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Abstract In this paper, we present a novel approach to de-
tect ground control points (GCPs) for stereo matching prob-
lem. First of all, we train a convolutional neural network
(CNN) on a large stereo set, and compute the matching con-
fidence of each pixel by using the trained CNN model. Sec-
ondly, we present a ground control points selection scheme
according to the maximum matching confidence of each pixel.
Finally, the selected GCPs are used to refine the matching
costs, and we apply the new matching costs to perform op-
timization with semi-global matching algorithm for improv-
ing the final disparity maps. We evaluate our approach on
the KITTI 2012 stereo benchmark dataset. Our experiments
show that the proposed approach significantly improves the
accuracy of disparity maps.

Keywords Stereo Maching · CNN · GCPs · Maching
Confidence

1 Introduction

Stereo matching is one of the most extensively researched
topics in the study of computer vision. The depth informa-
tion computed by stereo matching algorithm can be used in
various vision applications, such as 3D reconstruction, ob-
ject recognition, object tracking, and autonomous naviga-
tion. Scharstein and Szeliski[1] developed a taxonomy di-
viding the stereo matching algorithms into four steps:

(1) matching cost computation;
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Fig. 1 Example of our algorithm result from KITII 2012 frame. The
top row: left input image and right input image; The buttom row:
disparity map of left image using SAD matching costs with SGM, and
disparity map of left image using our method.

(2) cost aggregation;
(3) disparity computation/optimization; and
(4) disparity refinement.
According to Scharstein and Szeliski [1], the stereo al-

gorithms can be classified into two main categories depend-
ing on whether the minimization procedure solving with a
global cost function: Local and global algorithms. In a lo-
cal algorithm, the disparity computation at a given pixel de-
pends on intensity/color values within a finite support win-
dow, and usually make implicit smoothness assumptions by
aggregating pixel-based matching costs. Then, an optimal
disparity can be computed based on the aggregated matching
costs. In comparison to global algorithms, local algorithms
are generally faster, but less accurate since narrow limita-
tion. In contrast, global algorithms make explicit smooth-
ness assumptions and search an optimal disparity by solv-
ing an energy based optimization problem. Prevalent global
methods include those based on dynamic programming [2],
belief propagation [3,4] and graph cuts [5]. While these global
algorithms have achieved impressive results, they usually re-
quire substantial computational resources. Other than these
two categories, a semi-global block matching stereo algo-
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Fig. 2 Overview of the algorithm. The proposed algorithm is mainly composed of five stages: training CNN, confidence computation by CNN,
ground control points selection, matching costs refinement, and final disparity maps computation.

rithm (SGM) [6] was proposed. SGM is also based on a
global energy cost function, but it performs optimizations
along multiple directions. Compared with global algorithms,
SGM has reached a close accuracy with a much lower com-
putational complexity. As a result, a plenty of SGM based
modified algorithms have been proposed, and have been suc-
cessfully applied in the domain of stereo matching [7,8].

Although SGM based methods have achieved noticeable
results, stereo matching is still unavoidable confronted with
the difficulties such as pixel indistinctiveness, depth discon-
tinuities, texture-less regions, and occlusions. These diffi-
culties may cause fail to compute credible matching cost be-
tween pixels or support windows. Thus, although matching
costs can be computed in a bad case scenario, these match-
ing costs are not reliable enough in any location, which re-
sults in the decrease of stereo matching accuracy.

In the past few years, several papers [9,10,11] have paid
attention to the question whether the computed matching
costs are in fact reliable. Haeusler et al. [9] proposed to learn
a confidence measure from several features, and predicted
the confidence by applying the random decision forest to
learn a classifier. Similarity, Spyropoulos and Modorhai [11]
proposed a learning-based approach to predict confidence,
and leveraging the estimated confidence to select pretty re-
liable pixels as ground control points (GCPs) for improving
the accuracy. Park and Yoon [10] selected effective confi-
dence measures via regression forest, and retrained regres-
sion forest classifier to predict the confidence of a match
using the selected confidence measures, as well as leverag-
ing the predicted confidence for improving the accuracy of
stereo matching. All of the above approaches require hand-
engineering a set of features for confidence measure, and
need training on the basis of specified matching costs, which

means we have to train a new prediction classifier while us-
ing another matching cost computation algorithm.

