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Abstract 

Free-viewpoint video is a new type of interactive multimedia service allowing users to control their viewpoint and generate new views of a 

dynamic scene from any perspective. The uniquely generated and displayed views are composed from two or more high bitrate camera 

streams that must be delivered to the users depending on their continuously changing perspective.  Due to significant network and 

computational resource requirements, we proposed scalable viewpoint generation and delivery schemes based on multicast forwarding and 

distributed approach. Our aim was to find the optimal deployment locations of the distributed viewpoint synthesis processes in the network 

topology by allowing network nodes to act as proxy servers with caching and viewpoint synthesis functionalities. Moreover, a predictive 

multicast group management scheme was introduced in order to provide all camera views that may be requested in the near future and 

prevent the viewpoint synthesizer algorithm from remaining without camera streams. The obtained results showed that even 42% traffic 

decrease can be realized using distributed viewpoint synthesis and the probability of viewpoint synthesis starvation can be also significantly 

reduced in future free viewpoint video services. 

Keywords: Free Viewpoint Video, multicast streaming, viewpoint prediction, distributed networks

1. Introduction 

Free viewpoint video (FVV) is an interactive multimedia 

service offering similar functionalities that are known from 

3D computer graphics. FVV allows users to choose own 

viewpoint, viewing direction and interactive free navigation 

within a visual scene likewise 3D computer graphics 

applications. The main difference is that FVV targets real 

world scenes, captured by real cameras, without using 3D 

graphical models. Slightly different viewing angles can be 

requested by the customers as they control their own 

viewpoint position and perspective, e.g. by moving or 

turning their head or changing position in a room. The 

customers of these interactive multimedia services may 

control the viewpoint and generate new virtual views of a 

dynamic scene continuously. The uniquely generated and 

displayed views are composed from several high bitrate 

camera streams that must be delivered from the cameras to 

the viewpoint synthesis algorithm that can be deployed at 

the media server, at the client or in the network. The free 

viewpoint video experience becomes more realistic as the 

number of camera views used to sample the scene 

increases. On the other hand, more camera streams requires 

higher network capacity, because the network traffic load 

increase, as well. Without advanced stream delivery 

schemes, the network bandwidth required to transmit 

multiple camera views for the viewpoint synthesizer 

deployed in the user equipment can overload the links of 

the network. 

FVV has been drawing more and more attention due to 

promising features and various application scenarios. Free 

viewpoint streaming with its advanced features is foreseen 

as the next big step in 3D video technology beyond 

stereoscopy. However, a commercial free viewpoint 

television (FTV) service will be similar to the IPTV 

solutions, the difference is that not only one stream belongs 

to a TV channel, but several video streams [1].  The other 

difference is that the displayed media content is also 

dissimilar due the individual viewpoints of the same scene 

demanded be the users. 

The research activity on this topic is very intensive 

because the key techniques of FVV are still not efficient 

enough to provide services with acceptable quality. 

Viewpoint synthesis is a very computational hungry 

process, therefore the existing algorithm are still trying to 

find the tradeoff between the video quality of the 

synthetized view and the processing time of the algorithm. 

Two methods can be used to synthase an individual 

viewpoint from the camera sequences: Light Field 

Rendering (LFR) [2] and Depth Image Based Rendering 

(DIBR) [3]. The LFR algorithm interpolates a virtual view 

from multi-camera images, while DIBR uses fewer images 

and a depth map to establish new views [4].  



 

 For transmission over limited channels FVV data must 

be compressed efficiently. Multi-view video compression 

techniques have been widely studied and powerful 

algorithms were proposed. Although many efforts have 

been done to compress LFR and DIBR, transmitting issues 

have not been deeply investigated. 

Although different approaches have been used to 

generate 3D video, all these approaches make use of 

multiple views of the same scene. Delivery of multi- view 

FVV is different from traditional video streaming in the 

following points. An FVV service requires several video 

streams captured by different cameras recording the scene 

from different locations. Hence, the streaming costs more 

bandwidth than single video stream, therefore scalable 

quality of service is an important issue. In order to support 

more multi-view videos in IP networks, a simple approach 

is to minimize the bandwidth consumption by transmitting 

only the minimal number of views required. Current IP 

multicast routing protocols (e.g. PIM-SM) exploit shortest 

path tree logical layout for point-to-multipoint group 

communications that significantly reduces the network 

bandwidth. To synthesize a view using DIBR, the user 

must receive two continuously changing camera views 

instead of one due to viewpoint variance of users. 

Therefore, it is desired to have a smart view selection 

strategy to minimize the total bandwidth consumption in 

the networks in order to provide scalable multi-view FVV 

service.  

The camera streams required by customers may change 

continuously due to the free navigation of viewpoint, hence 

the variation of visual quality due to view switching must 

be also handled to avoid starvation of the viewpoint 

synthesizer algorithm. Rendering FVV video streams at an 

interactive frame rate is still beyond the computation 

capacity of most devices. Remote rendering provides a 

simple but effective solution, because both bandwidth and 

computation problems can be solved by synthetizing virtual 

views remotely on a powerful servers and sending the 2D 

image of rendered scene back to user devices to display. 

However, the distributed rendering solution can overcome 

bandwidth and computational limitations, new questions 

arises e.g. regarding to architectural issues. 

In this paper scalable FVV viewpoint generation and 

delivery schemes are proposed based on multicast 

forwarding and distributed approach. To prevent the user’s 

viewpoint synthesizer algorithm from remaining without 

camera streams (starving), a predictive multicast group 

management method is introduced in order to provide all 

camera views that may be requested in the near future. We 

examined the multicast groups join latency and viewpoint 

movement features to find optimal threshold values that 

minimizes the starvation probability but avoids unnecessary 

camera stream forwarding. Multicast delivery can be used 

together with the distributed viewpoint generation 

approach. However, the viewpoint prediction based 

multicast group management can be also efficient solution, 

the localization of the viewpoint generation node is a 

significant issue, as well. Hence, in this paper the 

distributed viewpoint synthesis functionality was 

investigated from the network layout point of view. Our 

aim was to find the optimal arrangement of the distributed 

viewpoint synthesis processes by allowing network nodes 

to act as proxy servers with caching and viewpoint 

synthesis functionalities. We also proposed a method on 

order to minimize the traffic load of the FTV service 

without overloading the computational and storage 

resources of the network components. The performance of 

the proposed streaming techniques was analyzed in Ns-2 

simulations.  

