

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-016-3910-
4

https://link.springer.com/article/10.1007/s11042-016-3910-4

http://hdl.handle.net/10251/83126

Springer Verlag (Germany)

Valderas Aranda, PJ.; Torres Bosch, MV.; Mansanet Benavent, I.; Pelechano Ferragud, V.
(2016). A mobile-based solution for supporting end-users in the composition of services.
Multimedia Tools and Applications. 1-31. doi:10.1007/s11042-016-3910-4.

A mobile-based solution for supporting end-users in the composi-
tion of services

Pedro Valderas, Victoria Torres, Ignacio Mansanet, and Vicente Pelechano

Universitat Politècnica de València, Spain

Pros Research Center

{pvalderas,vtorres,imansanet,pele}@pros.upv.es

Abstract. Currently, technologies and applications evolve to create eco-systems made up of a myriad of heteroge-

neous and distributed services that are accessible anytime and anywhere. Even though these services can be used

individually, it is their coordinated and combined usage what provide an added value to end-users. In addition,

user’s wide adoption of mobile devices for daily activities have fostered a shift in the role played by end-users

towards Internet data and services. However, existing solutions to service composition are not targeted to ordinary

end-users. More easy-to-use tools have to be offered to end-users to make sure that they are successfully accepted

and used by them. To this end, the work presented in this paper supports end-users in the creation of service com-

positions by using mobile devices. We present a Domain Specific Visual Language (DSVL) for end-users that

allows them to create service compositions. A tool specifically designed for mobile devices supports this DSVL.

1. Introduction

In an increasingly dynamic, intelligent, and decentralized open world, technologies and applications evolve to

create eco-systems made up of a myriad of heterogeneous and distributed services that are accessible anytime and

anywhere. Some examples are: 1) those services provided by governments, public organizations, or scientific

communities via Open Data1 (e.g., weather forecast, traffic status, air and water quality, etc.); 2) those provided

by the emerging Internet of Things (IoT) [Gubbi et al. 2013], which allow users to interact with smart objects (e.g.,

electrical appliances, wearable elements, or any other kind of “connected” object); or 3) those that are intensively

used by end-users for interacting with each other, for instance, with social networks (e.g. Facebook or Twitter).

Even though these services can be used individually, it is their composed usage what has the potential to

create new value-added services for end-users. Considering that end-users play a more and more important role in

the development of content, it makes sense to think on the possibility of enabling them to create their required

compositions. By upgrading end-users to prosumers (producer+consumer) and involving them in the process of

																																																													
1 Open Data is an initiative with the aim of making free and available certain data to anyone with the purpose of using, modi-
fying, and sharing it.

service creation, both service consumers and service providers can benefit from a cheaper, faster, and better service

provisioning [Yu et al. 2012].

However, existing composition environments (e.g. Intalio, Activiti, Signavio or Bonita BPM) and service

composition languages or notations (e.g. Petri nets, EPC, YAWL, BPMN or UML Activity Diagrams) are not

targeted to ordinary users, since their usage requires programming or modelling background. We need tools that

help and assist end-users to define the service compositions they need. Note also that professional developers lack

many times the domain knowledge that end-users are not always able to articulate [Liberman et al. 2006]. There-

fore, in a world with millions of services with different semantics and purpose, the use of tools for allowing end-

users to express their needs is even more important [Bohem et al. 2000].

The complexity of this problem is further increased if we consider that end-users often need the composition

of services on the move. Currently, mobile devices have become into the universal interface between services and

end-users, and the need for their compositions usually rise in a spontaneous and inspired on-the-go way, outside

office environments, with no access to desktops computers or laptops. In many cases, mobile devices are the only

platform that end-users are working with in order to perform their daily tasks. Thus, it makes sense to think that

mobile devices are a good platform to allow end-users not only to consume their preferred services but also to

create new ones by composing them. In this sense, one of the main challenges to be faced is the design of a service

composition environment that considers intrinsic characteristics of mobile devices such as restricted screen sizes,

usage of touch-based interactions, or different contexts of usage.

In this work, we face the problem of supporting end-users in the composition of services with mobile de-

vices. We present a Domain Specific Visual Language (DSVL) specifically designed to be used in mobile envi-

ronments. This DSVL is supported by EUCalipTool, a mobile application targeted to end-users without program-

ming skills that allows them to easily compose services. With this work, we aim to improve the research on mobile

end-user development to encourage end-users to go beyond consuming services and become producers of services.

This work is developed within the context of SITAC (Social Internet of Things, Apps by and for the Crowd),

an ITEA 2 project aimed to improve the interaction among humans and services. A preliminary version of the

DSVL was presented in [Mansanet et al. 2014]; the complete architecture can be found in [Mansanet et al. 2015].	

The rest of the paper is organized as follows: Section 2 introduces the related work. Section 3 presents a

motivation example. Section 4 introduces some rationale of the proposed solution. Sections 5 and 6 present the

DSVL created for end-users and EUCalipTool, its supporting authoring mobile tool. Section 7 introduce an over-

view of the software architecture that supports EUCalipTool. Section 8 discusses the validation of this work. Fi-

nally, conclusions and further work are presented in Section 9.

2 Related Work

In this paper, we present a research work to support end-users in the composition of services from mobile devices.

The main research field where we can find works that also face this challenge is the End-User Development (EUD)

field, more specifically the mobile EUD (m-EUD) branch. Next, we discuss the most important works developed

in this field.

iCAP [Dey et al. 2006], is a visual, rule-based system that allows end-users building, prototyping, testing,

and deploying interactive context-aware applications without writing any code. To do so, end-users specify graph-

ically the behaviour of the application by defining objects (i.e., people and artefacts) and the rules that govern

them. These rules are categorized in three groups: (1) simple if-then rules where actions are triggered when a

condition is satisfied (e.g., if it is night-time, turn the television off), (2) relationship-based actions where personal,

spatial and temporal relationships can be specified (e.g., when I wake up – for temporal, the next room – for spatial,

and family – for personal), and (3) environment personalization where user preferences are taken into account

(e.g., a user may prefer classical music).

Simple implementations of a similar rule-based system are Atooma (2015), Tasker (2015), Locale (2015)

or Ifttt (20015). These tools allow customizing mobile functionalities following the “if x then y” structure. In this

case, end-users can build the same type of applications where “x” and “y” can vary according to possible events

that can be captured by the mobile phone (x) and actions that can be performed by the device, natively or by means

of a specific application. Lucci and Patternò (2014) presented a comparison between Atooma, Tasker, and Locale

with the objective of analysing the expressiveness and usability of this type of tools.

MircroApp [Cuccurullo et al. 2011] allows end-users to graphically create applications by combining (in

sequence or parallel) actions (e.g., take a picture, send an email) that are offered by a mobile phone. In this case,

the tool builds the dataflow between these actions automatically. This approach uses a colour code to differentiate

between different types of parameters required by each action. In addition, the user can also specify whether a

specific parameter is going to be set up at design time (being the same value used each time the composition is

executed) or whether this is going to be provided during execution time.

