

streams of camera views are transported over separate IP

multicast groups. The users can selectively join to multicast

groups that are used for delivery of camera stream, which is

required to synthetize the desired viewpoint. Multicast

transmission is effective to reduce the network load, but

continuous and frequent viewpoint changes may lead to

interrupted FVV service due multicast group join latencies.

Therefore, the required camera streams may arrive too late

and starve the FVV synthesizer process.

Multicast FVV transport solutions is a promising

delivery scheme, however it was not investigated deeply.

Authors of [25] and [26] proposed a multi-view video

streaming system based on IP multicast, where the camera

streams are transmitted using multiple-channels to support

various users who have different available bandwidth.

Other advanced ideas for transmission, like multipath

delivery, P2P or cloud-assisted techniques for multiview

video streaming were reviewed in [27].

2.4. Distributed FVV Streaming

The only paper we found in the literature regarding to

distributed 3D services was authored by Petrovic et al. [28].

They proposed an end-to-end delivery model for 3D video

applications, which leverages distributed system

architecture to reduce the bandwidth and processing cost at

the server and the end-hosts. Their prototype

implementation demonstrated that highly heterogeneous

clients can coexist in the system, ranging from auto-

stereoscopic 3D displays to resource-constrained devices.

Authors of [29] proposed a cloud based view

synthetization architecture for interactive multi-view video

systems facing with limited bandwidth constraints. They

introduced a synthesized reference view selection

optimization problem aimed at finding the best subset of

reference views to be transmitted to the decoder, where the

subset is not limited to captured camera views as in

previous approaches but it can also include virtual

viewpoints, too. In [30] a cloud-based free viewpoint video

rendering framework for mobile phones over cellular

networks was presented. More specifically, a novel

resource allocation scheme was proposed that jointly

considers rendering and rate allocations between cloud and

client to optimize the quality of experience.

Our work differs from the above work in that: i) in

previous works camera switches were not studied from the

starvation of the viewpoint synthesizer algorithm point of

view; ii) how to trigger multicast group join and leave

control messages and iii) none of the papers deal with the

layout issues of a distributed FVV system.

3. Distributed viewpoint synthesis approach based on

multicast delivery

Free viewpoint video and television services allow users

to individually change the desired viewpoint of a video

scene that is captured by several. In order to produce the

requested viewpoint, the camera streams must be delivered

to the viewpoint synthesizer algorithm. Due to very high

storage capacity and computational resource requirements,

we propose to distribute the viewpoint synthesis process in

the network and deliver the camera streams using multicast

streaming. The distributed architecture combined with

multicast routing can solve the scalability problems and

keep the traffic load as low as possible.

Our aim was to find the optimal deployment locations of

the distributed viewpoint synthesis processes in the

network topology by allowing network nodes to act as

proxy servers with caching and viewpoint synthesis

functionalities. These proxy servers share their resources

for viewpoint synthesis, recoding and caching purposes.

Therefore, the user is not connected directly to the media

server, but asks the most appropriate proxy server for a

synthetized stream with the desired viewpoint. The aim of

the proxy servers is to gather the camera streams that are

needed to serve the connected clients and originate the

unique streams as illustrated in Fig. 4.

Fig. 4. Proxy server based view synthesis

Basically, a proxy server may cache the segments of a

conventional video stream, but in case of FTV services it is

preferred to support codec functionalities and viewpoint

synthesis, too. We modeled the proxy element as presented

in Fig. 5.

Fig. 5. Caching and rendering proxy model

The received multicast camera streams (all or only a set

of streams) are processed by the decoder module and stored

in the cache to handle delay variation. Based on the

incoming viewpoint requests, the viewpoint synthesis

module will generate the new stream that will be coded

according to users’ coding setups (resolution, coding

quality). The outputs of the proxy server are the unique,

user specific streams.

In this paper our aim was to analyze how to localize the

proxy servers in order to find optimal proxy server layout

for FTV service. Actually, different objectives can be

targeted to optimally locate the proxy servers, nevertheless

in this work our objective was to generate the lowest traffic

load, but avoid the overload of computational and storage

resources. In order to provide seamless viewpoint changes,

the set of required camera stream must be available at the

proxy server. Multicast delivery of camera streams from

media server to proxy server is an appropriate solution,

however due to network latency and frequent changes of

the viewpoint, the required camera streams may arrive too

late, interrupting the FVV synthesis and playout. Therefore,

we propose a seamless FVV streaming scheme based on

user viewpoint prediction. In order to avoid the starving of

the FVV synthesizer, we prefetch the camera views that

will be probably required for the viewpoint generation.

The first part of our work focuses on the optimal proxy

layout issues, while the second part introduces predictive

multicast group management solution to prevent the

viewpoint synthesizer algorithm from remaining without

camera streams.

3.1. Optimization of distributed viewpoint synthesis

In order to find the optimal arrangement of the

distributed viewpoint synthesis processes, the network

architecture must be introduced first.

As Fig. 4. shows, the path between the media server and

each client can be divided into two parts. In Section_1

(from media server to proxy server) the real camera streams

are delivered, while Section_2 (from proxy server to the

client) the user specific views are transferred. The camera

streams must be always forwarded with the highest quality

and full resolution, requiring higher bandwidth, but

fortunately multicast delivery mode can decrease the

δ

D-δ

...

overall occupied bitrate on the links. In Section_2 the

streams are unique, so multicast is not an option.