To overcome the problems mentioned above, in this pa-
per, we focus on detecting the ground control points (GCPs)
based on CNN, and leveraging the detected GCPs to im-
prove the accuracy of stereo matching. Figure 1 shows an
example result of our algorithm. Unlike previous methods
which used the hand-engineered features for confidence mea-
sure, our approach using convolutional neural network to
detect GCPs/reliable points without designing the feature of
confidence measure. Moreover, we use the detected GCPs to
improve the accuracy of stereo matching with semi-global
block matching (SGM). Figure 2 illustrates the overall flow
of the proposed algorithm. The contributions of this paper
are summarized as follows:

(1) Firstly, we train a convolutional neural network to
learn the matching confidence of each pixel on a large set of
pairs of small image patches where the ground truth dispar-
ities is available. Then, we detect the ground control points
by the maximum confidence of each pixel over all dispari-
ties.

(2) Secondly, the stereo matching costs are refined by
utilizing the confidence of the detected GCPs. Then the new
matching costs are used to compute final disparity maps with
semi-global matching algorithm.

(3) The experimental results on the KITTI 2012 stereo
benchmark dataset show that our method significantly im-
proves the accuracy of stereo matching overall all images.

The remainder of this paper is organized as follows. In
Section 2, we provide a brief overview of related work. The
CNN model for computing matching confidence is given in
Section 3. We then describe the algorithm of GCPs detec-
tion, and refinement scheme for matching costs in Section
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4. Experimental results and analyses are presented in Sec-
tion 5, followed by the conclusion in section 6.

2 Related Work

Surveys regarding stereo methods we refer readers to the
taxonomy of Scharstein and Szeliski[1] and its companion
website.

In this section, we first briefly review the learning-based
methods for detecting ground control points, or predicting
the confidence of matching costs. Then, the discussion of
several stereo matching costs computation methods based
on Convolutional Neural Network.

An early learning-based approach to stereo matching pro-
posed by Lew et al.[12] adopted instance based learning
(IBL) to select optimal feature set points for stereo match-
ing. Kong and Tao [13] used nonparametric techniques to
train a model to predict the probability of a potential match
over three categories: correct, incorrect due to foreground
over-extension, and incorrect due to other reasons. The pre-
dicted knowledge was then integrated into an MRF frame-
work to improve the depth computation. Later on, Kong and
Tao[14] extended their work by learning multiple experts
from different normalized cross-correlation (NCC) match-
ing windows sizes and centers, and the likelihood under each
expert was then combined probabilistically into a global MRF
framework for improving accuracy. Motten et al. [15] trained
a hierarchical classifier for selecting the most promising dis-
parity with the matching costs and spatial relationship of
pixels. Peris et al. [16] designed a feature from cost volume,
and computed the final stereo disparity using Multiclass Lin-
ear Discriminant Analysis (Multiclass LDA).

More recently, in [9,10,11], they employed random de-
cision forests to estimate the confidence of the stereo match-
ing costs. Haeusler et al. [9] trained a random decision forests
classifier to predict the confidence of stereo matching costs
by combining several confidence measures into a feature
vector. Similarity, Spyropoulos and Modorhai [11] used a
random decision forests classifier to estimate the confidence
of the matching costs, and showed that the confidence infor-
mation can further be used in a Markov random field frame-
work for improving stereo matching. Park and Yoon [10] ex-
hibited that effective confidence measures can be selected by
estimating the permutation importance of each measure. In
addition, they applied the confidence value to modify the ini-
tial matching cost, and inserted the new matching costs into
stereo method to decrease the error of stereo matching. All
of these learning-based approaches have to structure a set
features of confidence measures, and train a classifier based
on specified matching costs, which indicates that different
classifiers should be trained when applying different stereo
matching cost computation methods.