The rest of this paper is organized as follows. The 

background of free viewpoint video viewpoint synthesis 

and streaming methods are presented in Section II. In 

Section III, the proposed distributed viewpoint synthesis 

approach based on multicast delivery for FVV services is 

introduced. The obtained performance results are presented 

in Section IV. The summary of the paper and the 

conclusions can be found in the last section. 

2. Overview of Free-viewpoint video 

Media content delivery requires high link capacity and 

low latency in order to provide acceptable quality of media 

streams. The transmission of traditional high resolution 

single-view videos is still challenging, but in case of multi-

view videos this challenge becomes more interesting. 

2.1. Multi-view video coding 

To synthetize a virtual viewpoint from existing camera 

views, the camera streams must be forwarded to the 

renderer that can be deployed i) in the user equipment, ii) in 

a media server, or iii) distributed in the network. Without 

compression, the delivery of camera stream set would be 

impossible. 

The two-view stereo (stereoscopic) video is the simplest 

scenario that consists of two videos representing the left 

and right views from two slightly different viewpoints 

corresponding to the distance of human eyes. Since two 

nearby views have similar content, compression is based on 

both adopting the traditional intra-view prediction along 

each view and performing inter-view prediction between 

two adjacent views. 

With the advances of Depth Image Based Rendering 

(DIBR) approach [3][7], the views can be reconstructed 

from a video signal and a depth map. In case of video plus 

depth (V+D) approach the 3D information are separated 

into color and depth channels, where the depth information 

can be transformed to a monochromatic, luminance-only 

image taking values between 0 and 255 as shown in Fig. 1. 

In general, the depth channel requires an extra 10–20% of 

bit-rates to encode the depth information [8]. The free 



 

viewpoint video technique is usually based on the V+D 

representation. The most common solution requires two 

video streams and corresponding depth sequences to 

synthetize an individual virtual view. 

 

Fig. 1. Video-plus-depth representation 

 

2.2. Viewpoint synthesis 

Image based view synthesis in real time is still an open 

research problem that gains a lot of attention. It does not 

use any 3D geometry at all. The intermediate virtual views 

are generated from available natural camera views by 

interpolation. The main advantage is a potentially high 

quality of virtual views without 3D scene reconstruction. 

However, dense sampling of the real world with a 

sufficiently large number of natural cameras is necessary. 

Due to large numbers of cameras tremendous amount of 

image data needs to be processed. If the number of used 

cameras is too low, interpolation and occlusion artifacts 

will appear in the synthesized views causing reduced 

quality. Several image based solutions have been proposed 

[13][14][15]  that often have problems in terms of both 

computation time and perceptual quality of synthesized 

views. 

In case of DIBR at least two camera streams and the 

corresponding depth map sequences must be available at 

the renderer to generate an individual viewpoint [16][17] as 

illustrated in Fig. 2. The color image and an associated 

depth map along with camera calibration information, any 

pixel of the image can be projected into the 3D space and 

then projected back onto an arbitrary virtual camera plane, 

creating a virtual image. Conceptually, this method can be 

understood as a two-step process [18]: i) 3D image 

warping: it uses depth data and associated camera 

parameters to back-project pixel samples from reference 

images to the proper 3D locations and re-project them onto 

the new synthesized image space; and ii) reconstruction and 

re-sampling: determination of pixel sample values in the 

synthesized image. 

In the first FVV solutions offline viewpoint generation 

was mainly used in film production, e.g. for stop-motion 

special effects in movies or for sports effects systems, like 

“LiberoVision” [19]. Fortunately, the increased 

computational and network resources makes interactive 

real-time FVV services available, too. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Viewpoint synthesis 

 

The accuracy of the depth data significantly impacts the 

quality of the generated virtual view. The amount of 

distortion increases with the distance of the virtual view 

from the original view, thus drastically limiting the 

potential navigation range using single video plus depth. 

The synthesis ability of image based representation has 

limitations on the range of view change and the quality 

depends on the scene depth variation, the resolution of each 

view, and the number of views, as well. However, using 

more than one view with corresponding depth channels, the 

potential navigation range can be widened e.g. by pairwise 

switching. The next step is to deliver the required V+D 

streams to the renderer device that can be a server or a 

client terminal with strong computational resource 

constraints.  

 

2.3. Streaming 

The FVV streaming models can be categorized based on 

the location of the virtual viewpoint synthesis in the 

network. The first category depicted in Fig. 3.a is the 

server-based model, where all the camera views and 

corresponding depth map sequences are handled by a media 

server that receives the desired viewpoint coordinates from 

the customers and syntheses unique virtual viewpoint 

stream for each user. In this case, only unique free 

viewpoint video streams must be delivered through the 

network. The drawback of the server-based solution is that 

the computational capacity of the media server may limit 

the scalability of this approach. The second solution (Fig. 

3.b) is to deliver required camera streams and depth 

sequences to the clients to generate their own virtual views 

independently. In this approach the limited resource 

capacity problem of the centralized media server can be 

avoided, but huge network traffic must be delivered  
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 a) Server-based b) Client-based c) Distributed 

 
Fig. 3. FVV streaming model categories based on the location of the virtual viewpoint synthesis 

 

through the network. Multicast delivery can reduce the 

overall network traffic, however the requested camera 

streams by a user is changing continuously that must be 

also handled using advanced multicast group management 

methods. The third model is a distributed approach (Fig. 

3.c), where the viewpoint rendering is done in distributed 

locations in the network. The distributed model can avoid 

bandwidth and computational resource overloads and 

handle the user requests in a scalable way. 