Opportunely, the synthetized streams may be coded with

lower bitrate, e.g. if it is played out on a mobile terminal

with low resolution display. By locating the viewpoint

synthesis functionality closer to the camera sources, the

high bitrate camera streams will use less network links,

therefore occupying less total bandwidth in the network.

On the other hand, the proxy servers will have to serve

more clients, so the total network traffic of the unique user

specific streams will be higher. The goal is to determine the

proxy locations to minimize the overall number of link

usage:

  min
UC MC

  , (1)

where ФMC stands for the overall number of multicast links

in Section_1 and ФUC is the number of network links used

to deliver user specific unicast streams in Section_2,

respectively.

Multicast significantly alleviates the overhead on

senders by allowing them to reach the entire group with the

transmission of a single packet. While, multicast routing

ensures that only one copy of each packet will traverse each

link, significantly reducing the network load. The gain of

multicast in terms of network resource consumption was

firstly analyzed by Chuang and Sirbu [31]. Their scaling

law shows that in case of multicast, the average number of

hops from the source to randomly chosen m distinct

destinations in the shortest-path tree is E[HN]∙m0.8, where

E[HN] is the average number of hops of a message to a

uniform location in the graph containing N nodes. Hence,

in case of unicast delivery to m different users, the hop

number is m∙ E[HN].

In order to analytically investigate the optimal

hierarchical level of the proxy servers, k-ary tree is

considered. The depth of the tree is D, with the source at

the root of the tree, while all the receivers are placed at the

leaves and the viewpoint synthesis is performed in the

proxy servers located δ hops from the root (Fig. 6.).

Fig. 6. Considered network topology: k-ary tree

In a simplified k-ary tree distributed FVV architecture

the proxy servers are placed at level δ in the hierarchical

tree. Hence, there are kδ proxy servers served by multicast

camera streams. Assume that only one multicast camera

stream is forwarded. Now, if we select n not necessarily

distinct proxy servers, each such selection will require a

path through one of the kl links at level 1. Hence, picking

one of the proxy servers at random is equivalent to picking

one of the kl links at level 1 at random. Thus, the

probability that this particular link is in the delivery tree

after n proxy servers have been selected is given by [32]:

  1 1
n

l
k


  (2)

All such probabilities are independent since the sum of

the averages is independent of correlations, and so the

average number of links in the delivery tree at level l is

   1 1
n

l l

MC
k k


   . (3)

Assuming that the bitrate of multicast camera streams

are equal, the traffic load correlates linearly to the number

of links in delivery tree. If there are c cameras (multicast

groups) deployed, the average number of links in the

multicast delivery tree (Section_1) can be calculated as

follows:

   
1

1 1
n

l l

MC

l

c k k








    (4)

Calculating the number of used links in Section_2 is

simpler, because the user-defined streams are forwarded

from the proxy servers to the users in unicast mode.

According to Fig. 6., there are D-δ unicast hops from proxy

to client, hence the total number of hops in Section_2 can

be calculated as follows:

  
UC

M D    (5)

In equation (5), M stands for the number of users. In

order to find the appropriate hierarchical level for proxy

server locations, we must estimate the consumed network

resources in the proposed distributed FVV architecture:

     
1

1 1
n

l l

MC UC

l

c k k M D



  




       (6)

We performed numerical analysis to investigate how the

hierarchical level of proxy servers impacts the overall link

usage, thereby the traffic load in a basic network with k-ary

tree topology. The optimal level of proxy servers (δ)

depends on the parameter k, the number of users (M) and

the depth of the network topology (D) based on

equation (5). Unfortunately, the classical way of marginal

value calculation cannot be derived:

 d

0
d

MC UC
 




 (7)

We analyzed different parameters, how they modify the

optimal hierarchical level of proxy servers. In a basic k-ary

topology, where k=5, tree depth D=8 and number of

cameras c=3, the lowest link usage of the networks that can

0

500000

1000000

1500000

2000000

2500000

3000000

1 2 3 4 5 6 7 8

n
u

m
b

e
r

o
f

lin
ks

δ

Unicast

Multicast

be calculated by (5), depends on the number of clients, as

Fig. 7. shows.

Fig. 7. Overall link usage in k-ary tree network with D=8 levels,

depending on number of FVV customers

According to the presented results, if the number of

FVV users (M) decreases, the view synthesis process must

be located closer the root (media server) of the network.

E.g. in case of 105 users, the ideal proxy server location is

at level δ=7, while having only 100 customers, the lowest

number of overall hop number can be achieved if the

viewpoint synthesis is deployed 2 hops from the media

server (root).

The optimal proxy server location is also influenced by

the number of FVV cameras. In the proposed distributed

FVV model, each camera stream is forwarded in separate

multicast groups. In order to introduce how camera number

modifies the traffic load in the network, we set k=3,

M=1000 and D=8. The calculated average numbers of links

in the delivery paths are shown in Fig.9.