Microservices [Danado et al. 2010] is an authoring tool to create mobile applications. There are two differ-

ent views, the beginner’s view, which is targeted to users with none programming skills and the advanced view,

which is targeted to more advanced users. While in the beginner’s view users are assisted during the application

creation, in the advanced view users have more freedom and control for the definition of the behaviour of the

application. In fact, in the beginner’s view users just need to configure the provided templates to build a specific

application. However, in the advanced view users create a tree of blocks where input for a parent block is fed by

the outputs of its child blocks.

Puzzle [Danado & Paternò 2014] is a framework that allows end-user creating mobile applications directly

from a mobile device. It allows combining functionality provided by the own device, smart objects, and web

services as if they were jigsaw pieces. The main benefit of using such metaphor is that users can start working

with the given tool without a previous training.

Context Studio [Häkkilä et al. 2005] allows creating applications that activate mobile functions when a

defined context-action rule is satisfied. The UI provided to define such rules is based on lists where the end-user

first selects the action to perform (e.g., switching to mute or launching the camera), and then the trigger (e.g.,

shaking the device or drawing a circle in the screen of the device).

TouchDevelop [Athreya et al. 2012] is a mobile programming environment targeted to end-user program-

mers, i.e., users with programming knowledge, to create mobile applications. Applications are built in this case as

scripts written in the TouchDevelop language. In addition to programming skills, in order to build applications

with this environment, end-users need to know the features and constraints of the provided language.

Discussion. First, not all that these works provide abstractions that helps end-users without programming

background to compose services. Even more, a visual environment is not provided for all of them since some are

textual approaches. In addition, most of the above presented approaches only allow end-users to define an action

(or set of actions) that must be executed when a condition (some of them defined only over values available at

design time) is satisfied.

We differ from the above presented approaches in the fact that we allow end-users to go a step further in

the definition of activity sequences in a visual way. As we introduce next, our solution provides end-users with

mechanisms to create complex compositions that can include loops, parallel executions, or multiple conditional

activities. Conditions can be defined either over activity outputs or over context conditions available at run time

such time, weather or user position. In addition, we pay a special attention to the definition of input and output of

activities, and how they must be linked to create sequences. It is not clear how the analysed works face this problem

from an end-user perspective.

3. Motivating example

This section introduces a scenario based on a day in John's life, a 22 years old university student. The university

where John is studying offers some services, which provide the university community with information about

university facilities (i.e. library availability, available parking places, events celebrated at the campus, etc.).

John is using the university facilities as well as other existing services as follows: From Monday to Friday,

every morning before leaving home, John first books a seat at the library of the university. Then, he checks the

weather forecast for that day to decide how to reach the university. On rainy days he prefers to reach the university

by bus, so he checks the schedule of the line bus that makes the route from his place to the university. On the other

hand, on sunny days he prefers to go to the university by bike. Since the university offers a bike parking service,

he books a place close to the library to park his bike. He also checks the state of the traffic flow along his route to

know if there is some jam. In any case, John notifies his classmates about the library where his is going to stay by

publishing this information via Facebook and Twitter.

Figure 1 shows the graphical representation of John’s scenario in the BPMN notation, which is one of the

most used notations to compose services. Note that John needs to use concepts such as events, sequence flows, or

gateways in order to create the composition he needs with this notation. These concepts can be extremely difficult

for end-users without notions about modelling and programming. In addition, this type of notations and languages

are not conceived to be used in mobile devices.

Figure 1. BPMN representation of John’s scenario

John can use current mobile solutions targeted to end-users such as the ones presented above. However, as we

have explained, they do not give support to create automations more complex than condition-action rules. This is

not enough to support John’s needs.

4 Rationale of the proposed solution

We need to provide end-users with a tool capable of composing services intuitively, not based on traditional com-

position languages such as BPMN. This tool must provide end-users with concepts that allow them to focus on

domain aspects instead of technical issues, but at the same time, provide them with enough expressivity to satisfy

their needs.

According to [Van Deursen et al. 2000], the use of a DSVL is recommended to help end-users in the defi-

nition of domain concepts since they have proven to be more intuitive and easy to use than other options like

general-purpose languages or textual languages. On the one hand, they are focused on a particular domain and

provide specialized features to describe it, which helps end-users to understand the language. On the other hand,

they provide visual elements that are better-suited to target end-user cognitive processes and understanding

[Couper et al. 2004, Galitz 2002].

In addition, a DSVL should be semantically rich enough to obtain complex service compositions. A solution

to this is that the proposed DSVL provides concepts semantically equivalent to the ones defined by the business

process metamodel [BPDM, 2014], since it includes all the constructs required to create such compositions. How-

ever, to make sure that the DSVL provides more intuitive concepts than the ones provided in the mentioned met-

amodel, it is necessary to perform an abstraction effort to get closer such concepts to end-users. Such an effort was

already performed in [Weber et al. 2008] with their proposed set of change patterns, a set of high level abstractions

aimed at achieving flexible and easy adaptations of business processes. These abstractions are defined in terms of

high level change operations (e.g. the creation of a parallel branch) which are based on the execution of a set of

change primitives (e.g. add/delete activity). As opposed to change primitives, change pattern implementations

typically guarantee model correctness after each transformation [Casati 1998] by associating pre-/post-conditions

with high-level change operations, supporting the correctness-by-construction principle [Dadam & Reichert 2009].

For this purpose, structural restrictions on process models (e.g. block-structuredness) are imposed. This is a valu-

able characteristic to be considered on the definition of a DSVL for end-users, since it reduces the possibility that

end-users make mistakes while composing services. In addition, a correct usage of change patterns allows speeding

up the creation of the composition [Weber et al. 2008].

Therefore, in this work we take as basis a subset from the change patterns proposed by Weber at al. to allow

end-users to create all main control-flow constructs (i.e. sequences, parallel branches, conditional branches, and

loops). This subset includes AP1 (Insert Process Fragment) with its two variants, i.e., Serial and Parallel Insert,

AP2 (Delete Process Fragment), AP8 (Embed Process Fragment in Loop), and AP10 (Embed Process Fragment

in Conditional Branch). For illustration purposes, Figure 2 shows the changes introduced by the application of

pattern AP8 into S to obtain S' where activity B is embedded in a loop. The result is a loop fragment that contains

the selected activity.

Figure 2. Example of the “Embed process fragment in loop” pattern

By using the mentioned subset of change patterns, we have defined a language semantically as rich as any other

composition language such as BPMN but more intuitive and easy-to-use for end-users. 	

Finally, visual elements should be defined considering the device in which the DSVL is used. In our case,

end-users must create service composition with a mobile device. Thus, the proposed visual elements have been

designed in order to be used with this type of devices. In particular, the proposed DSVL is supported by EUCa-

lipTool, which is an authoring mobile tool for end-users that has been designed by using patterns and guidelines

for mobile development.

4.1 Example of usage

Let us provide the reader with a first contact with the proposed solution in order to see how end-users can create

service compositions. Next sections explain its design and development in detail.