Most of the published works assume client-based 

viewpoint synthesis and focus on multi-view video 

delivery. Authors of [20] are proposing a LFR based and 

QoS aware FVV streaming solution. The paper focuses on 

I-frame retransmission and jump frame techniques in the 

application layer based on RTP/RTCP to support different 

level of QoS. A streaming system for DIBR based FVV 

over IP networks was introduced in [21]. The proposed 

solution divides video streams into depth video, texture 

video and common video, and transmits them in 

RTP/RTSP individually making the service more robust 

against transfer errors, however it did not solve view 

switching and synchronization problems. Kurutepe et al. 

[24] presented a multi-view streaming framework using 

separate RTSP sessions to deliver camera views allowing 

the client to choose only the required number of sessions. 

The proposed scheme utilizes currently available streaming 

protocols with minor modifications. Camera switching was 

not investigated in their work. 

Selective streaming is a method to reduce the bandwidth 

requirements of multi-view video, where only a subset of 

views is streamed depending on the user’s viewing angle. 

To select which views should be delivered, the viewer’s 

current head position is tracked and a prediction of future 

head positions is calculated as reviewed in [22]. In order to 

conceal prediction errors, low quality versions of other 

views can be also be streamed as presented in [23]. 

However, the selective streaming method suffers from fast 

head movements. They showed that delay in stream 

switching, which is determined by the frequency of 

switching frames, may degrade the perceived quality. 

Very efficient way of reducing traffic load is multicast 

delivery, suited for both video on demand (VoD) as well as 

live multimedia applications. However, multicasting can be 

applied only if a group of users are interested in the same 

content in the same time. In case of FVV, the displayed 

view is different for each user, but the required camera 

streams can be the same. In case of FVV multicast delivery, 

streams of camera views are transported over separate IP 

multicast groups. The users can selectively join to multicast 

groups that are used for delivery of camera stream, which is 

required to synthetize the desired viewpoint. Multicast 

transmission is effective to reduce the network load, but 

continuous and frequent viewpoint changes may lead to 

interrupted FVV service due multicast group join latencies. 

Therefore, the required camera streams may arrive too late 

and starve the FVV synthesizer process. 

Multicast FVV transport solutions is a promising 

delivery scheme, however it was not investigated deeply. 

Authors of [25] and [26] proposed a multi-view video 

streaming system based on IP multicast, where the camera 

streams are transmitted using multiple-channels to support 

various users who have different available bandwidth. 

Other advanced ideas for transmission, like multipath 

delivery, P2P or cloud-assisted techniques for multiview 

video streaming were reviewed in [27].  

2.4. Distributed FVV Streaming 

The only paper we found in the literature regarding to 

distributed 3D services was authored by Petrovic et al. [28]. 

They proposed an end-to-end delivery model for 3D video 

applications, which leverages distributed system 

architecture to reduce the bandwidth and processing cost at 

the server and the end-hosts. Their prototype 

implementation demonstrated that highly heterogeneous 

clients can coexist in the system, ranging from auto-

stereoscopic 3D displays to resource-constrained devices. 

Authors of [29] proposed a cloud based view 

synthetization architecture for interactive multi-view video 

systems facing with limited bandwidth constraints. They 

introduced a synthesized reference view selection 

optimization problem aimed at finding the best subset of 

reference views to be transmitted to the decoder, where the 

subset is not limited to captured camera views as in 

previous approaches but it can also include virtual 

viewpoints, too. In [30] a cloud-based free viewpoint video 

rendering framework for mobile phones over cellular 

networks was presented. More specifically, a novel 

resource allocation scheme was proposed that jointly 

considers rendering and rate allocations between cloud and 

client to optimize the quality of experience.  



 

Our work differs from the above work in that: i) in 

previous works camera switches were not studied from the 

starvation of the viewpoint synthesizer algorithm point of 

view; ii) how to trigger multicast group join and leave 

control messages and iii) none of the papers deal with the 

layout issues of a distributed FVV system.  

3. Distributed viewpoint synthesis approach based on 

multicast delivery 

Free viewpoint video and television services allow users 

to individually change the desired viewpoint of a video 

scene that is captured by several. In order to produce the 

requested viewpoint, the camera streams must be delivered 

to the viewpoint synthesizer algorithm. Due to very high 

storage capacity and computational resource requirements, 

we propose to distribute the viewpoint synthesis process in 

the network and deliver the camera streams using multicast 

streaming. The distributed architecture combined with 

multicast routing can solve the scalability problems and 

keep the traffic load as low as possible. 

Our aim was to find the optimal deployment locations of 

the distributed viewpoint synthesis processes in the 

network topology by allowing network nodes to act as 

proxy servers with caching and viewpoint synthesis 

functionalities. These proxy servers share their resources 

for viewpoint synthesis, recoding and caching purposes. 

Therefore, the user is not connected directly to the media 

server, but asks the most appropriate proxy server for a 

synthetized stream with the desired viewpoint. The aim of 

the proxy servers is to gather the camera streams that are 

needed to serve the connected clients and originate the 

unique streams as illustrated in Fig. 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Proxy server based view synthesis 

 

Basically, a proxy server may cache the segments of a 

conventional video stream, but in case of FTV services it is 

preferred to support codec functionalities and viewpoint 

synthesis, too. We modeled the proxy element as presented 

in Fig. 5.  

 

 

 

 

 

 

 

 

 

 
Fig. 5. Caching and rendering proxy model 

 

The received multicast camera streams (all or only a set 

of streams) are processed by the decoder module and stored 

in the cache to handle delay variation. Based on the 

incoming viewpoint requests, the viewpoint synthesis 

module will generate the new stream that will be coded 

according to users’ coding setups (resolution, coding 

quality). The outputs of the proxy server are the unique, 

user specific streams. 