Convolutional Neural Networks (CNN) has been rapidly
developed in recent years, and has been extensively applied
to deal with various computer vision tasks. The most re-
cent year, CNN has been used in stereo matching [17,18,
19,20] and achieved noticeable results. The destination of
these methods is training a CNN with a large set of stereo
image patches, and comparing the matching cost between
image patches by the trained network. The main difference
between them is the architecture of the network. On the Con-
trast to these methods, we train a CNN to compute matching
confidence of each pixel, and detect the GCPs based on the
output of CNN.

3 CNN based GCP Detection

In this section, we describe the details of CNN model for
measuring the matching confidence of each pixel.

3.1 Matching confidence

Given a pair of rectified stereo images, IL and IR, a typ-
ical stereo algorithm begins by computing a matching cost
at each position p with different disparities d ∈ [0, dmax].
Thus, a similarity/matching cost between two pixels can be
compute by:

C(p, d) = f(IL(p), IR(p− d)) (1)

where IL(p) and IR(p− d) denote the patches centered
at pL = (x, y) in left image and pRd = (x − d, y) in right
image, respectively. f(·) is the matching cost computation
method.

In a real-world scene application of stereo matching, we
may suffer from the difficulties such as depth discontinu-
ities, texture-less regions, and occlusions. These bad sce-
narios may generate unreliable matching costs, which de-
grades the overall performance of stereo matching. Thus, if
we can estimate the matching confidence that reveal the re-
liability of matching cost, the stereo matching performance
will be promoted with the confidence information. To ad-
dress this issue, we attempt to use CNN-based model to cal-
culate the matching confidence between patches, where the
two patches are centered at the same 3D points having a high
matching confidence, and low when they are not.

3.2 Training Datasets

In order to compute the matching confidence between patches,
the input to the neural network is a pair of image patches,
and the output is a inner-product that measures the match-
ing confidence between the inputs.
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Fig. 3 The Convolutional Neural Network architecture of our training model. Each sub-network contains four convolutional layers followed by
ReLu. The confidence value is an inner product of two extracted feature vectors.

Hence, a training example is composed of two image
patches, one from left image, pL = (x, y), and one from
right image, pRd = (x − d, y). We sample one negative and
one positive example for each location where the true dis-
parity dt is known.

A negative example is obtained by setting the center of
the right patch to

pRd = (x− dt + oneg, y)

where oneg is a random offset from the interval [−Nhigh, ...,

−Nlow, Nlow, ..., Nhigh]. This random offset guarantee that
the image patches of negative samples are not centered at the
same 3D point.

Similarity, a positive example is obtained by setting

pRd = (x− dt + opos, y)

where opos is a random offset from the interval [−Phigh, ...,

Phigh].

3.3 Architecture

An overview of our architecture is shown in Figure 3. This
architecture is a siamese network. There are two sub-networks
in the network that share exactly the same architecture and
the same set of weights. The input is a pair of 9×9 grayscale
image patches, centered at pL = (x, y) and pRd = (x−d, y).
Each sub-network takes one of the two patches as input,
and it is a composition of a number of convolutional lay-
ers with rectified linear units (ReLU) layers following all
convolutional layers, we do not use max-pooling layer to
preserve spatial-variance. For a pair of patches, we apply
a 4-layer CNN model to independently extract feature de-
scriptors F (I) from each sub-network to represent each in-
put patch, and use the inner-product layer to calculate the

matching confidence between two descriptors F (IL) and
F (IR). The size of each convolution kernel is 3 × 3, and
the number of feature maps in each layer is 64.

We train our model by minimizing a hinge-based loss
term which is employed in [20]. The hinge-baed loss term is
defined as:

max(0, ε+ sneg − spos) (2)

This loss term is computed by considering pairs of train-
ing examples centered at the same image position, with one
example which pL = (x, y) corresponds to pRd = (x− d, y)
as positive, and one which not corresponded as negative.
spos denotes the output of the network for the positive exam-
ple, sneg denotes the output of the network for the negative
example, and ε is a positive real number that we set it to 0.2
in this paper.

In the training process, we input a set of examples over
all example pairs, and compute the loss by summing the
terms in Equation 2. Thus, we can compute the matching
confidence for each pair of patches by using the trained CNN
model. We normalize the matching confidence into the inter-
val [0, 1].