In order to create John’s composition, he just need to use the EUCalipTool tool. Figure 3 shows some

screenshots that illustrate the process of defining the service composition of John’s scenario. A composition is

created by using always the metaphor of “adding an element” to a container. The composition is the main container

and can include activities or fragments. While activities are high level representations of services, fragments are

structures inspired by change patterns (i.e., loop, parallel, and conditional structures) which may contain in turn

activities or other fragments. However, end-users do not need to worry about the creation of such structures (i.e.,

create and link all the required modelling elements), instead they just need to add elements to a specific container.

We have created an analogy between the activity of adding elements, which is well-known by end-users, and the

composition of services. Note that analogies are powerful cognitive mechanisms for constructing new knowledge

from knowledge already acquired and understood [Repenning & Ioannidou 2006].

Thus, after creating an empty composition, John accesses its graphical representation, which is shown in

Screen 1. Initially, it is represented by an empty list. From this screen, John clicks the button with the “+” symbol,

and accesses Screen 2 where the available services are shown as activities.

Figure 3. Example of usage of the proposed end-user mobile tool

From the list of activities, John adds the activity “Book Seat at Library” (see result in Screen 3). Next, he

clicks again the “+” button and select a Weather Predefined Item. Predefined items are fragments with a predefined

condition, which facilitates end-users the definition of actions that depends on conditions such as weather, location,

time, etc. (see the list of available predefined items in Screen 4). The Weather Predefined Item is configured with

a branch associated to the 'Sunny' state (see Screen 5). John adds the activities "Book Bike Parking" and "Check

Traffic Reports" to this branch by following the same steps shown before (see result in Screen 6). Thus, these

activities will be executed if it is a sunny day. Next, he adds another branch associated to the 'Rainy' state by

clicking the “+” button in Screen 6, and adds the activity "Get route by EMT" to it (see result in Screen 7).

Clicking again the “+” button located just below the composition, John adds a Parallel Fragment. Screen

8 shows the list of available fragments. He adds the activity "Publish in Facebook" in one branch of the fragment,

and the activity "Publish in Twitter" in the other by following the same steps than before (see in Screen 9 the final

result). Thus, activities included in both branches will be executed at the same time, i.e. in parallel.

5. A DSVL to support the composition of services by end-users

This section presents the DSVL proposed to support end-users in the creation of service compositions. DSVLs are

defined by:

1. An abstract syntax, which indicate the concepts that define the language and the relationship among these

concepts, independent of any particular representation or encoding.

2. A visual concrete syntax, which define the visual metaphors that end-users must use to create these con-

cepts.

Furthermore, a proper tool (or editor) must allow end-users to use the concrete syntax’s visual metaphors in order

to create descriptions based on the abstract syntax.

Next subsections present the abstract and concrete syntax of the DSVL. Note that one of the most important

guidelines to be followed in the design of a language for end-users is their support to avoid errors [Repenning &

Ioannidou 2006]. To achieve this, we focused on creating a DSVL and a tool that satisfy the principle of correct-

ness-by-construction, i.e. whose simple use let avoiding errors. This aspect is highlighted as the elements of the

DSVL are introduced.

5.1 Abstract Syntax

An abstract syntax for end-users should include concepts that can be easily understood and used by them, but at

the same time, these concepts should be semantically rich enough to create the desired descriptions.

Thus, as we have explained above, we have defined an abstract syntax based on a set of change patterns.

This abstract syntax is described by the metamodel shown in Figure 4. According to this figure:

• A Composition has a name, a description and a graphical icon. These properties are defined in an additional

abstract class (NamedElement) because they are shared by other classes of the metamodel. They are used to

semantically characterize compositions and activities.

A composition is made up of a set of Composition Elements. Inspired by the set of change patterns pre-

sented above, a composition element can be of two basic types: activities and fragments. The fact of using only

two types of elements facilitates the definition of a composition by end-users, since they only have to handle

with these two concepts in contrast to languages such as BPMN where several concepts need to be understood

(activities, events, gateways, connectors, swimlanes, etc.). The previousElement relationship between compo-

sition elements allows establishing the sequence order between activities and fragments.

• An Activity is a high level representation of a service. It has a name, a description, and a graphical icon, hiding

end-users all the technological issues that are required to invoke the service. We use the term “activity” instead

of service because it is closer to end-users’ mental model [Engeström et al. 1999]. Thus, end-users focus on

indicating the activities they want to perform in a composition, such as checking weather forecast, posting a

message in Facebook, and so on.

An activity may need one or more inputs (e.g. the location where the end-user wants to check the weather

forecast or the message to be published in Facebook) and a result (e.g. the actual weather forecast for the given

location). The input and the result of an activity correspond with the parameters and the return value of the

associated service. Both have a name and a description in order to help end-users to understand their semantics.

Note that compositions may have also an output and some inputs. However, this data is implicitly derived from

the activities included in the composition. The output of the composition is defined from the output of the last

activity included in the sequence that define the composition logic. For instance, if a composition finishes with

an activity whose output is a weather forecast, this forecast constitutes also the output of the composition.

Inputs of a composition correspond with activity’s inputs that need to be provided at runtime. For instance,

consider a composition that includes an activity that need to know the current location of the user. This input

must be provided at runtime in order to perform the activity and therefore the composition. Consequently, this

activity input constitutes an input of the composition.

Regarding the introduction of input values, inputs have a source, which indicates how the value should

be provided. According to the InputSourceType enumeration, it can be: runtime, which indicates that the input

must be introduced by end-users at runtime; compositionTime, which indicates that the input is defined at

design time by the authoring end-user; and ActivityOutput, which indicates that the input is associated to the

output of another activity (see sourceResult association). This last option is a key aspect in the creation of

activity sequences, since an activity may need as input the result of a previous one.

• A Fragment is the result of applying one of the change patterns introduced above. They are composed by

Branches, which contain a sequence of elements (activities or other fragments). Each fragment provides spe-

cific execution logic to the elements of their branches:

o Parallel fragment: indicates that the elements of two or more branches must be executed at the same time.

It is the resultant element of applying the “Insert Process Fragment in Parallel” change pattern.

o Conditional fragment: indicates that the elements of a branch must be executed if a condition is fulfilled.

It can have one or more branches, each of them with its own condition. It is the resultant element of

applying the “Embed Process Fragment in Conditional Branch” change pattern.

o Loop fragment: indicates that the elements of one branch must be repeated while a condition is satisfied.

It is the resultant element of applying the “Embed Process Fragment in Loop” change pattern.

Figure 4. Abstract syntax metamodel

Note that there is not a resultant element for both “Insert Process Fragment in Serial” and “Delete Process Frag-

ment” change patterns. The first pattern is used to create sequences of elements and we capture this information

by using the above introduce previousElement relationship. Regarding the second pattern, the result of its applica-

tion is the removing of an element from a composition, and it is not reflected in the abstract syntax. It is supported

directly by EUCalipTool.

In order to better understand the most important concepts of this metamodel, Figure 5 identifies them in the

BPMN description of the running example. This process is composed of a sequence fragment of four composition

elements: two activities that are followed by a conditional fragment and a parallel fragment.