In this paper our aim was to analyze how to localize the 

proxy servers in order to find optimal proxy server layout 

for FTV service. Actually, different objectives can be 

targeted to optimally locate the proxy servers, nevertheless 

in this work our objective was to generate the lowest traffic 

load, but avoid the overload of computational and storage 

resources. In order to provide seamless viewpoint changes, 

the set of required camera stream must be available at the 

proxy server. Multicast delivery of camera streams from 

media server to proxy server is an appropriate solution, 

however due to network latency and frequent changes of 

the viewpoint, the required camera streams may arrive too 

late, interrupting the FVV synthesis and playout. Therefore, 

we propose a seamless FVV streaming scheme based on 

user viewpoint prediction. In order to avoid the starving of 

the FVV synthesizer, we prefetch the camera views that 

will be probably required for the viewpoint generation. 

The first part of our work focuses on the optimal proxy 

layout issues, while the second part introduces predictive 

multicast group management solution to prevent the 

viewpoint synthesizer algorithm from remaining without 

camera streams. 

3.1. Optimization of distributed viewpoint synthesis  

In order to find the optimal arrangement of the 

distributed viewpoint synthesis processes, the network 

architecture must be introduced first.  

As Fig. 4. shows, the path between the media server and 

each client can be divided into two parts. In Section_1 

(from media server to proxy server) the real camera streams 

are delivered, while Section_2 (from proxy server to the 

client) the user specific views are transferred. The camera 

streams must be always forwarded with the highest quality 

and full resolution, requiring higher bandwidth, but 

fortunately multicast delivery mode can decrease the 
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overall occupied bitrate on the links. In Section_2 the 

streams are unique, so multicast is not an option. 

Opportunely, the synthetized streams may be coded with 

lower bitrate, e.g. if it is played out on a mobile terminal 

with low resolution display. By locating the viewpoint 

synthesis functionality closer to the camera sources, the 

high bitrate camera streams will use less network links, 

therefore occupying less total bandwidth in the network. 

On the other hand, the proxy servers will have to serve 

more clients, so the total network traffic of the unique user 

specific streams will be higher. The goal is to determine the 

proxy locations to minimize the overall number of link 

usage: 

 

  min
UC MC

  , (1) 

 

where ФMC stands for the overall number of multicast links 

in Section_1 and ФUC is the number of network links used 

to deliver user specific unicast streams in Section_2, 

respectively. 

Multicast significantly alleviates the overhead on 

senders by allowing them to reach the entire group with the 

transmission of a single packet. While, multicast routing 

ensures that only one copy of each packet will traverse each 

link, significantly reducing the network load. The gain of 

multicast in terms of network resource consumption was 

firstly analyzed by Chuang and Sirbu [31]. Their scaling 

law shows that in case of multicast, the average number of 

hops from the source to randomly chosen m distinct 

destinations in the shortest-path tree is E[HN]∙m0.8, where 

E[HN] is the average number of hops of a message to a 

uniform location in the graph containing N nodes. Hence, 

in case of unicast delivery to m different users, the hop 

number is m∙ E[HN]. 

In order to analytically investigate the optimal 

hierarchical level of the proxy servers, k-ary tree is 

considered. The depth of the tree is D, with the source at 

the root of the tree, while all the receivers are placed at the 

leaves and the viewpoint synthesis is performed in the 

proxy servers located δ hops from the root (Fig. 6.). 

 

 

 

 

 
 

 

Fig. 6. Considered network topology: k-ary tree 

 

In a simplified k-ary tree distributed FVV architecture 

the proxy servers are placed at level δ in the hierarchical 

tree. Hence, there are kδ proxy servers served by multicast 

camera streams. Assume that only one multicast camera 

stream is forwarded. Now, if we select n not necessarily 

distinct proxy servers, each such selection will require a 

path through one of the kl links at level 1. Hence, picking 

one of the proxy servers at random is equivalent to picking 

one of the kl links at level 1 at random. Thus, the 

probability that this particular link is in the delivery tree 

after n proxy servers have been selected is given by [32]: 
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All such probabilities are independent since the sum of 

the averages is independent of correlations, and so the 

average number of links in the delivery tree at level l is  
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Assuming that the bitrate of multicast camera streams 

are equal, the traffic load correlates linearly to the number 

of links in delivery tree. If there are c cameras (multicast 

groups) deployed, the average number of links in the 

multicast delivery tree (Section_1) can be calculated as 

follows: 
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Calculating the number of used links in Section_2 is 

simpler, because the user-defined streams are forwarded 

from the proxy servers to the users in unicast mode. 

According to Fig. 6., there are D-δ unicast hops from proxy 

to client, hence the total number of hops in Section_2 can 

be calculated as follows: 

 

  
UC

M D      (5) 

 

In equation (5), M stands for the number of users. In 

order to find the appropriate hierarchical level for proxy 

server locations, we must estimate the consumed network 

resources in the proposed distributed FVV architecture: 
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We performed numerical analysis to investigate how the 

hierarchical level of proxy servers impacts the overall link 

usage, thereby the traffic load in a basic network with k-ary 

tree topology. The optimal level of proxy servers (δ) 

depends on the parameter k, the number of users (M) and 

the depth of the network topology (D) based on 

equation (5). Unfortunately, the classical way of marginal 

value calculation cannot be derived: 
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We analyzed different parameters, how they modify the 

optimal hierarchical level of proxy servers. In a basic k-ary 

topology, where k=5, tree depth D=8 and number of 

cameras c=3, the lowest link usage of the networks that can 
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be calculated by (5), depends on the number of clients, as 

Fig. 7. shows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Overall link usage in k-ary tree network with D=8 levels, 

depending on number of FVV customers 

 

According to the presented results, if the number of 

FVV users (M) decreases, the view synthesis process must 

be located closer the root (media server) of the network. 

E.g. in case of 105 users, the ideal proxy server location is 

at level δ=7, while having only 100 customers, the lowest 

number of overall hop number can be achieved if the 

viewpoint synthesis is deployed 2 hops from the media 

server (root). 