4 Improving Stereo Matching With Ground Control
Points

In this section, we propose our ground control points (GCPs)
detection approach based on the matching confidence com-
puted by CNN model, and refine the matching costs depend-
ing on the confidence of GCPs.



Detecting Ground Control Points via Convolutional Neural Network for Stereo Matching 5

4.1 Detecting ground control points

According to the previous definitions, a GCP is defined as
a pixel with a high confidence that the computed matching
costs are reliable.

Given a pair of stereo images, a matching confidence
volume, V ol(p, d), could be obtained by performing the for-
ward pass for each pixel and each disparity under consid-
eration. For each pixel p in the left image, the maximum
matching confidence, Cofc(p), is computed by maximizing
the matching confidence volume in each disparity:

Cofc(p) = max
d

V ol(p, d) (3)

The maximum matching confidence indicates the reliability
of matching costs for each pixel. We also compute the most
confident disparity, Cofd(p), for each pixel p:

Cofd(p) = argmax
d

V ol(p, d) (4)

We propose a simple manner to select GCPs using the
maximum matching confidence of each pixel, the selected
GCPs can be used to impact neighboring pixels. The select-
ing criterion is followed by: if Cof c(p) is larger than a con-
stant threshold θ, pixel p is a GCP, otherwise not (i.e. unre-
liable pixels). We define a pixel p as p+GCP if it belongs to
GCP, otherwise, define it as p−GCP .

The main challenge in GCPs selection step is the trade-
off between density and accuracy. Considering that too much
GCPs are selected, some of them may contain unreliable
matching costs that will be propagated to neighboring pix-
els, which may cause the decreasing of the stereo matching
accuracy. Conversely, few GCPs will be not effective enough
to improve the matching performance.

Therefore, aiming at selecting the GCPs that are able
to improve the accuracy of stereo matching, we learn the
threshold on the maximum matching confidence Cofc(p)
by cross-validation.

4.2 Refining matching costs with GCPs

In the previous subsection, we described an approach to se-
lect GCPs using maximum matching confidence. In this sub-
section, we present a matching costs refinement approach
using the selected GCPs that can be used for the final opti-
mization.

Given a pair of stereo images, we can compute a match-
ing costs volume, C(p, d), by a matching cost computation
method, such as, normalized cross-correlation (NCC), sum
of absolute differences (SAD), and census-based Hamming
distance (Census). The refinement scheme is a two-step pro-
cess. In the first step, based on the observation that p−GCP

contains unreliable matching costs, we refine the matching

costs of p−GCP by setting the cost of all disparity to a con-
stant high cost value Chi

GCP . As a result, the wrong match-
ing cost could be avoided to pollute other reliable pixels. In
the second step, we refine the matching costs of the selected
p+GCP , by setting the matching cost to a constant low cost
value Clow

GCP for the most confident disparity of p+GCP . The
most confident disparity of p+GCP is Cofd(p), that was com-
puted in the last subsection. The matching costs of all the
other disparities for p+GCP are unmodified. In this way, we
the matching costs are refined. We define the new matching
costs volume as Ĉ(p, d). Therefore, unreliable pixels can be
easily dominated by more confident pixels in the subsequent
optimization process, and the more confident disparities can
obtain a lower value, so that reduce the disturbance from
other unreliable disparities. Moreover, it is worth noting that
the proposed matching cost refinement scheme can be used
for any matching cost computation algorithms.

In order to demonstrate our approach is robust to various
matching cost computation algorithms, we compute two dif-
ferent cost volumes, sum of absolute differences (SAD) and
census-based Hamming distance (Census), respectively.

The SAD matching costs is calculated as follows:

CSAD(p, d) =
∑

q∈N(p)

∣∣IL(q)− IR(qd)∣∣ (5)

where IL(q) and IR(qd) are intensities of pixel at q = (x, y)

in the left image, and pixel at qd = (x − d, y) in the right
image. And N(p) is the set of pixels within a fixed support
window centered at p.