Figure 5. Identification of composition elements in the running example

5.2 Concrete Syntax

In this section, we introduce the visual representations that allow end-users to create descriptions based on the

abstract concepts presented above. These representations have been defined by using patterns and graphical com-

ponents specifically designed for mobile devices.

Compositions

A Composition is initially created by indicating a name, a description, and a graphical icon by means of a form

created with this purpose. A snapshot of this form is further presented in Section 6.2 (see Figure 15A). Once a

composition is created, end-users access its graphical representation to include the desired services.

In [Danado & Paternò 2014], different metaphors were evaluated by end-users in order to know which ones

were most intuitive to connect components and compose various arrangements. The puzzle and workflow meta-

phors were the two most ranked. We have based on these two metaphors to create the graphical representation of

a service composition.

On the one hand, we use the workflow metaphor to define the elements of a composition since it is easy to

use in a mobile device. Graphically, the workflow of the elements of a composition is represented by using the

List layout (see Figure 6), which is widely used in mobile design to facilitate the scrolling of a collection of ele-

ments. The order in which elements are displayed (from top to bottom) represents the order in which they will be

considered at runtime. For each activity in the List, its name is shown. For each fragment, the type of the fragment

and the branches that it contains are shown. The elements of each branch are also displayed by using the List

layout.

On the other hand, each element of a composition is connected graphically to the next one through an

inverted little triangle. This aspect has been inspired by the jigsaw metaphor [Renger et al. 2008], which defines

pieces inserted into other ones to reinforce the notion of connection or combination of elements. We have used a

similar solution to evoke end-users the idea of connecting activities and/or fragments.

Figure 6. Graphical representation of a composition

End-users can add elements to a composition or to a fragment by using a button with the symbol +, which is located

either at the end of the composition or at the end of the content of a fragment (see Figure 6). This button is placed

at the location where the new element will be added in order to help end-users to create a mental representation of

the result of the action before performing it.

Finally, a delete button complements composition’s and fragment’s elements in order to remove them. This

is an icon-based button that shows the image of a trash, which is broadly accepted to represent the removing action.

It is displayed at the right side of each element.

Composition elements

In order to add elements to a composition, a tabbed component has been defined. It is accessed when end-users

click some of the available + buttons. It has three tabs (see Figure 7): the two first (Figures 7A and 7B) allow

adding activities and fragments. The third one represents predefined items (Figure 7C), which provides support

for the creation of conditional fragments in an easier way.

• The Activity tab (see Figure 7A) allows end-users to add an activity either to the composition or to a fragment.

To do so, end-users just need to select the desired one. Since the number of activities displayed there can be

large, this tab implements the Continuous Filter pattern [Van Welie & Trætteberg 2000] in order to facilitate

finding a specific one (see the implemented filter in Figure7A).

 	

Figure 7. Tabs for adding elements

• The Fragments tab (see Figure 7B) provides end-users with the three basic fragments defined in the abstract

syntax: conditional, loop and parallel.

When a fragment is added, it is created with some branches by default. The number of branches and the possibil-

ity of adding new ones depend on the type of fragment. According to the abstract syntax presented above:

- A parallel fragment must have at least two branches. Thus, when this fragment is added, two branches are

automatically defined. In addition, end-users have the possibility of adding new ones. Branches can also be

removed when more than two are defined. Figure 8A shows a newly added parallel fragment. At this point

end-users can only add new branches. Removing branches is not allowed since the parallel fragment requires

at least two branches to be a valid fragment.

- A conditional fragment must have at least one branch. Thus, when this fragment is added, a branch is automat-

ically defined. In addition, end-users have the possibility of adding new ones. Branches can also be removed

when more than one are defined. Figure 8B shows a conditional fragment with two branches. In this case, end-

users can add new branches or remove existing ones.

- A loop fragment must have one and only one branch. Thus, when this fragment is added, a branch is automat-

ically defined. In this case, end-users do not have the possibility of adding or removing branches. Figure 8C

shows a newly added loop fragment. In this case, end-users are not able neither to add nor remove branches.

Note that the creation of fragments with default branches, and the constraints defined over the actions of adding

and removing branches help satisfying the correctness-by-construction principle. Fragments always will have the

required branches by construction, and end-users cannot do actions that change this. Therefore, we reduce the

possibility of creating incorrect descriptions to only two scenarios:	

- When a new fragment is added its branches are initially empty, with no elements in it, which is not correct

according to the abstract syntax presented above.

- When a composition is initially created it has no elements, which is neither correct according to the ab-

stract syntax.

Figure 8. Branches automatically defined in each type of fragment

To solve these problems, we had two main options: (1) create a default content in order to guarantee correct-

ness-by-construction, or (2) mark fragments and composition as incorrect elements to force end-users to com-

plete them. The first option was discarded because it implied adding elements to the composition (e.g. a default

activity) that may not fit with the needs of end-users, and then, they would have to modify or replace this

default element. Thus, we chose the option of marking newly created fragments and compositions as uncom-

pleted elements and, following the guidelines presented in [Haines et al. 2010], a message that alerts end-users

how to fix the problem is shown. Fragments presented in Figure 8 show representative examples of these

messages. In addition, end-users cannot add new elements until existing ones are correctly completed. This

restriction as well as the constraint related to fragment braches are controlled by EUCalipTool.	

Following with fragments, note that the conditional and loop fragments require the definition of condi-

tions. In the first case, a condition for each branch should be defined in order to indicate when its elements

must be executed. In the case of the loop, only one condition must be defined. While it is true, the elements of

its unique branch must be executed iteratively. The conditions can be defined using either the output of previous

activities or context properties (i.e. weather status, user location, etc.)

In order to define these conditions, the form in Figure 9 has been defined. It allows end-users to create a

condition by comparing the output of previous activities or a context property with the output of an activity or

a specific value. In the example below, a post on Facebook is published if the seat booked by the activity Book

Seat at Library has the number 13.

Figure 9. Configuration of a condition

• The Predefined Items tab (see Figure 7C) facilitates end-users the creation of conditional fragments. This tab

includes a set of conditional fragments that have been created with predefined conditions. We have been in-

spired by end-user guidelines that promote the provision of reusable components [Segal 2005]. The conditions

have been defined from the analysis of related work, and from our experience in the definition of context-aware

systems [Serral et al. 2013], activity and task modelling [Uden 2008, Valderas 2006], and adaptive business

process [Ayora 2013]. They are the following:

- Weather: a conditional fragment that allows end-users to perform specific activities depending on

weather, i.e. depending on whether it is a sunny, cloudy, rainy, or windy day.

- User confirmation: a conditional fragment that allows end-users to perform specific activities previous

confirmation. This fragment is predefined to ask end-users at runtime if they want to execute some activ-

ities.

- Location: a conditional fragment that allows end-users to perform specific activities according to their

location. This condition is checked at runtime by interacting with the geolocation capabilities of the end-

user mobile device. It is possible to indicate a scope range in order to indicate how close to the location

the end-user must be in order to perform the activities.