Fig. 8. Overall link usage in k-ary tree network with D=8 levels,

depending on number cameras

By increasing the number of cameras, the total hop

number, as well the traffic load is also increasing in the

multicast part of the network (Section_1). As the

calculations show, the optimal hierarchical level of proxy

servers, where the link usage is the lowest, is closer to the

media server if more cameras are deployed. In opposite,

e.g. having only three cameras, the lowest number of links

usage can be achieved if the view synthesis is performed at

level δ=6 that is further from the media server.

Finally, we analyzed the ratio of average number of

links in the multicast (Section_1) and unicast (Section_2)

delivery tree. In a simple k-ary tree network, the total hop

number of multicast links is higher, if the path between the

media server and the view synthesis functionality (proxy

server) is longer, because the proxy servers are served in

multicast delivery mode. Similarly, if the proxy server is

close to the media server, the multicast traffic hop number

will be negligible, however on the other hand the longer

unicast path will cause higher load in unicast Section_2.

Fig. 10. shows the numerical result of a k-ary tree FVV

architecture with D=8 levels, where k=5, camera number is

7 and the number of users is 105.

Fig. 9. Overall link usage in k-ary tree network

According to the calculations, the lowest number of

delivery paths was used, when the proxy servers were

located at level δ=6 in the hierarchical FVV architecture.

The k-ary tree topology is a simplified layout for

analytical investigation. Actually, the real network graph

representations are more complex, hence finding the proxy

server locations is more difficult.

The described proxy localization problem can be

mapped to a knapsack combinatorial optimization task [33],

if the items are considered to be the proxy servers, the

value is the occupied total bandwidth (actually, it is the

inverse of the bandwidth, because we want to minimize it

and not maximize) and the limited weight is the

computational and link capacity limit. Unfortunately the

knapsack problem is known as NP-complete problem, so

there are no guaranties that the optimal proxy topology

setup can be found with acceptable runtime. In case of

brute force method, all possible proxy location must be

examined for each client. The complexity of the brute force

optimization approach is O(k2n), where n stands for the

number of possible proxy server locations and k is the

number of users. Finding the optimal distribution of the

viewpoint synthesis process is hard even in static network

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8

n
u

m
b

e
r

o
f

lin
ks

δ

cam=3

cam=5

cam=9

cam=13

environment, where the clients do not change their point of

access and the required camera streams necessary for the

viewpoint production do not vary. In reality the problem is

more difficult due to the continuously changing

environment.

3.2. Predictive multicast group management

In our proposed scheme we use multicast delivery of

camera streams from media server to proxy servers,

however due to network latency and frequent changes of

the viewpoint, the required camera streams may arrive too

late, interrupting the FVV synthesis and playout. The

interruption can become more serious in case of fast

viewpoint changes.

To generate a desired virtual perspective, the proxy must

be joined to multicast groups that contain the required

camera views. When the user changes his viewpoint and

new camera views are needed, the proxy server must join to

a new multicast group ensuring the actually needed camera

streams. If the multicast group change (leaving the old

multicast group and joining the new one) is performed only

when the new virtual view already must have appeared on

the users screen, there will be an interrupt in the FVV

playout, because the lately requested camera view will not

be received in time to synthetize the new viewpoint.

Therefore, our aim was to propose a viewpoint prediction

based solution for camera view handoffs to minimize the

probability of the synthesis process starvation. To prevent

the user’s viewpoint synthesizer algorithm from remaining

without camera streams, multicast group join threshold is

introduced in order to start prefetching camera views that

may be requested in the near future.

The following scenario introduces how the proposed

threshold is used to prefetch camera streams based on

viewpoint prediction (Fig. 10.). Using the proposed

prediction model in this sample scenario and supposing that

the viewpoint of the client is moving from the blue camera

view position towards the yellow one, the desired view will

reach Threshold_1 initiating a joint message to the yellow

camera multicast group. While the viewpoint of the client is

within the threshold zone, it will become a member of three

multicast groups (blue, green and yellow). If the viewpoint

is moving towards the yellow camera position and reaches

Threshold_2, the proxy should leave the blue multicast

group.

Fig. 10. Multicast FVV: Multicast group join thresholds

However, Fig. 10. shows a linear camera topology setup,

the cameras can be deployed in plane (2D) and in space

(3D) as well. In the latter cases not only two camera

streams are required for the viewpoint synthesis, but three

or even four that makes the threshold area determination

more difficult. Our goal was to keep the threshold area as

low as possible to reduce the number of multicast group

memberships, so the overall network bandwidth, but keep it

large enough to avoid playout interruption during

viewpoint changes.

In order to find the optimal threshold values, the

multicast groups join latency and viewpoint movement

features were examined. Assuming a linear camera row,

where xi denotes the actual viewpoint position and vi the

velocity of the viewpoint in time ti, the next viewpoint

location in time ti+1 can be expressed as follows

  
1 1 1i i i i i

x x v t t
  
    

Depending on the velocity of the viewpoint in the next

moment (vi+1), the view synthesis algorithm may require

new camera views, despite that vi+1 is not known in ti time,

so it must be estimated based on previous viewpoint

movement behavior. We used linear regression method to

estimate the next viewpoint by calculating the average

viewpoint velocity values from previous viewpoint

coordinates.

To determinate the threshold values and zones of the

viewpoint coordinates that triggers the multicast join and

leave processes, the required time duration (dm) from

sending a multicast join message by the proxy server to

receiving the first packet of the camera stream is necessary.