And the Census is defined as follows:

CCensus(p, d) =
∑

q∈N(p)

XOR(WL(p, q),WR(pd, qd)) (6)

where pd is the pixel at position pd = (x− d, y) in the right
image corresponding to p in the left image, and W (p, q) is
a binary transform function. If the intensity of p is larger
than q, W (p, q) returns 1, otherwise zero. N(p) is the set of
pixels within a fixed support window centered at p.

4.3 New matching cost with SGM

We compute the disparity map by applying the refined cost
volume Ĉ(p, d) to the semi-global matching (SGM) [6] al-
gorithm. Following Hirschmuller [6], the SGM considers
the stereo matching as an energy function that minimizes:

E(D) =
∑
p

(Ĉ(p,Dp) +
∑

q∈N(p)

P1 · 1 [|Dp −Dq| = 1]

+
∑

q∈N(p)

P2 · 1 [|Dp −Dq| > 1])
(7)

where 1 [·] denotes the indicator function. The first term is
the sum the refined matching costs of all pixels, so that pe-
nalizes disparities Dp with high matching costs. The second
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GCP = 5, Clow
GCP = 0.001

}
for SAD, respec-
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term adds a small constant penalty P1 for all pixels q hav-
ing small disparity differences in the neighborhood Np of p.
The third term adds a larger constant penalty P2 for all pix-
els q having disparity differences larger than 1 in the neigh-
borhood Np of p. The minimization of the equation 7 is an
NP-hard problem, instead of performing minimizing E(D)

in all directions simultaneously, we perform the minimiza-
tion in a single direction, and repeat for 16 directions. The
cost Lr(p, d) along a path in the direction r of the pixel p at
disparity d is defined recursively as:

Lr(p, d) = Ĉ(p, d) + min(Lr(p− r, d)),
Lr(p− r, d− 1) + P1,

Lr(p− r, d+ 1) + P1,

min
k
LR(p− r, k) + P2)

(8)

The final disparity costs could be obtained by averaging
the costs along 16 directions:

L(p, d) = 1
16

∑
r
Lr(p, d) (9)

Finally, the disparity image D(p) is computed using the
Winner-Takes-All (WTA) strategy as follows:

D(p) = argmin
d

L(p, d), d ∈ [0, dmax] (10)

where dmax is the maximum value of possible disparities.

5 Experiments

In this Section, we evaluate the performance of the pro-
posed method on the KITTI 2012 stereo benchmark dataset,
and compare with the state-of-the-art learning-based method

(Lev) [10]. We use Torch7 [21] to train our CNN, and the
stereo method is implemented in CUDA, with a Nvidia GeForce
GTX Titan GPU.

5.1 Data set

The KITTI 2012 stereo benchmark dataset[22] is composed
of 194 training and 195 testing high-resolution images, which
are collected from two video cameras on an autonomous
driving platform around a urban environment. The goal of
the KITTI stereo benchmark dataset is to estimate the true
disparities for all pixels on the left image. The ground truth
disparities for the training images are public provided for
researchers, and the one for testing images are withheld, re-
searchers can evaluate their method on the test set by sub-
mission the result to the website.

5.2 Parameter settings

To compute pixel-wise matching costs, we set the support
window size to 9 × 9 for both SAD and Census. For the
penalty teams in the SGM, we set {P1 = 1, P2 = 14} for
SAD, and {P1 = 4, P2 = 128} for Census, respectively. The
training parameters of CNN are set to {Nhigh = 8, Nlow =

4, Phigh = 1}. We fix the parameters {Chi
GCP = 200, Clow

GCP

= 1.3} for Census, and
{
Chi

GCP = 5, Clow
GCP = 0.001

}
for

SAD, respectively. The matching costs are ranged in [0, 80]

for Census, and [0, 3.2] for SAD,respectively.
We train the CNN using stochastic gradient descent to

minimize the hinge-based loss. We preprocess each image
by subtracting the mean and dividing by the standard devia-
tion of its pixel intensity values.