- Day and Time: a conditional fragment that is predefined to perform activities at a specific day(s) of the

week and/or time.

- Composed: a conditional fragment that allows end-users to use the previous predefined conditions in order

to create a composed one. For instance, this fragment allows end-users to define a set of activities that

must be performed in a location (Location condition) at a specific time (Day and Time condition).

In order to configure the predefined conditions, specific graphical components have been designed. All of them

have been defined taking into account the study presented in [Galitz 2002], which recommend the selection of

data instead of typing it for avoiding end-users’ errors. As representative examples, Figure 10 shows the screens

that allow end-users to configure a Weather condition (A), a Location condition (B) and a Day and Time

condition (C).

Figure 10. Configuration of the predefined items	

Note that a predefined item may imply the execution of implicit actions in order to check the conditions. For

instance, the Weather predefined item includes the action of knowing the forecast, although end-users do not

define it explicitly. Thus, the use of this type of elements not only helps end-users by providing them with

predefined conditions, but also implies implicit logics (e.g. the execution of the weather forecast service) that

end-users do not need to define. In other languages such as BPMN these actions must be defined explicitly. As

a representative example, Figure 11 shows the BPMN part of the running example that is equivalent to a

Weather predefined item.

Note also that these fragments can be used either to involve a set of elements such as in Figure 11 example,

or as a wrapper of a full composition. This last case allows end-users to easily indicate some conditions (e.g. a

day and a time, a temperature, a location) in which a composition should be triggered. For instance, Figure 12

shows the ProfAtUni composition, which contains the activities that should be performed when a professor is

close to the Universitat Politècnica de València (UPV) on Monday, Thursday and Wednesday at 8:00.

Finally, it is worth noting that predefined items also help to satisfy the correctness-by-construction prin-

ciple since they constitute a mechanism for allowing end-users to create conditional fragments by configuring

a condition instead of creating it from scratch.

Figure 11. BPMN specification equivalent to a Weather predefined item

Figure 12. Using a Composed Fragment as Composition Wrapper

Activity inputs

Activity Inputs represent the data that an activity may need to be properly performed. According to the abstract

syntax presented above, this data can be obtained from three different sources: (1) from the end-user at composition

time, (2) from the end-user at runtime, or (3) from the output of a previous activity.

In order to define this aspect, we have designed a graphical component that allows end-users to configure

the inputs of each activity one by one. It is shown in Figure 13A. Using the arrowed buttons placed at the top and

bottom sides of the component, end-users can browse the activities of the composition. The central part shows the

inputs of each activity and the value source assigned by default (this is explained in detail in Section 6.3). Tapping

on this central part end-users can access the form in Figure 13B, which allows them to define the source of the

inputs of an activity. In this example, the end-user is defining the source of the input Bike Station of the activity

Book bike parking. This input is a location, so the end-user has four options in this case:

- Predefined Location: a location defined at design time by using a graphical component similar to the one

presented in Figure 10B.

- Current Location: a location defined automatically at runtime from the current user position.

- Asked when needed: the user gives the location at runtime.

- Library: this is the output of the previous activity Book Seat at Library. All outputs of previous activities that

have the same type as the input are shown in this list of options. If this option is selected, the Bike Station

input takes the value of the Library output.

Figure 13. Input Configuration for the Book Bike Parking activity

6 End-user Authoring Mobile Tool

In this section, we present EUCalipTool. This tool implements the DSVL presented above in order to provide end-

users with support to compose services by using their mobile devices. There are two versions of this tool2:

- WebApp version: it has been implemented by using web technology (HTML5, CSS3, Javascript) and can be

accessed from any browser of a mobile device, without any type of installation.

- Android version: it has been implemented as a native app for the Android platform. It does not require any

browser since the app is installed into an android device.

																																																													
2	Both versions can be accessed from the download section of the EUCalipTool web page at https://tatami.dsic.upv.es/euca-
liptool/	

This tool implements the DSVL presented above to allow end-users to compose services by using high-level de-

scriptions of them. In addition, EUCalipTool incorporates design issues in order to help end-users to properly

create a composition. Next, we analyse them in detail.

6.1 User Guidance

The most important aspect of the tool implementation is the application of the Wizard pattern [Van Welie &

Trætteberg 2000]. This pattern is used to increase software usability. It promotes interfaces that guide end-users

through the different steps that may involve a task. This improves the learning and memorization of the steps to

be performed and keeps users from missing important things. We have used this pattern to guide end-users through

the steps of creating a service composition. These steps are the following (see Figure 14):

1. Creation: a composition is created and initialized. It can be done from scratch or taking an existing one as

base. This second option is explained in detail in the next subsection.

2. Sequence Definition: The sequence of activities and fragments must be defined in this step. End-users can

add activities or fragments by using the defined concrete syntax.

3. Input Configuration: In this step, end-users must configure the inputs of each activity. The graphical com-

ponent to do so has been presented above.

As we can see in Figure 14, the wizard pattern has been implemented as follows:

• The steps to be done in the creation of a composition are always shown in the upper side of each screen, and

the current step is highlighted.

• Each time a new step is started end-users are shown with a screen that informs about this fact.

• End-users can use the upper side area where steps are shown to directly access the current and previous steps

(step captions become into links after performing them), which helps them to go back in order to modify

some aspect.

This guided process helps end-users to focus on each task separately: first they focus their efforts on create a

composition (step 1); next they define the sequence of activities and fragments (Step 2); and finally they focus

on managing inputs sources (step 3). This provides end-users with an incremental process, helping them to feel

that what they are doing is not difficult but they are building up the necessary skills incrementally [Repenning &

Ioannidou 2006].

Step 1: Creation Step 2: Sequence Definition

Step 3: Input Configuration

Figure 14. Screens of the steps required to create a composition

6.2 Two ways of creating a composition

There are two ways of creating a composition: from scratch and from a catalogue (see first step in Figure 14). With

the first option, end-users need to initialize the composition by indicating a name, a description, and a graphical

icon. The form to introduce this data is presented in Figure 15A.

With the second option, end-users can create a composition from an existing one. In the context of End-

user Development, it is highly recommended that end-users can access a library of predefined components in order

to select and use one of them as starting point [Segal 2005]. EUCalipTool allows end-users to create a service

composition by selecting an existing one from a catalogue, and customizing it according to their needs. This cata-

logue includes: (1) examples that we have defined to be used by end-users, and (2) previous compositions created

by the own end-user.

Figure 15B shows a snapshot of a catalogue with the list of composition examples that we have created.

These examples cover the use of all the constructors provided by the DSVL in order to help end-users to learn

them.

Figure 15. Creation from scratch (A) or from catalogue (B)	

6.3 Automatic default configuration for activity inputs

In the third step of the composition process, end-users have to define the source for each activity input. To do so,

a specific concrete syntax was defined and presented above (see Figure 13).

Additionally, EUCalipTool provides end-users with automatic support to manage this aspect. By default,

the tool links the inputs of each activity to the outputs of the preceding one, always when their types match. Infor-

mation about input and output types can be obtained from the parameters of their associated services, which are

described in a Service Registry [Mansanet et al. 2015]. If input and output types do not match, the input of an

activity must be introduced at runtime.