After the reception of the new camera frames, the proxy

server can render and forward the required views. The

proxy server (Fig. 5.) can only decode the multicast stream

after receiving an I-frame, therefore the I-frame period time

Client

Virtual viewpoint

join group
(if Threshold_1 reached)

leave group
(if Threshold_2 reached)

Scene

Z

Vi

c1

c2

cN-1

cN

w=Z/2

Threshold_1 (MC group join)

Threshold_2 (MC group leave)

Threshold zone

section

(dI) must be also taken into consideration. Within TD=dm+dI

time the viewpoint location should not move to another

section of the camera row, where new camera streams are

required for the viewpoint synthesis, otherwise the

synthesis process will stall. In other words, if the new

camera video packets arrive within TD time, the proxy

server can render the required virtual views based on the

new camera stream without starvation. Therefore, the TD

time constraint is considered only for Section_1 (Fig. 4.),

while the rendering process time and the delivery delay

through Section_2 is not included in TD.

 In our proposed method the threshold zone dimensions

(Z) is determined as follows (see Fig. 10.)

  
1

2
i DZ v T


   

where TD is assumed to be the sum of dm (RTT (round-trip

time) between the proxy server and the FVV media server)

and dI (time distance between the I-frames), while vi+1 is

estimated as


1

1

i

j

j

i

v

v
i







 

In some cases the dm parameter can be even lower than

the RTT, if the join message goes through a multicast

router that already forwards the required camera stream to

other destination. If the camera view must be inquired from

the media server, the multicast join latency will be equal to

RTT. In order to minimize the viewpoint synthesis

algorithm starvation, we used  max
m

d RTT in our

model. According to Fig. 10., the threshold zone size can

be calculated also as

 _ 2 _1Z Threshold Threshold   

The threshold values in each section can be determined

based on the camera coordinates (ck) and the threshold zone

size (Z) as 2
k

c Z . In the forthcoming evaluation section,

w=Z/2 was used as a parameter, named window size.

From architectural point of view, the proposed solution

requires multicast support in the network layer. The

generally used PIM-SM [34] or PIM-DM [35] protocols are

applicable for the presented free viewpoint video streaming

service without any modification. Using PIM-SM

rendezvous point (RP) and routers with multicast support

are necessary elements of the network, while the control of

group management packages must be done in the

application layer. Synchronization of camera streams are

also required in order to perform seamless camera

handovers. Using the RTP/UDP timestamp feature this

problem can be handled.

4. Simulation results

In order to examine the achievable gain of the proposed

viewpoint synthesis process distribution in a multicast free

viewpoint television network, simulation environment was

used. Due to very high simulation runtimes, the

performance analysis was performed using a simple

network, which spanning tree has only several hierarchical

levels. First, the impact of proxy server localization on

network traffic was analyzed with our simulation tool that

was implemented in Java, while the proposed threshold

based multicast group management method was examined

using Ns-2 [36]. We used Ns-2 because it has built-in PIM-

DM multicast routing implementation.

4.1. Evaluation of optimized proxy server deployment

Beside the analytical analysis of distributed viewpoint

synthesis, simulations were also performed in order to

evaluate the benefits of the proposed approach. The

implemented Java simulation tool provides an interface to

design the FVV network topology, set link capacities, add

users and their requested viewpoint coordinates, determine

the camera set and define network elements to act as router

or proxy server. Proxy server (with viewpoint synthesis

functionality) can be added manually to a network, or using

the optimization process. To find the global optima, we

used a brute force approach. Unfortunately it works only

for small network (cca. 20 network elements and max. 60

clients) due to long simulation runtime.

In the first phase of the evaluation process, the analytical

results were compared with the outcome of the simulations.

Afterwards the proposed proxy arrangement scheme was

analyzed from the number of hierarchical layers, number of

clients, and camera bitrate point of view.

Taking the limitation of both the analytical and

simulation examination into consideration, a four level

(D=4) binary tree (k-ary tree, where k=2) network topology

was used for the comparison tests with 30 clients and 1

Mbps video stream bitrates. However, the analytic model

can handle higher k values and more hierarchical levels

(D), the simulation runtime makes it not possible to

increase these parameters. On the other hand, the

simulation tool is able to work not just with k-ary tree

layout, but with more complex network topologies. Fig. 11.

shows the comparison results of the theoretical and

simulation based analysis, where impact of the number of

reference cameras was examined. The solid lines show the

analytic estimation of the total traffic in the network, while

the dashed lines sign the simulation results. Two scenarios

were analyzed with cam=5 and cam=9 reference cameras

deployed. The results show that in all of the cases the

second layer (δ=2) was resulted as the most appropriate

layer for proxy deployment.

 Fig. 11. Comparison of simulation and analytic approach

According to the obtained simulation results, we found

4.6% and 8.5% difference in average compared to the

theoretical result for cam=5 and cam=9 scenarios,

respectively. The analytical model estimates the most

appropriate hierarchical level for the proxy server

deployment, therefore in the comparison analysis the

proxies were allowed to be located at the same hierarchical

level in the simulations. However, the advantage of the

simulation tool is that it can analyze all possible

arrangements, not just those ones, where all the proxy

servers are at the same level. The other significant

advantage of the implemented simulation tool is that it

takes network capacity into account and discards all

layouts, where any of the links is congested or proxy server

is overloaded. The distortion analysis of virtual views due

to packet losses is out of the scope of this paper.