The optimal proxy server location is also influenced by 

the number of FVV cameras. In the proposed distributed 

FVV model, each camera stream is forwarded in separate 

multicast groups. In order to introduce how camera number 

modifies the traffic load in the network, we set k=3, 

M=1000 and D=8. The calculated average numbers of links 

in the delivery paths are shown in Fig.9.  

Fig. 8. Overall link usage in k-ary tree network with D=8 levels, 

depending on number cameras 

 

By increasing the number of cameras, the total hop 

number, as well the traffic load is also increasing in the 

multicast part of the network (Section_1). As the 

calculations show, the optimal hierarchical level of proxy 

servers, where the link usage is the lowest, is closer to the 

media server if more cameras are deployed. In opposite, 

e.g. having only three cameras, the lowest number of links 

usage can be achieved if the view synthesis is performed at 

level δ=6 that is further from the media server. 

Finally, we analyzed the ratio of average number of 

links in the multicast (Section_1) and unicast (Section_2) 

delivery tree. In a simple k-ary tree network, the total hop 

number of multicast links is higher, if the path between the 

media server and the view synthesis functionality (proxy 

server) is longer, because the proxy servers are served in 

multicast delivery mode. Similarly, if the proxy server is 

close to the media server, the multicast traffic hop number 

will be negligible, however on the other hand the longer 

unicast path will cause higher load in unicast Section_2. 

Fig. 10. shows the numerical result of a k-ary tree FVV 

architecture with D=8 levels, where k=5, camera number is 

7 and the number of users is 105. 

Fig. 9. Overall link usage in k-ary tree network 

 

According to the calculations, the lowest number of 

delivery paths was used, when the proxy servers were 

located at level δ=6 in the hierarchical FVV architecture.  

The k-ary tree topology is a simplified layout for 

analytical investigation. Actually, the real network graph 

representations are more complex, hence finding the proxy 

server locations is more difficult.  

The described proxy localization problem can be 

mapped to a knapsack combinatorial optimization task [33], 

if the items are considered to be the proxy servers, the 

value is the occupied total bandwidth (actually, it is the 

inverse of the bandwidth, because we want to minimize it 

and not maximize) and the limited weight is the 

computational and link capacity limit. Unfortunately the 

knapsack problem is known as NP-complete problem, so 

there are no guaranties that the optimal proxy topology 

setup can be found with acceptable runtime. In case of 

brute force method, all possible proxy location must be 

examined for each client. The complexity of the brute force 

optimization approach is O(k2n), where n stands for the 

number of possible proxy server locations and k is the 

number of users. Finding the optimal distribution of the 

viewpoint synthesis process is hard even in static network 
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environment, where the clients do not change their point of 

access and the required camera streams necessary for the 

viewpoint production do not vary. In reality the problem is 

more difficult due to the continuously changing 

environment. 

3.2. Predictive multicast group management  

In our proposed scheme we use multicast delivery of 

camera streams from media server to proxy servers, 

however due to network latency and frequent changes of 

the viewpoint, the required camera streams may arrive too 

late, interrupting the FVV synthesis and playout. The 

interruption can become more serious in case of fast 

viewpoint changes. 

To generate a desired virtual perspective, the proxy must 

be joined to multicast groups that contain the required 

camera views. When the user changes his viewpoint and 

new camera views are needed, the proxy server must join to 

a new multicast group ensuring the actually needed camera 

streams. If the multicast group change (leaving the old 

multicast group and joining the new one) is performed only 

when the new virtual view already must have appeared on 

the users screen, there will be an interrupt in the FVV 

playout, because the lately requested camera view will not 

be received in time to synthetize the new viewpoint. 

Therefore, our aim was to propose a viewpoint prediction 

based solution for camera view handoffs to minimize the 

probability of the synthesis process starvation. To prevent 

the user’s viewpoint synthesizer algorithm from remaining 

without camera streams, multicast group join threshold is 

introduced in order to start prefetching camera views that 

may be requested in the near future.  

The following scenario introduces how the proposed 

threshold is used to prefetch camera streams based on 

viewpoint prediction (Fig. 10.). Using the proposed 

prediction model in this sample scenario and supposing that 

the viewpoint of the client is moving from the blue camera 

view position towards the yellow one, the desired view will 

reach Threshold_1 initiating a joint message to the yellow 

camera multicast group. While the viewpoint of the client is 

within the threshold zone, it will become a member of three 

multicast groups (blue, green and yellow). If the viewpoint 

is moving towards the yellow camera position and reaches 

Threshold_2, the proxy should leave the blue multicast 

group. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Multicast FVV: Multicast group join thresholds 

 

However, Fig. 10. shows a linear camera topology setup, 

the cameras can be deployed in plane (2D) and in space 

(3D) as well. In the latter cases not only two camera 

streams are required for the viewpoint synthesis, but three 

or even four that makes the threshold area determination 

more difficult. Our goal was to keep the threshold area as 

low as possible to reduce the number of multicast group 

memberships, so the overall network bandwidth, but keep it 

large enough to avoid playout interruption during 

viewpoint changes.  

In order to find the optimal threshold values, the 

multicast groups join latency and viewpoint movement 

features were examined. Assuming a linear camera row, 

where xi denotes the actual viewpoint position and vi the 

velocity of the viewpoint in time ti, the next viewpoint 

location in time ti+1 can be expressed as follows 

  
1 1 1i i i i i

x x v t t
  
    

Depending on the velocity of the viewpoint in the next 

moment (vi+1), the view synthesis algorithm may require 

new camera views, despite that vi+1 is not known in ti time, 

so it must be estimated based on previous viewpoint 

movement behavior. We used linear regression method to 

estimate the next viewpoint by calculating the average 

viewpoint velocity values from previous viewpoint 

coordinates.  

To determinate the threshold values and zones of the 

viewpoint coordinates that triggers the multicast join and 

leave processes, the required time duration (dm) from 

sending a multicast join message by the proxy server to 

receiving the first packet of the camera stream is necessary. 