Note that this default configuration allows satisfying the correctness-by-construction principle at syntactic

level, since inputs have always associated a correct source. However, it is clear that it may be not semantically

correct according to end-users’ needs. In these cases, end-users can use the concrete syntax shown in Figure 13 to

validate the default definition and change it if needed.

6.4 Additional Usability Issues

In this section, we introduce additional usability issues that have been considered in the design of EUCalipTool.

Selection rather than typing. The studies presented in [Galitz 2002] recommend the use of selection com-

ponents as means to allow users to introduce data since information became less familiar, or subject to spelling or

typing errors if entry fields are used. In addition, the study in [Couper 2004] states that end-users tend to select

from the entire list of options that they are first presented with. They rarely make an effort to find additional options

through scrolling.

Thus, we have designed user interfaces that avoid users to type data as much as possible and present avail-

able options in the same screen. As representative example, note how predefined conditions are configured without

typing, and the different options that can be selected are shown in the same screen (see Figure 10).

Matching the real world. According to usability heuristics presented by Nielsen (2005), systems should

provide a design that help matching items between system and real world. One of the most used techniques to

achieve this is the inclusion of icons that graphically represent the actions that users can do by selecting items. In

this case, figures presented along this paper show how the different available options are always complemented

with a representative graphical icon.

Help. According to Nielsen (2005), it is recommended to provide help and documentation to end-users in

order to facilitate the learning of use. To implement this in a mobile environment we have followed some of the

patterns presented by Neil (2014). In particular, we have used the transparency pattern in order to provide end-

users with indication of use. This pattern proposes the implementation of a see-through layer with a usage descrip-

tion positioned over the actual screen content. Figure 16A shows a screen with this type of help. This help appears

automatically the first time end-users access a screen. It does not appear in later accesses to the same screen. It can

be disabled if end-users do not need it in further steps, and can be enabled again when needed. To do so, end-users

just need to use the button with the symbol , which is located at the left top corner of the screen.

Figure 16. Layered Help and Video Demo

Another pattern that has been followed from [Neil 2014] is the use of a video demo, which is a way of invitation

for applications that demonstrates the application in action. In particular, a tabbed panel help is always accessible

by end-users from the button in the header with the symbol . This panel includes a general description of the

application, a definition of the most important terminology, and the video demo. Figure 16B shows this screen

with the video demo tab activated

7 Software Architecture

EUCalipTool allows end-users to focus on composing activities and avoid handling with technological issues of

service implementations such as URLs, protocols, ports, and so on. To achieve this, a three layer architecture is

proposed (see Figure 17). The Service Layer encompasses the services developed by professionals. Services are

implemented by using the technology each professional considered convenient (e.g. SOAP or REST). The Appli-

cation Layer provides end-users with EUCalipTool. Finally, the Component Layer hosts a Service Registry that

plays the role of gateway between EUCalipTool and services’ implementation.

The proposed registry maintains two facets of services: (1) invocation facet, which includes all the techno-

logical aspects of a service (e.g. protocol, url, port, parameters, etc.). This data is used to manage the invocation

of a service at runtime, and it is hide to end-users at composition time. And (2) semantic facet, which describes

the behaviour and goal of each service in such a way end-users can manage it. To make a service available for

end-users, developers must register it into the registry by defining both facets (invocation and semantic). To do so,

a web frontend is provided. End-users only need to interact with the high level representations provided by the

second facet, which is accessed by EUCalipTool.

The Service Registry is implemented as a Java Web module, and publishes a REST API to interact with it

through the HTTP protocol. JSON is used as interchange data format.

Figure 17. Software Architecture

8 Evaluation

This section presents the evaluation done to our work. First, we present a comparison between our DSVL and

BPMN. Next, we present the usability evaluation test of EUCalipTool performed with real end-users.

8.1 DSVL vs BPMN	

One of the motivations to create a DSVL for end-users was to provide a language for composing services that was

simpler than existing ones, such as BPMN. Thus, we did a comparison between our DSVL and BPMN in order to

determine if this goal was achieved.

The comparison was done by analysing the steps needed to model several scenarios with both solutions.

We determined the main basic scenarios that users can face when composing activities, modelled them with both

solutions, and measured the steps required in each of them. By steps we mean actions to create an element of the

language.

As representative example, let us consider the definition of two activities, “post a message in Facebook”

and “post a message in Twitter”, which John wants to do at the same time, i.e., in parallel (see Figure 1):

• In order to model this scenario with BPMN, we have to (see Figure 17A): (1) create a split parallel gateway;

(2) connect it to the previous element; (3) create one activity; (4) connect it to the gateway; (5) create the

other activity; (6) connect it to the gateway; (7) create a join parallel gateway; (8) connect one activity to it;

(9) connect the other activity to it; and (10) connect the join parallel gateway to the next element.

• With the proposed DSVL, end-users just need to (see Figure 17B): (1) add a parallel fragment, (2) add one

activity, and (3) add the other activity. Although possible, no branches need to be created since two are added

by default to the fragment; the fragment is connected to the previous element by default; it does not require

the use of gateways to define the starting and ending point of the parallel behaviour; and it will be automati-

cally connected to the next added element.

	
Figure 17. Steps to create parallel behaviour with BPMN and with the DSVL

Thus, by using BPMN we need 10 steps in order to define the proposed scenario. In contrast, with our DSVL we

just need 3 steps to describe the same scenario. Table 1 presents a summary of all the evaluated scenarios. As we

can see, the use of the proposed DSVL allows end-users to create service compositions with fewer steps than using

BPMN. In particular, we can reduce the number of steps between a 60% and 80%.

Table 1. Summary of the results obtained with scenarios.	

 Scenario	 Steps in BPMN	 Steps in DSVL	

1 Create a composition with one activity 	 5
+1 Add start event	
+1 Add end event
+1 Add activity	
+2 create links between elements	

1	

+1 Add activity	

2 Add one activity in sequence	 3
+1 Add activity 	
+2 create links with previous and next elements	

1	

+1 Add activity	

3 Add two activities in parallel	 10
+2 Add parallel gateways	
+2 Add activity between gateways	
+4 create links between new elements	
+2 create links with previous and next elements	

3	

+1 Add parallel frag-

ment	

+2 Add activities	

4 Add an activity whose execution de-
pends on a condition	

8
+2 Add exclusive gateways	
+1 Define condition	
+1 Add activity between gateways	
+2 create links between new elements	
+2 create links with previous and next elements	

3	

+1 Add conditional

fragment	

+1 Define condition	

+1 Add activity	

5 Add an activity that must be executed
iteratively while a condition is satisfied	

9	
+2 Add exclusive gateways	
+1 Define condition to return	
+1 Add activity between gateways	
+2 create links between new elements	
+2 create links with previous and next elements	
+1 create return link	

3	

+1 Add loop fragment	

+1 Define condition 	

+1 Add activity 	

	