In order to measure the performance of the proxy server

layout optimization scheme, two network topologies were

used. One with three hierarchical levels (D=3) and the other

one with four levels (D=4). The default values of link

capacities were set to 100 Mbps, while assuming high

definition reference camera system, the stream bitrates

were 10 Mbps.

The brute force algorithm compares all proxy setup

combination and checks whether it is a correct topology

arrangement or not. While the network links capacities and

the proxy server computational resources are limited, in

some of the network layouts the proxy servers and the links

can be overloaded. These incorrect proxy server

arrangements must be rejected. Otherwise, service

guaranties cannot be offered.

By increasing the number of hierarchical level, the

number of total layouts grows exponentially, similarly to

the optimization process runtime. Table 1 shows the

number of total and acceptable proxy server arrangements

in a two, three and four level hierarchical network. Note

that most of the total layouts are not correct due to

unserved clients criteria, link or proxy server overloads.

The distributed proxy server brute force optimization

algorithm ran fast for two and three levels, but it took 66

hours for a network with four hierarchical levels containing

21 network elements and 60 clients.

Table 1. Number of proxy server layouts

Hierarchical

levels (D)
Total layouts

Correct

layouts

Duration

[ms]

2 8 1 1

3 512 124 190

4 2 097 152 704 969 239 927 390

In order to synthetize a desired viewpoint according to

the user’s request, at least two camera streams are

necessary. In the first simulation scenario we analyzed how

the camera stream bitrate effects the total occupied

bandwidth in a network with three hierarchical levels

(D=3). As Table 1. shows, in this case 512 different proxy

arrangement exist that are signed with #0 to #511 in the

following figures, while the different layouts are referenced

with #0 to #2097152 in case of D=4 . The camera bitrate

has impact on the first section of the delivery path, from

media server to proxy server, as the obtained simulation

results (Fig. 12.).

Fig. 12. Comparison of layouts from reference camera bitrate point of

view

According to the obtained results, the best performance

was achieved in case of layout #7 when the camera bitrate

was 10 Mbps or higher, while the worst performing layout

was #511. Layout #311 had an average performance. Fig.

13. shows the proxy server locations in these arrangements.

Fig. 13. Proxy server layouts

0

100

200

300

400

500

600

700

800

900

5 10 15 20 25

To
ta

l b
an

d
w

id
th

 [
M

b
/s

]

camera stream bitrate [Mb/s]

#7

#311

#511

Media
server

Layout #511

Layout #7
Layout #311

The optimally distributed viewpoint synthesis

functionality decreases the total traffic by 42% compared to

the worst case scenario even in this simple network

topology.

To evaluate the performance of the proposed distributed

viewpoint synthesis scheme, we compared the total

network traffic of all proxy server topology setups. Of

course, those layouts were discarded, where link congestion

or computational overload of proxy server occurred. In the

following measurement, we have compared all possible

proxy layouts of network topologies with three (Fig. 13.)

and four hierarchical levels from the network traffic point

of view. All the network elements, except media server,

were able to serve as a proxy server with viewpoint

synthesis functionality. Due to presentation reasons, the

analyzed layouts were ordered by the measured total

network traffic and illustrated in Fig. 14. The results are

shown in a single figure for both network topologies, hence

the overall bandwidth values of the four level network

topology are on the left vertical axis of the figure, while the

right vertical axis is scaled for the three level network

topology. There is also difference in the horizontal axis

scale.

Fig. 14. Network traffic of correct layouts in a three and four level

topology

The simulation results make it possible to compare the

occupied bandwidth of all proxy server layouts in a fixed

network structure. As Fig. 14. shows, there are significant

differences in performance. In case of a three level network

(D=3) the overall traffic can be reduced by 12% by

selecting the most appropriate layout, while in a four level

network (D=4) the gain is 16% compared to the worst

proxy server arrangement. The obtained results prove that it

is worth to consider viewpoint synthesis distribution for

free viewpoint television service and optimize the layout of

proxy servers in order to minimize the network traffic.

The other important constituents of a free viewpoint

video streaming service are the clients. Therefore, we

analyzed the performance variation from the number of

users point of view. In this measurement, a three level

network hierarchy was assumed, where 512 different layout

combinations exist, but only 124 are correct. The total

network traffic in case of 18 and 60 clients are presented in

Fig. 15. The proxy server layout combinations are ordered

by the occupied bandwidth values, similarly to the previous

figure.

Fig. 15. Comparison of layout performance from client density point

of view

The simulation results show that the difference between

the worst layout and the optimal one is more than 10% in

both cases. Comparing the occupied network bandwidth of

the optimal viewpoint synthesis distribution arrangements,

we can find that having 3.3 times more clients results only

2.1 times higher traffic load. The reason of this behavior is

that due to high number of client, most of the camera

streams are already forwarded through Section_1 (media

server to proxy server) of the delivery path (Fig. 4.). Hence,

by increasing the number of clients, the traffic load on

Section_1 will not increase, only in Section_2.