After the reception of the new camera frames, the proxy 

server can render and forward the required views. The 

proxy server (Fig. 5.) can only decode the multicast stream 

after receiving an I-frame, therefore the I-frame period time 
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(dI) must be also taken into consideration. Within TD=dm+dI 

time the viewpoint location should not move to another 

section of the camera row, where new camera streams are 

required for the viewpoint synthesis, otherwise the 

synthesis process will stall. In other words, if the new 

camera video packets arrive within TD time, the proxy 

server can render the required virtual views based on the 

new camera stream without starvation. Therefore, the TD 

time constraint is considered only for Section_1 (Fig. 4.), 

while the rendering process time and the delivery delay 

through Section_2 is not included in TD. 

 In our proposed method the threshold zone dimensions 

(Z) is determined as follows (see Fig. 10.) 

  
1

2
i DZ v T


   

where TD is assumed to be the sum of dm (RTT (round-trip 

time) between the proxy server and the FVV media server) 

and dI (time distance between the I-frames), while vi+1 is 

estimated as 


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In some cases the dm parameter can be even lower than 

the RTT, if the join message goes through a multicast 

router that already forwards the required camera stream to 

other destination. If the camera view must be inquired from 

the media server, the multicast join latency will be equal to 

RTT. In order to minimize the viewpoint synthesis 

algorithm starvation, we used  max
m

d RTT  in our 

model. According to Fig. 10., the threshold zone size can 

be calculated also as 

 

 _ 2 _1Z Threshold Threshold   

The threshold values in each section can be determined 

based on the camera coordinates (ck) and the threshold zone 

size (Z) as 2
k

c Z . In the forthcoming evaluation section, 

w=Z/2 was used as a parameter, named window size. 

From architectural point of view, the proposed solution 

requires multicast support in the network layer. The 

generally used PIM-SM [34] or PIM-DM [35] protocols are 

applicable for the presented free viewpoint video streaming 

service without any modification. Using PIM-SM 

rendezvous point (RP) and routers with multicast support 

are necessary elements of the network, while the control of 

group management packages must be done in the 

application layer. Synchronization of camera streams are 

also required in order to perform seamless camera 

handovers. Using the RTP/UDP timestamp feature this 

problem can be handled. 

4. Simulation results 

In order to examine the achievable gain of the proposed 

viewpoint synthesis process distribution in a multicast free 

viewpoint television network, simulation environment was 

used. Due to very high simulation runtimes, the 

performance analysis was performed using a simple 

network, which spanning tree has only several hierarchical 

levels. First, the impact of proxy server localization on 

network traffic was analyzed with our simulation tool that 

was implemented in Java, while the proposed threshold 

based multicast group management method was examined 

using Ns-2 [36]. We used Ns-2 because it has built-in PIM-

DM multicast routing implementation.  

4.1. Evaluation of optimized proxy server deployment  

Beside the analytical analysis of distributed viewpoint 

synthesis, simulations were also performed in order to 

evaluate the benefits of the proposed approach. The 

implemented Java simulation tool provides an interface to 

design the FVV network topology, set link capacities, add 

users and their requested viewpoint coordinates, determine 

the camera set and define network elements to act as router 

or proxy server. Proxy server (with viewpoint synthesis 

functionality) can be added manually to a network, or using 

the optimization process. To find the global optima, we 

used a brute force approach. Unfortunately it works only 

for small network (cca. 20 network elements and max. 60 

clients) due to long simulation runtime. 

In the first phase of the evaluation process, the analytical 

results were compared with the outcome of the simulations. 

Afterwards the proposed proxy arrangement scheme was 

analyzed from the number of hierarchical layers, number of 

clients, and camera bitrate point of view. 

Taking the limitation of both the analytical and 

simulation examination into consideration, a four level 

(D=4) binary tree (k-ary tree, where k=2) network topology 

was used for the comparison tests with 30 clients and 1 

Mbps video stream bitrates. However, the analytic model 

can handle higher k values and more hierarchical levels 

(D), the simulation runtime makes it not possible to 

increase these parameters. On the other hand, the 

simulation tool is able to work not just with k-ary tree 

layout, but with more complex network topologies. Fig. 11. 

shows the comparison results of the theoretical and 

simulation based analysis, where impact of the number of 

reference cameras was examined. The solid lines show the 

analytic estimation of the total traffic in the network, while 

the dashed lines sign the simulation results. Two scenarios 

were analyzed with cam=5 and cam=9 reference cameras 

deployed. The results show that in all of the cases the 

second layer (δ=2) was resulted as the most appropriate 

layer for proxy deployment. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 11. Comparison of simulation and analytic approach  

 

According to the obtained simulation results, we found 

4.6% and 8.5% difference in average compared to the 

theoretical result for cam=5 and cam=9 scenarios, 

respectively. The analytical model estimates the most 

appropriate hierarchical level for the proxy server 

deployment, therefore in the comparison analysis the 

proxies were allowed to be located at the same hierarchical 

level in the simulations. However, the advantage of the 

simulation tool is that it can analyze all possible 

arrangements, not just those ones, where all the proxy 

servers are at the same level. The other significant 

advantage of the implemented simulation tool is that it 

takes network capacity into account and discards all 

layouts, where any of the links is congested or proxy server 

is overloaded. The distortion analysis of virtual views due 

to packet losses is out of the scope of this paper. 

In order to measure the performance of the proxy server 

layout optimization scheme, two network topologies were 

used. One with three hierarchical levels (D=3) and the other 

one with four levels (D=4). The default values of link 

capacities were set to 100 Mbps, while assuming high 

definition reference camera system, the stream bitrates 

were 10 Mbps.  

The brute force algorithm compares all proxy setup 

combination and checks whether it is a correct topology 

arrangement or not. While the network links capacities and 

the proxy server computational resources are limited, in 

some of the network layouts the proxy servers and the links 

can be overloaded. These incorrect proxy server 

arrangements must be rejected. Otherwise, service 

guaranties cannot be offered.  