5.3 Confidence parameter analysis

The goal here is to evaluate the performance under differ-
ent confidence parameter settings of θ. Results evaluated on
KITTI training dataset are summarized in Figure 4. It can
be seen that the best result is obtained nearby θ = 0.60. Set-
ting too large value of θ would not achieve improving results
even bring about decrease sharply. Setting too large value of
θ may consider a major of pixels as unreliable points, re-
sult in losing the information of reliable pixels, which does
not help to improve the matching accuracy even harm the
matching performance. A too low value may consider most
of the pixels to GCPs, this may only use the information of
CNN matching confidence, and fail to avoid the influence of
unreliable pixels. We set θ = 0.55 for SAD, and θ = 0.60

for Census in all following experiments.
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Fig. 5 Overall improvement compared Census+GCP+SGM with Census+SGM algorithm. Each bar indicates the performance improvement of
the proposed algorithm using Census matching costs, and horizontal line indicates average improvement in terms of the error rate. Our algorithm
outperforms the census+SGM algorithm in all frames.
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Fig. 6 Overall improvement compared SAD+GCP+SGM with SAD+SGM algorithm. Each bar indicates the performance improvement of the
proposed algorithm using SAD matching costs, and horizontal line indicates average improvement in terms of the error rate. Our algorithm
outperforms the SAD+SGM algorithm in all frames.

Method Error
Census+SGM 10.46%
SAD+SGM 12.04%
Census+GCP+SGM 7.19%
SAD+GCP+SGM 6.29%

Table 1 Error rates of the final disparity maps after SGM using dif-
ferent matching cost methods. Our method (+GCP) has a much lower
error rate than that of without GCP refining.

5.4 Stereo performance improvement analysis

We first evaluate the performance improvement of our ap-
proach while applying different matching costs computation
methods, SAD and Census. The results evaluated on KITTI
training dataset are listed in Table 1.

The proposed method using the new matching costs that
are refined by GCPs significantly improves the accuracy of
disparity maps under different matching cost computation
methods. The average error rate of the method which uses
the original Census matching costs (Census+SGM) is 10.46%
, while the modified method (Census+GCP+SGM) which
uses refined matching costs reduces the error rate by 3.26%.
Similarly the error rate of SAD+GCP+SGM is significantly
reduced by 5.75%. The overall improvement is detailed in
Figure 5 and Figure 6. We see that the proposed approach

Method Census+SGM Our Lev[10]
Error 10.46% 7.19% 9.38%

Table 2 Error rates of the final disparity maps comparison. The initial
matching costs are computed by Census.

consistently improves the accuracy of stereo matching over
all images. In addition, our approach is robust to different
matching cost computation methods. Figure 7 contains some
examples for the disparity maps produced by our method.

Secondly, we compare our approach against the state-
of-the-art learning-based method [10]. The results evaluated
on KITTI training dataset is shown in Table 2, the proposed
method achieves an error rate of 7.19% which is lower than
that of the lev[10] by 2.19%. It demonstrates that our method
obtains more reliable GCPs, and makes full use of the confi-
dence information of GCPs for improving the accuracy of
stereo matching. Specifically, our proposed method could
directly be applied to different matching costs computaion
methods, while Lev[10] requires to train a new predictor for
another matching costs.

Note that, in order to observably reflect the improvement
of our method, we do not apply any post-processing algo-
rithms, such as left-right consistency checking and subpixel
enhancement, in these experiments.
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Fig. 7 Examples of disparity maps on the KITTI 2012 data set. From top to bottom: left images; disparity maps of SAD+GCP+SGM; and
disparity maps of Census+GCP+SGM.

6 Conclusion

This paper presents a Convolutional Neural Network based
approach that is able to detect the ground control points
(GCPs) according to the matching confidence of each pixel.
We first learn a Convolutional Neural Network to estimate
the confidence of each pixel. Then we select GCPs of im-
age depending on the confidence. In addition, we present
a robust approach to obtain a new matching costs by refin-
ing the matching costs with the GCPs confidence, which can
further be used to compute the final disparity maps. Experi-
ments on KITTI 2012 stereo dataset demonstrate that our ap-
proach significantly improves the accuracy of stereo match-
ing on overall images, and our approach achieves an impres-
sive result that surpasses the current leading learning-based
method. Furthermore, our proposed method can be applied
in various matching cost computation methods.
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