4.2. Evaluation of threshold-based predictive multicast

group management

Even if the optimal layout of proxy servers are found,

the networks latency and the frequent viewpoint changes

can lead to late camera stream delivery causing starvation

in the viewpoint synthesis process. The proposed predictive

multicast group management scheme uses viewpoint

prediction and a threshold for camera stream prefetching as

it was presented in section 3.2.

The performance evaluation of the proposed predictive

multicast FVV streaming model was based on Ns-2

network simulator. In the analyzed network topology the

viewpoint synthesizer proxy servers were deployed at the

lowest level of a hierarchical tree network topology with

four levels (D=4). We used PIM-DM multicast dense mode

protocol in the FVV streaming simulations. The default

parameter values of the simulated network used for the

examination of the predictive FVV streaming scheme are

presented in Table 2.

In the evaluation phase, the viewpoint velocity was

considered to be measured in camera distance unit. This

means that the distance between two neighbour camera

positions is considered to be cam_dist=1. In the analysed

FVV scenario the user viewpoints shift with viewpoint

velocity value in random times. The time difference

between two viewpoint shifts can be set with the max.

timeslot length parameter.

Table. 2. Default parameters

Parameter Default value

simulation time 20 s

link delay 10 ms

total number of clients 350
number of cameras 25

camera stream GOP size 1

packet size 1000 byte

video bitrate per camera 1 Mbps

link bandwidth 10 Mbps

viewpoint velocity (v) avg. 0.3 × camera distance per timeslot
max. timeslot length avg. 0.05 sec, rand(0; 0.1)

window size (w=Z/2) 0.3 × camera distance

In the following simulation scenario we analyzed the

correlation between the average viewpoint velocity values

and the window size. The different expressions such as

camera distance (cam_dist), threshold zone (Z) and window

(w) are illustrated in Fig. 16. In our measurements the

velocity parameter was changed from 0.2 to 1 camera

distance units. When the velocity parameter is 1, the

viewpoint will skip always to a new section in the camera

row and require new camera streams.

Fig. 16. Main parameters used in predictive multicast group

management scheme

The threshold zone is calculated as the double of the

window (w) parameter, so w=0.5 setup means that the

viewpoint is always in a threshold zone, thus the client is

requesting three camera views continuously. Even if w=0.5

there is no guarantee that required camera stream is

received in time and no starvation occurs due to network

congestion. The simulation results are shown in Fig. 17. If

the viewpoint velocity is too high or the network latency

increases, the required camera streams will not be available

at the proxy server.

Fig. 17. Starvation ratio in function of viewpoint velocity and window

size

According to the simulation results, if the window size

(w) is set independently from the viewpoint velocity (v), the

starvation ratio can be very high. However, it is important

to note that the quality degradation effect of the starvation

significantly depends on its duration. Using the proposed

scheme for the window size setup, the starvation ratio can

be kept low. E.g., when v=0.2 and v=0.4, the RTT is 60 ms

and the timeslot between the viewpoint shifts is 0.05 s, the

proposed window size according to (9) is w=0.24 and

w=0.48, respectively. Using the proposed predictive

multicast group management scheme, the starvation ratio in

both cases is below 5% as Table 3. shows.

Table. 3. Starvation ratio in case of the proposed scheme

viewpoint

velocity (v)

proposed window size (w) starvation ratio

0.1 0.12 3.93%

0.2 0.24 4.45%
0.3 0.36 4.22%

0.4 0.48 4.42%

Controlled window size setup can minimize the

starvation effect as analyzed in the next simulation

scenario. The comparison of viewpoint velocity values and

the caused starvation ratios are presented in Fig. 18. Based

on the obtained measurement results, if the window size is

set based on the velocity of the viewpoint, the synthesizer

algorithm will get the camera views in time in more than

95% of the cases as the results show in Table 3. While

setting the threshold zone too narrow, the starvation ratio

can reach even 57% that makes the FVV service

unacceptable.

Virtual
viewpoint

Vi

c1 c2 cN-1

cam_dist=1 window (w)threshold zone (Z)

velocity

Fig. 18. Starvation ratio in case of different velocity values

In order to provide high quality synthetized viewpoint

videos, the deployed number of cameras in the FVV system

can be very high. By increasing the number of high bitrate

color and depth cameras, the required streams will become

more unique and there will be more camera streams that are

not requested at all, or only few proxy servers are joined to

a specific camera multicast group. Therefore, the multicast

join latency will increase, because the probability that a

router in Section_1 already receives the requested stream is

lower, so join message and the video packets will travel on

longer path. Hence, we have measured how the number of

FVV cameras affects the starvation. The obtained results

are presented in Fig. 19.

Fig. 19. Starvation ratio and duration

According to the obtained results, as the starvation ratio

as the duration is significantly higher if more cameras are

used. If only 10 cameras are deployed, ca. 35 users are

joined to each camera multicast group, while using 90

cameras this number is only 3.9 in average.

The number of users is the other parameter that

influences the number of multicast group members of a

camera view. If the FVV system serves more customers,

the proxy servers will join more multicast groups, so the

latency of camera stream reception can be decreased. The

reason is the same as it was described in the previous

scenario. Namely, the routers in the FVV network already

forwards the desired multicast views to other proxy servers

with higher probability. The measurement results are

presented in Fig. 20.