By increasing the number of hierarchical level, the 

number of total layouts grows exponentially, similarly to 

the optimization process runtime. Table 1 shows the 

number of total and acceptable proxy server arrangements 

in a two, three and four level hierarchical network. Note 

that most of the total layouts are not correct due to 

unserved clients criteria, link or proxy server overloads. 

The distributed proxy server brute force optimization 

algorithm ran fast for two and three levels, but it took 66 

hours for a network with four hierarchical levels containing 

21 network elements and 60 clients. 

 
Table 1. Number of proxy server layouts 

 
Hierarchical 

levels (D) 
Total layouts 

Correct 

layouts 

Duration 

[ms] 

2 8 1 1 

3 512 124 190 

4 2 097 152 704 969 239 927 390 

 

In order to synthetize a desired viewpoint according to 

the user’s request, at least two camera streams are 

necessary. In the first simulation scenario we analyzed how 

the camera stream bitrate effects the total occupied 

bandwidth in a network with three hierarchical levels 

(D=3). As Table 1. shows, in this case 512 different proxy 

arrangement exist that are signed with #0 to #511 in the 

following figures, while the different layouts are referenced 

with #0 to #2097152 in case of D=4 . The camera bitrate 

has impact on the first section of the delivery path, from 

media server to proxy server, as the obtained simulation 

results (Fig. 12.). 

Fig. 12. Comparison of layouts from reference camera bitrate point of 

view 

 

According to the obtained results, the best performance 

was achieved in case of layout #7 when the camera bitrate 

was 10 Mbps or higher, while the worst performing layout 

was #511. Layout #311 had an average performance. Fig. 

13. shows the proxy server locations in these arrangements.  

 

 

Fig. 13. Proxy server layouts  
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The optimally distributed viewpoint synthesis 

functionality decreases the total traffic by 42% compared to 

the worst case scenario even in this simple network 

topology. 

To evaluate the performance of the proposed distributed 

viewpoint synthesis scheme, we compared the total 

network traffic of all proxy server topology setups. Of 

course, those layouts were discarded, where link congestion 

or computational overload of proxy server occurred. In the 

following measurement, we have compared all possible 

proxy layouts of network topologies with three (Fig. 13.) 

and four hierarchical levels from the network traffic point 

of view. All the network elements, except media server, 

were able to serve as a proxy server with viewpoint 

synthesis functionality. Due to presentation reasons, the 

analyzed layouts were ordered by the measured total 

network traffic and illustrated in Fig. 14. The results are 

shown in a single figure for both network topologies, hence 

the overall bandwidth values of the four level network 

topology are on the left vertical axis of the figure, while the 

right vertical axis is scaled for the three level network 

topology. There is also difference in the horizontal axis 

scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Network traffic of correct layouts in a three and four level 

topology  

 

The simulation results make it possible to compare the 

occupied bandwidth of all proxy server layouts in a fixed 

network structure. As Fig. 14. shows, there are significant 

differences in performance. In case of a three level network 

(D=3) the overall traffic can be reduced by 12% by 

selecting the most appropriate layout, while in a four level 

network (D=4) the gain is 16% compared to the worst 

proxy server arrangement. The obtained results prove that it 

is worth to consider viewpoint synthesis distribution for 

free viewpoint television service and optimize the layout of 

proxy servers in order to minimize the network traffic. 

The other important constituents of a free viewpoint 

video streaming service are the clients. Therefore, we 

analyzed the performance variation from the number of 

users point of view. In this measurement, a three level 

network hierarchy was assumed, where 512 different layout 

combinations exist, but only 124 are correct. The total 

network traffic in case of 18 and 60 clients are presented in 

Fig. 15. The proxy server layout combinations are ordered 

by the occupied bandwidth values, similarly to the previous 

figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Comparison of layout performance from client density point 

of view 

 

The simulation results show that the difference between 

the worst layout and the optimal one is more than 10% in 

both cases. Comparing the occupied network bandwidth of 

the optimal viewpoint synthesis distribution arrangements, 

we can find that having 3.3 times more clients results only 

2.1 times higher traffic load. The reason of this behavior is 

that due to high number of client, most of the camera 

streams are already forwarded through Section_1 (media 

server to proxy server) of the delivery path (Fig. 4.). Hence, 

by increasing the number of clients, the traffic load on 

Section_1 will not increase, only in Section_2. 

4.2. Evaluation of threshold-based predictive multicast 

group management  

Even if the optimal layout of proxy servers are found, 

the networks latency and the frequent viewpoint changes 

can lead to late camera stream delivery causing starvation 

in the viewpoint synthesis process. The proposed predictive 

multicast group management scheme uses viewpoint 

prediction and a threshold for camera stream prefetching as 

it was presented in section 3.2. 

The performance evaluation of the proposed predictive 

multicast FVV streaming model was based on Ns-2 

network simulator. In the analyzed network topology the 

viewpoint synthesizer proxy servers were deployed at the 

lowest level of a hierarchical tree network topology with 

four levels (D=4). We used PIM-DM multicast dense mode 

protocol in the FVV streaming simulations. The default 

parameter values of the simulated network used for the 

examination of the predictive FVV streaming scheme are 

presented in Table 2.  

In the evaluation phase, the viewpoint velocity was 

considered to be measured in camera distance unit. This 



 

means that the distance between two neighbour camera 

positions is considered to be cam_dist=1. In the analysed 

FVV scenario the user viewpoints shift with viewpoint 

velocity value in random times. The time difference 

between two viewpoint shifts can be set with the max. 

timeslot length parameter. 

 

Table. 2. Default parameters 

 
Parameter Default value 

simulation time 20 s 

link delay 10 ms 

total number of clients 350 
number of cameras 25 

camera stream GOP size 1 

packet size 1000 byte 

video bitrate per camera 1 Mbps 

link bandwidth 10 Mbps 

viewpoint velocity (v) avg. 0.3 × camera distance per timeslot 
max. timeslot length avg. 0.05 sec, rand(0; 0.1) 

window size (w=Z/2) 0.3 × camera distance 

 

In the following simulation scenario we analyzed the 

correlation between the average viewpoint velocity values 

and the window size. The different expressions such as 

camera distance (cam_dist), threshold zone (Z) and window 

(w) are illustrated in Fig. 16. In our measurements the 

velocity parameter was changed from 0.2 to 1 camera 

distance units. When the velocity parameter is 1, the 

viewpoint will skip always to a new section in the camera 

row and require new camera streams.  