6 Add an activity whose execution de-
pends on weather conditions, user con-
firmation, user location, or day and
time	

10	
+1 Add activity to obtain weather conditions,
user confirmation, user location, or day and
time	
+2 Add exclusive gateways	
+1 Define condition	
+1 Add activity between gateways	
+3 create links between new elements	
+2 create links with previous and next elements	

3	

+1 Add predefined item	

+1 Define condition	

+1 Add activity 	

8.2 EUCalipTool Usability Evaluation	

The design of EUCalipTool was performed by following an incremental and iterative design process [Larman &

Basili 2003]. First, we created a set of user interfaces mock-ups that were validated by members of our research

group and students of Computer Science at the Universitat Politècnica de València. After applying the corrections

detected through this pre-test, mock-ups were implemented as a web front-end for mobile devices by using HTML,

CSS, and Javascript. This web front-end was then evaluated by real end-users in an experiment done in a Summer

School at the University of Coimbra [ICIS 2015]. We used this feedback to improve the web front-end and create

the current version of EUCalipTool, which has been presented in this paper. For instance, the version used in the

experiment forced users to define the sequence of activities at the same screen than input activities. We detected

that this aspect overloaded end-users since they had to do two different tasks at the same time. Thus, we split these

tasks into two different steps and screens. We also detected that additional mechanisms for guiding end-users in

the composition process were needed. For this purpose, we implemented the wizard pattern that shows end-users

the steps that need to be performed at the upper side of each screen.

In order to validate the current version of the tool, we applied a case study based evaluation by following

the research methodology practices provided by Runeson and Höst (2009) (we also applied this methodology in

the previous experiment introduced above). These practices describe how to conduct and report case studies and

recommend how to design and plan the case studies before performing them.

Design of the case study. By using these practices, we designed and developed a case study that gives

support to several scenarios that a student can perform in her daily life at the university, home or travelling. The

running example based on John is part of them (see Section 3). We then conducted an experiment in which students

of different areas and degrees of the Universitat Politècnica de València performed these scenarios adopting the

role of John by using either the Webapp version of EUCaliptool or the Andriod native one.

A total of 17 subjects between 23 and 54 years old participated in the experiment (six female and eleven

male). Most of them use mobile devices daily but only 7 of them had a strong background in computer science.

We arranged several sessions in which the subjects first explored the tool to know its functionality and then carried

out the scenarios under our supervision. To collect and analyse the results of the evaluated tool, we used a demo-

graphic questionnaire and an adapted IBM Post-Study Usability questionnaire3 [Lewis 1995]. The last question-

naire is a 19-item instrument for assessing user satisfaction with system usability. In addition, the items of the

																																																													
3	Both questionnaires can be accessed at:
https://docs.google.com/forms/d/14fiIYym0fbRIi_v7ROxzSIetTYNQQYEhkMMNoyAhDNY/viewform?usp=send_form
https://docs.google.com/forms/d/18Y3vbDmq84J5BMPOqUTCjaDvUxicUtgmZQVx7u8k1e4/viewform

questionnaire ask subjects the following: if the tool was easy to learn to use, which allows us to measure the

learnability of the tool; and if they were able to efficiently complete the tasks using this tool, which allows us to

evaluate the applicability of the tool. We applied a Likert scale from 1 (lowest score) to 7 (highest score) points to

evaluate the items of the questionnaire.

Evaluation results. Figure 27 shows a graphic with the obtained results. With regard to the learnability of

the tool, the subjects of the experiment commented that the tool was easy to learn to use (question 7). Specifically,

65% of the subjects gave the tool a score between 5 and 7. They said that the organization of the interfaces and the

guided steps helped them to easily learn how to compose activities. However, they found the language used in

some parts of the tool (e.g. in the screen to define conditions) a little difficult to understand (question 10). The

problem was the use of some terms such as ‘conditional operator’, ‘branch’, ‘at runtime’, and so on, which seems

to be too much technical. We redesigned the full interface to change this terminology.

With regard to the applicability of the tool, 82% of the subjects involved in the evaluation gave the tool a

score between 5 and 7, since they perceived that the tool allowed them to be more efficient (question 5). With

regard to the functionality provided by the tool (question 18), 59% of the subjects gave the tool a score between 5

and 7. Most problems found regarding this aspect were related to the possibility of editing conditions, which was

not allowed (i.e., they had to delete a conditional branch and add a new one). We improved this problem by allow-

ing the edition of fragment conditions. Some of them propose the possibility of adding multiple activities at the

same time. We are currently evaluating this option.

With regard to the usability of the tool, the results revealed that the tool was clear to use (question 15).

Most subjects found the interface to be friendly and easy to use (question 16). The worst score obtained from the

questionnaire was for the questions that determine the information quality of the message errors and help (ques-

tions 9 and 10). The subjects commented that error messages were not always clear enough to correct them (ques-

tion 9), which was partially related with the problem of using technical concepts. Some subjects (most of them

with basic computer knowledge) also explained that the tutorial should be easier to read (question 10). To improve

this aspect, we are currently working to rewriting the tutorial in order to make it simpler.

																																																													

	
Figure 27. Usability Questionnaire results

Finally, 71% of the subjects stated, in overall, their satisfaction towards the tool (question 19), resulting in average

a 5.05 from the 7 point liker scale, which is quite an acceptable score.

9. Conclusions and Further Work

In this paper, we have presented a research work to support end-users in the composition of services by using their

mobile devices. To do so, we have presented a DSVL based on a specific set of change patterns, which provides a

visual language for end-users simpler than existing ones for activity composition such as BPMN. This DSVL is

supported by EUCalipTool, which is targeted to end-users without programming skills desiring to start creating

complex service compositions by using a mobile device. From our results, EUCalipTool has addressed our initial

goal and enables end-users to easily compose services, by using high-level service descriptions.

One important aim of this work is to contribute to the research on mobile end-user development in order to

encourage end-users to become producers of services. In a world where people’s environment is plenty of services

that support their life style, this can be a crucial aspect to support their needs.

As further work, we plan to improve some of the problems detected in the usability evaluation such as

providing new capabilities to the tool (e.g. adding multiple activities at the same time), or improving the provided

help and messages. In addition, we want to do more usability experiments focused on other profiles of users and

scenarios. Currently, we have focused on the tasks that a student can potentially do at university, home, or when

traveling. We want to analyse other scenarios with professional end-users (those who use computers at work alt-

hough they are not computer engineers) and pure end-users (those that do not usually use computers).

We are also working on providing a solution that transform end-user descriptions done with EUCalipTool

into executable specifications. In particular, we are working on a generation module that transforms them into

executable BPMN specifications. A preliminary version of the software architecture that support this solution can

be found in [Mansaet et al. 2015]. In addition, we are investigating on applying a previous work focused on con-

siderate computing. In [Gil 2013], we studied how to achieve a considerate interaction with users (i.e. disturbing

them as less as possible) in the context of the IoT. We plan to apply this when executing composition created with

EUCalipTool.