Fig. 20. Starvation ratio and duration from the number of users point

of view

Low number of users significantly decreases the

performance of the FVV service. According to the

measurements, the variation of starvation ratio and its

duration became negligible when the number of clients was

higher than 300. The reason is that all the routers already

forwards all camera streams.

5. Conclusion

Free viewpoint video is a promising approach to offer

freedom of users’ perspective while watching multi-view

video streams. Each viewpoint is synthetized from at least

two high bitrate color camera and depth camera streams

that are used to capture the scene. The delivery of camera

views required for viewpoint generation can overload the

network without multicast streaming, however late

multicast group joins messages may cause the starvation of

the FVV renderer process. Both stream delivery and

viewpoint generation are resource hungry processes leading

to scalability issues in a complex network with high

number of users. In this paper a distributed viewpoint

synthesis approach and prediction based multicast group

management scheme were presented in order to offer

scalable solutions for new FVV services. Our aim was to

propose optimal layout of the so called proxy servers that

are responsible for viewpoint synthesis and transcoding in

order to minimize the overall traffic in the network but

avoiding link congestions. Besides analytical analysis of k-

ary tree networks, we investigated the achievable gain by

simulations. For simulation analysis a simple hierarchical

network with several nodes was used, where the runtime of

the brute force optimization algorithm is still acceptable.

Optimal placement of proxy servers does not guarantee

seamless viewpoint changes, therefore a threshold based

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5

st
ar

va
ti

o
n

 r
at

io
 [

%
]

window size [cam_dist]

v=0.1

v=0.2

v=0.3

v=0.4

0

10

20

30

40

50

60

70

0

1

2

3

4

5

6

7

8

9

10

10 20 30 40 50 60 70 80 90

st
ar

va
ti

o
n

 d
u

ra
ti

o
n

 [
m

s]

st
ar

va
ti

o
n

 r
at

io
 [

%
]

camera number

st. ratio

st. duration

0

10

20

30

40

50

60

70

0

1

2

3

4

5

6

7

8

9

10

70 140 210 280 350 420 490 560 630 700

st
ar

va
ti

o
n

 d
u

ra
ti

o
n

 [
m

s]

st
ar

va
ti

o
n

 r
at

io
 [

%
]

number of clients

st. ratio

st. duration

multicast group management approach was also proposed.

According to the introduced scheme, three camera views

are forwards at the camera section borders, instead of the

two necessary camera streams. We have formulated how to

calculate the threshold area at the camera borders in order

to minimize the starvation ratio and its duration. The

proposed threshold calculation depends on the viewpoint

velocity and the network delay. The obtained results show

that the viewpoint synthesizer algorithm gets the camera

views in time in more than 95% of the cases if the proposed

scheme that is based on the velocity of the viewpoint and

the RTT is used. Free viewpoint video streaming is a new

form of perspective sensitive media delivery that was not

intensively investigated before. Hopefully, FVV streaming

will become a popular interactive multimedia service of the

near future.

Acknowledgments

The research was supported by the European Union's

Seventh Framework Programme under grant agreement

n° 288502 (CONCERTO project). The author is grateful

for the support of the Hungarian Academy of Sciences

through the Bolyai János Research Fellowship.

References

[1] L Chiariglione, Cs A Szabó, “Multimedia Communications:

Technologies, Services, Perspectives, Part II: Applications, Services

and Future Directions”, Infocommunications Journal VI:(3) pp. 51-

59., 2014

[2] M. Levoy and P. Hanrahan., "Light field rendering", Computer

Graphics, Proceedings. SIGGRAPH96, August 1996

[3] Christoph Fehn, “Depth-image-based rendering (DIBR),

compression, and transmission for a new approach on 3D-TV”, Proc.

of SPIE, Vol. 5291, Stereoscopic Displays and Virtual Reality

Systems, May 2004, pp. 93-104

[4] Masayuki Tanimoto, Mehrdad Panahpour Tehrani, Toshiaki Fujii,

Tomohiro Yendo, “Free-Viewpoint TV”. IEEE Signal Process. Mag.

28(1): pp. 67-76, 2011

[5] K. Mueller, P. Merkle, A. Smolic, and T.Wiegand, “Multiview

coding using AVC,” MPEG2006/m12945, 75th MPEG meeting,

Bangkok, Thailand, Jan. 2006

[6] P. Merkle, A. Smolic, K. Mueller, T. Wiegand, “Efficient prediction

structures for multiview video coding”, IEEE Transactions on

Circuits and Systems for Video Technology, Special Issue on

Multiview Video Coding and 3DTV, 2007

[7] Fehn C. “3D-TV using depth-image-based rendering (DIBR)”,

Proceedings of Picture Coding Symposium, San Francisco, CA,

U.S.A., December 2004.

[8] Guan-Ming Su, Yu-Chi Lai, Andres Kwasinski, and Haohong Wang,

“3D video communications: Challenges and opportunities”,

nternational Journal of Communication Systems, Vol. 24/10, pp.

1261-1281., October 2011

[9] Strohmeier D, Tech G., “Sharp, bright, three-dimensional -- open

profiling of quality for mobile 3DTV coding methods”, Proceedings

of the SPIE, 2010.

[10] Tech G, Smolic A, Brust H, Merkle P, Dix K, Wang Y, Muller K,

Wiegand T, “Optimization and comparison of coding algorithms for

mobile 3DTV”, IEEE 3DTV Conference, Potsdam, Germany, 2009.