 

Fig. 16. Main parameters used in predictive multicast group 

management scheme 

 

The threshold zone is calculated as the double of the 

window (w) parameter, so w=0.5 setup means that the 

viewpoint is always in a threshold zone, thus the client is 

requesting three camera views continuously. Even if w=0.5 

there is no guarantee that required camera stream is 

received in time and no starvation occurs due to network 

congestion. The simulation results are shown in Fig. 17. If 

the viewpoint velocity is too high or the network latency 

increases, the required camera streams will not be available 

at the proxy server. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Starvation ratio in function of viewpoint velocity and window 

size 

 

According to the simulation results, if the window size 

(w) is set independently from the viewpoint velocity (v), the 

starvation ratio can be very high. However, it is important 

to note that the quality degradation effect of the starvation 

significantly depends on its duration. Using the proposed 

scheme for the window size setup, the starvation ratio can 

be kept low. E.g., when v=0.2 and v=0.4, the RTT is 60 ms 

and the timeslot between the viewpoint shifts is 0.05 s, the 

proposed window size according to (9) is w=0.24 and 

w=0.48, respectively. Using the proposed predictive 

multicast group management scheme, the starvation ratio in 

both cases is below 5% as Table 3. shows. 

 

Table. 3. Starvation ratio in case of the proposed scheme 

 
viewpoint 

velocity (v) 

proposed window size (w) starvation ratio 

0.1 0.12 3.93% 

0.2 0.24 4.45% 
0.3 0.36 4.22% 

0.4 0.48 4.42% 

 

Controlled window size setup can minimize the 

starvation effect as analyzed in the next simulation 

scenario. The comparison of viewpoint velocity values and 

the caused starvation ratios are presented in Fig. 18. Based 

on the obtained measurement results, if the window size is 

set based on the velocity of the viewpoint, the synthesizer 

algorithm will get the camera views in time in more than 

95% of the cases as the results show in Table 3. While 

setting the threshold zone too narrow, the starvation ratio 

can reach even 57% that makes the FVV service 

unacceptable. 
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Fig. 18. Starvation ratio in case of different velocity values 

 

In order to provide high quality synthetized viewpoint 

videos, the deployed number of cameras in the FVV system 

can be very high. By increasing the number of high bitrate 

color and depth cameras, the required streams will become 

more unique and there will be more camera streams that are 

not requested at all, or only few proxy servers are joined to 

a specific camera multicast group. Therefore, the multicast 

join latency will increase, because the probability that a 

router in Section_1 already receives the requested stream is 

lower, so join message and the video packets will travel on 

longer path. Hence, we have measured how the number of 

FVV cameras affects the starvation. The obtained results 

are presented in Fig. 19. 

Fig. 19. Starvation ratio and duration 

 

According to the obtained results, as the starvation ratio 

as the duration is significantly higher if more cameras are 

used. If only 10 cameras are deployed, ca. 35 users are 

joined to each camera multicast group, while using 90 

cameras this number is only 3.9 in average.  

The number of users is the other parameter that 

influences the number of multicast group members of a 

camera view. If the FVV system serves more customers, 

the proxy servers will join more multicast groups, so the 

latency of camera stream reception can be decreased. The 

reason is the same as it was described in the previous 

scenario. Namely, the routers in the FVV network already 

forwards the desired multicast views to other proxy servers 

with higher probability. The measurement results are 

presented in Fig. 20. 

Fig. 20. Starvation ratio and duration from the number of users point 

of view 

 

Low number of users significantly decreases the 

performance of the FVV service. According to the 

measurements, the variation of starvation ratio and its 

duration became negligible when the number of clients was 

higher than 300. The reason is that all the routers already 

forwards all camera streams. 

5. Conclusion 

 

Free viewpoint video is a promising approach to offer 

freedom of users’ perspective while watching multi-view 

video streams. Each viewpoint is synthetized from at least 

two high bitrate color camera and depth camera streams 

that are used to capture the scene. The delivery of camera 

views required for viewpoint generation can overload the 

network without multicast streaming, however late 

multicast group joins messages may cause the starvation of 

the FVV renderer process. Both stream delivery and 

viewpoint generation are resource hungry processes leading 

to scalability issues in a complex network with high 

number of users. In this paper a distributed viewpoint 

synthesis approach and prediction based multicast group 

management scheme were presented in order to offer 

scalable solutions for new FVV services. Our aim was to 

propose optimal layout of the so called proxy servers that 

are responsible for viewpoint synthesis and transcoding in 

order to minimize the overall traffic in the network but 

avoiding link congestions. Besides analytical analysis of k-

ary tree networks, we investigated the achievable gain by 

simulations. For simulation analysis a simple hierarchical 

network with several nodes was used, where the runtime of 

the brute force optimization algorithm is still acceptable. 

Optimal placement of proxy servers does not guarantee 

seamless viewpoint changes, therefore a threshold based 
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multicast group management approach was also proposed. 

According to the introduced scheme, three camera views 

are forwards at the camera section borders, instead of the 

two necessary camera streams. We have formulated how to 

calculate the threshold area at the camera borders in order 

to minimize the starvation ratio and its duration. The 

proposed threshold calculation depends on the viewpoint 

velocity and the network delay. The obtained results show 

that the viewpoint synthesizer algorithm gets the camera 

views in time in more than 95% of the cases if the proposed 

scheme that is based on the velocity of the viewpoint and 

the RTT is used. Free viewpoint video streaming is a new 

form of perspective sensitive media delivery that was not 

intensively investigated before. Hopefully, FVV streaming 

will become a popular interactive multimedia service of the 

near future. 
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