References

Athreya, B., Bahmani, F., Diede, A., & Scaffidi, C. (2012, September). End-user programmers on the loose: A
study of programming on the phone for the phone. In Visual Languages and Human-Centric Computing
(VL/HCC), 2012 IEEE Symposium on (pp. 75-82). IEEE.

Atoma. (2015). Atoomam, a touch of magic. Accesible at: https://www.atooma.com/. Last time accessed: Decem-
ber 2015.

Ayora, C., Torres, V., Weber, B., Reichert, M., & Pelechano, V. (2013). Enhancing modeling and change support
for process families through change patterns. In Enterprise, Business-Process and Information Systems Mod-
eling (pp. 246-260). Springer Berlin Heidelberg.

BPDM (2014). Business Process Defintion Metamodel, volume ii: Process Definitions.
http://www.omg.org/spec/BPDM/1.0/volume2/PDF

Casati, F. (1998). Models, Semantics, and Formal Methods for the design of Workflows and their Exceptions. PhD
thesis, Milano.

Couper, M.P, Tourangeau, R., Conrad, F.G., Crawford, S.D. (2004). What they see is what we get: response op-
tions for web surveys. Soc. Sci. Comput. Rev., 22(1):111–127.

Cuccurullo, S., Francese, R., Risi, M., & Tortora, G. (2011). MicroApps development on mobile phones. In End-
User Development (pp. 289-294). Springer Berlin Heidelberg.

Dadam, P., Reichert, M. (2009). The ADEPT project: a decade of research and development for robust and flexible
process support. Computer Science - R&D, 23. 81-97

Danado, J., Davies, M., Ricca, P., & Fensel, A. (2010). An authoring tool for user generated mobile services. In
Future Internet-FIS 2010 (pp. 118-127). Springer Berlin Heidelberg.

Danado, J., & Paternò, F. (2014). Puzzle: A mobile application development environment using a jigsaw metaphor.
Journal of Visual Languages & Computing, 25(4), 297-315.

Dey, A. K., Sohn, T., Streng, S., & Kodama, J. (2006). iCAP: Interactive prototyping of context-aware applica-
tions. In Pervasive Computing (pp. 254-271). Springer Berlin Heidelberg.

Engeström, Y., Miettinen, R., & Punamäki, R. L. (1999). Perspectives on activity theory. Cambridge University
Press.

Galitz, W.O. (2002). The Essential Guide to User Interface Design: An Introduction to GUI. Design Principles
and Techniques. John Wiley Sons, Inc. New York, NY, USA.

Gil, M., Serral, E., Valderas, P., & Pelechano, V. (2013). Designing for user attention: A method for supporting
unobtrusive routine tasks. Science of Computer Programming, 78(10), 1987-2008.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural
elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660.

Häkkilä, J., Korpipää, P., Ronkainen, S., & Tuomela, U. (2005). Interaction and end-user programming with a
context-aware mobile application. In Human-Computer Interaction-INTERACT 2005 (pp. 927-937). Springer
Berlin Heidelberg.

Haines, W., Gervasio, M., Spaulding, A., & Peintner, B. (2010). Recommendations for end-user development.
In ACM Workshop on User-Centric Evaluation of Recommender Systems and their Interfaces.

ICIS. (2015). Internet Computing in the Internet of Services. Summer School. Department of Informatics Engi-
neering of the University of Coimbra. Available at: http://icis.uc.pt/. Last time accessed: December 2015.

Ifttt. (2015). Ifttt, If This Then That. Accesible at: https://ifttt.com/. Last time accessed: December 2015.

Larman, C., & Basili, V. R. (2003). Iterative and incremental development: A brief history. Computer, (6), 47-56.

Lewis, J. R. (1995). IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions
for use. International Journal of Human-Computer Interaction, 7(1), 57-78.

Liberman, H., Paternò, F., Klann, M., Wulf, V. (2006). End-user development: an emerging paradigm. H. Liber-
man, F. Paternò, V. Wulf (Eds), End User Development, Vol 9. 427-457.

Locale. (2015). Accesible at: http://www.twofortyfouram.com. Last time accessed: December 2015.

Lucci, G., & Paternò, F. (2014). Understanding end-user development of context-dependent applications in
smartphones. In Human-Centered Software Engineering (pp. 182-198). Springer Berlin Heidelberg.

Mansanet, I., Torres, V., Valderas, P., Pelechano, V. (2014, september). A Mobile End-Use Tool for service Com-
positions. X Jornadas de Ciencia e Ingeniería de Servicios (JCIS 2014), 25-35.

Mansanet, I., Torres, V., Valderas, P., Pelechano, V. (2015, september). IoT Compositions by and for the Crowd.
XI Jornadas de Ciencia e Ingeniería de Servicios (JCIS 2015).

Neil, T. (2014). Mobile Design Pattern Gallery: UI Patterns for Smartphone Apps. "O'Reilly Media, Inc.".

Nielsen, J. (2005). Ten usability heuristics. https://www.nngroup.com/articles/ten-usability-heuristics. Last time
accessed: February 2016.

Renger, M., Kolfschoten, G.L., & de Vreede, G.J. (2008). Challenges in collaborative modeling: A literature re-
view. In Advances in Enterprise Engineering I, held at CAiSE 2008, Montpellier, France, Vol 10. 61–77.

Repenning, A., Ioannidou, A. (2006). What Makes End-User Development Tick? 13 Design Guidelines. End User
Development. Human-Computer Interaction Series Vol 9. 51-85.

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in software engi-
neering. Empirical software engineering, 14(2), 131-164.

Segal, J. (2005, May). Two principles of end-user software engineering research. In ACM SIGSOFT Software
Engineering Notes (Vol. 30, No. 4, pp. 1-5). ACM.

Serral, E., Valderas, P., & Pelechano, V. (2013). Context-Adaptive Coordination of Pervasive Services by Inter-
preting Models during Runtime†.The Computer Journal, 56(1), 87-114.

Tasker. (2015). Tasker, Total Automation for Android. Accesible at: https:// http://tasker.dinglisch.net/. Last time
accessed: December 2015.

Uden, L., Valderas, P., & Pastor, O. (2008). An activity-theory-based model to analyse Web application require-
ments. Information research, 13(2), 1.

Valderas, P., Pelechano, V., & Pastor, O. (2006). A transformational approach to produce web application proto-
types from a web requirements model. International Journal of Web Engineering and Technology, 3(1), 4-42.

Van Deursen, A., Klint, P., & Visser, J. (2000). Domain-Specific Languages: An Annotated Bibliography. Sigplan
Notices, 35(6), 26-36

Van Welie, M., & Trætteberg, H. (2000, August). Interaction patterns in user interfaces. In 7th. Pattern Languages
of Programs Conference (pp. 13-16).

Weber, B., Reichert, M., Rinderle, S. (2008). Change Patterns and Change Support Features - Enhancing Flexibil-
ity in Process-Aware Information Systems. Data and Knowledge Engineering, 66. 438-466.

Yu, J., Sheng, Q. Z., Han, J., Wu, Y., & Liu, C. (2012). A semantically enhanced service repository for user-centric
service discovery and management. Data & Knowledge Engineering, 72, 202-218.