[11] Merkle P, Morvan Y, Smolic A, Farin D, Muller K, Wiegand T,

“The effects of multiview depth video compression on multiview

rendering”, Signal Processing: Image Communication 2009,

24(1):73–88.
[12] ISO/IEC JTC 1/SC 29/WG 11. Committee Draft of ISO/IEC 23002-

3 Auxiliary Video Data Representations. WG 11 Doc. N8038.
Montreux, Switzerland, April 2006.

[13] M. Domański, M. Gotfryd, and K. Wegner, "View synthesis for
multiview video transmission," in The 2009 International Conference
on Image Processing, Computer Vision, and Pattern Recognition, Las
Vegas, USA, 2009, pp. 1-4.

[14] S. Jo, D. Lee, Y. Kim, Ch. Yoo, “Development of a simple
viewpoint video system”, IEEE Int. Conf. Multimedia and Expo,
Hannover, June 2008, pp. 1577-1580.

[15] H. Kimata, S. Shimizu, Y. Kunita, M. Isogai, K. Kamikura, Y.
Yashima, “Real-time MVC viewer for free viewpoint navigation”,
IEEE Int. Conf. Multimedia

[16] J. Starck, J. Kilner, and A. Hilton. A Free-Viewpoint Video
Renderer. Journal of Graphics, GPU, and Game Tools, 14(3):57-72,
Jan. 2009.

[17] Aljoscha Smolic, “3D video and free viewpoint video-From capture

to display”, Pattern Recognition Vol. 44 (9), pp. 1958-1968.,

September 2011

[18] Zefeng Ni; Dong Tian; Bhagavathy, S.; Llach, J.; Manjunath, B.S.,
"Improving the quality of depth image based rendering for 3D Video
systems," Conf. on Image Processing (ICIP), 2009, 7-10 Nov. 2009

[19] http://www.liberovision.com/

[20] Zhun Han; Qionghai Dai, "A New Scalable Free Viewpoint Video

Streaming System Over IP Network," Acoustics, Speech and Signal

Processing, 2007. ICASSP 2007. IEEE International Conference on ,

vol.2, no., pp.II-773,II-776, 15-20 April 2007

[21] Goran Petrovicand Peter H. N. de With, “Near-future Streaming

Framework for 3D-TV Applications”, ICME2006

[22] Gurler, C.G.; Görkemli, B.; Saygili, G.; Tekalp, A.M., "Flexible

Transport of 3-D Video Over Networks," Proceedings of the IEEE ,

vol.99, no.4, pp.694-707, April 2011

[23] E. Kurutepe, M. R. Civanlar, and A. M. Tekalp, “Client-driven

selective streaming of multiview video for interactive 3DTV”, IEEE

Trans. Circuits Syst. Video Technol., vol. 17, no. 11, pp. 1558–1565,

Nov. 2007.

[24] E. Kurutepe, A. Aksay, C. Bilen, C. G. Gurler, T. Sikora, G. B. Akar,

and A. M. Tekalp, “A standards-based, flexible, end-to-end multi-

view video streaming architecture”, in Proc. Int. Packet Video

Workshop, Lausanne, Switzerland, Nov. 2007, pp. 302–307.

[25] Li Zuo; Jian Guang Lou; Hua Cai; Jiang Li, "Multicast of Real-Time

Multi-View Video," Multimedia and Expo, 2006 IEEE International

Conference on , vol., no., pp.1225,1228, 9-12 July 2006

[26] HO, Ting-Yu; YEH, Yi-Nung; YANG, De-Nian. “Multi-View 3D

Video Multicast for Broadband IP Networks”, arXiv preprint

arXiv:1410.3977, 2014.

[27] Chakareski, J., “Adaptive multiview video streaming: challenges and

opportunities”, Communications Magazine, IEEE , vol.51, no.5,

pp.94,100, May 2013

[28] G. Petrovic and D. Farin, "A distributed delivery model for 3D-video

streams." Proceedings of the First International Conference on

Immersive Telecommunications, ICST, 2007.

[29] Toni, Laura, Gene Cheung, and Pascal Frossard. "In-Network View

Synthesis for Interactive Multiview Video Systems." arXiv preprint

arXiv:1509.00464, 2015

[30] Miao, Dan, et al. "Resource allocation for cloud-based free viewpoint

video rendering for mobile phones." Proceedings of the 19th ACM

international conference on Multimedia. ACM, 2011.

[31] J. Chuang and M. Sirbu, “Pricing multicast communication: A

costbased approach,” presented at the INET, 1998.

[32] Graham Phillips, Scott Shenker, Hongsuda Tangmunarunkit, “Scaling

of multicast trees: comments on the Chuang-Sirbu scaling law”,

SIGCOMM '99, New York, USA, 1999.
[33] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems.

Springer, 2004

[34] Fenner B. et al., Protocol Independent Multicast - Sparse Mode (PIM-

SM): Protocol Specification, RFC 4601, August 2006

[35] A. Adams, J. Nicholas, W. Siadak, Protocol Independent Multicast -

Dense Mode (PIM-DM), RFC 3973, January 2005

[36] Ns-2 – Network Simulator, http:///www.isi.edu/nsnam/ns/index.html

