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Abstract Three-dimensional (3D) technologies have been developing rapidly
recent years, and have influenced industrial, medical, cultural, and many other
fields. In this paper, we introduce an automatic 3D human head scanning-
printing system, which provides a complete pipeline to scan, reconstruct, se-
lect, and finally print out physical 3D human heads. To enhance the accuracy
of our system, we developed a consumer-grade composite sensor (including a
gyroscope, an accelerometer, a digital compass, and a Kinect v2 depth sensor)
as our sensing device. This sensing device is then mounted on a robot, which
automatically rotates around the human subject with approximate 1-meter
radius, to capture the full-view information. The data streams are further
processed and fused into a 3D model of the subject using a tablet located on
the robot. In addition, an automatic selection method, based on our specific
system configurations, is proposed to select the head portion. We evaluated the
accuracy of the proposed system by comparing our generated 3D head models,
from both standard human head model and real human subjects, with the ones
reconstructed from FastSCAN and Cyberware commercial laser scanning sys-
tems through computing and visualizing Hausdorff distances. Computational
cost is also provided to further assess our proposed system.
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1 Introduction

The rise of 3D digitization technologies has enabled researchers and engineers
from a wide range of fields [1,2] to use accurate human models for many practi-
cal applications, such as anthropological studies, digital avatar animation and
ergonomic product design. In anthropological studies, researchers have been
investigating the relationship between facial shape variations and neurological
and psychiatric disorders. For example, Hennesy et al. used 3D head models
acquired from laser scanners to identify schizophrenia from facial dysmorphic
features [3]. A fast algorithm for 3D face reconstruction with uncalibrated
photometric stereo technology was also proposed by Qi et al. [4].

Human avatar animation has also become popular with the development
of 3D graphics and gaming. Lee and Magnenat-Thalman introduced a method
to reconstruct 3D facial models for animation from two orthogonal images
(frontal and profile view) or from range data [5]. Additionally, Kan and Ferko
adopted this same principle to build an automatic system where they use the
facial feature matching of two images and a parametrized head model to create
3D head models as avatars in 3D games [6].

An important part of 3D human model is head model, which can be used
to establish standards for the design of products that fit onto the face or head,
such as respiratory masks, glasses, helmets or other head-mounted devices [7].
An interesting initiative was the Size-China project [8,9]. To find the proper fit
for Asians, who have different head shapes compared with Westerners in facial-
head products such as helmets, face masks, and caps, and to derive standards
with anthropometric database, Ball et al. created an Asian anthropometric
database built from 3D scans of 2000 Asian people using a stationary head
and face color 3D scanner by Cyberware1, from which several standard Asian
head and face models were created. These types of surveys are essential for
global product design, as the anthropometric properties of body parts vary
from culture to culture.

Most previously mentioned applications require many manual steps, either
to build the model, select head model, or clean it up. Besides, some of them
rely on expensive scanning devices, such as 3D laser scanner. Therefore, in this
paper, we introduce an automatic 3D human head scanning-printing system,
which provides a complete pipeline to scan, reconstruct, select, and generate
3D head model to 3D printer. Our system architecture is shown as Fig. 1.
We utilize our developed composite sensing device, carried by a robot which
automatically rotates around the subject with approximate 1-meter radius, to
capture full-view information, and then fuses them to reconstruct 3D model of
the subject with a tablet located on the robot. An automatic selection method
based on sensor poses estimation and head matrix transformation is further
presented to select the 3D human head. Both physical standard human head
model and real human subjects work well with our system. Furthermore, the
proposed system is mainly based on consumer-grade sensors, which facilitates

1 Head & Face Color 3D Scanner (Model PX) http://www.cyberware.com/

http://www.cyberware.com/
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Fig. 1: System Architecture.

the acquisition of 3D human heads to common users, and enables projects
such as Size-China to reach larger global dimensions. Furthermore, the output
of our proposed system can be used to print out prototypes of human heads
with the help of 3D printing technologies.

In this paper, our main contributions are as follows:

– Through combining a gyroscope, an accelerometer, a digital compass, and
a Kinect v2 depth sensor into one consumer-grade composite sensing de-
vice, and mounting it on a mobile robot, an automatic scanning device is
developed to rotate around the human subject with approximate 1-meter
radius, and capture full-view information. Global locations and poses of
Kinect v2 are estimated real-time from both depth images matching results
and motion data from the gyroscope, digital compass and accelerometer.
Utilizing hardware and software simultaneously enables to obtain accu-
rate depth sensor’s location and orientation, and further improves the 3D
reconstruction accuracy.

– The 3D reconstruction results of our proposed low-cost system are com-
pared with the results from commercial laser scanning systems: FastSCAN
and Cyberware. Through computing and visualizing Hausdorff distance
comparison, our cost-effective system is proved to achieve compelling re-
sults.

– A complete pipeline for an automatic 3D human head scanning-printing
system is introduced, which can scan, reconstruct, select, and finally print
out a physical 3D human heads.

This paper is organized as follows. Section 2 presents an overview of the
research areas related to 3D sensing, 3D reconstruction, and 3D printing. In
Section 3, we illustrate the proposed system and give detailed descriptions of
each component. Section 4 addresses the implementation details and discusses
the experimental results. Finally, we provide our conclusions and suggestions
for future work in Section 5.
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2 Related Works

The reconstruction of human heads has been widely researched for the past
ten years, with the aim of producing various applications described in the
previous section. Several approaches, such as photogrammetry [10] and Fourier
transform profilometry [11], have acquired compelling results recent years.
In our proposed system, we developed a consumer-grade composite sensing
device to acquire data streams, realized our 3D reconstruction process through
modifying KinectFusion algorithm [12], presented our head selection method,
and physically printed the generated 3D head. In order to further understand
our reasoning for the selection of device and methods, we present the following
overview regarding 3D sensing devices, 3D reconstruction methods, and 3D
printers.

2.1 3D Sensing Devices

The goal of 3D sensing device is to generate 3D representations of the world
from the viewpoint of a sensor [13]. These 3D representations are generally in
the form of 3D point clouds or polygon meshes [14]. Each point p of a 3D point
cloud has (x, y, z) coordinates relative to the fixed coordinate system of the
origin of the sensor [15,16]. Depending on the sensing device the point p can,
additionally contain color information, such as (r, g, b) values. Commonly used
sensors to reconstruct 3D models include passive-image sensors, laser sensors,
structured-light sensors, and time-of-flight sensors:

Passive-Image-Based Sensors usually use a set of traditional 2D cameras,
which do not emit any kind of radiation themselves and are only capable
to capture 2D images without depth information [17]. However, researchers
can still reconstruct 3D models with photogrammetry methods, which are
based on simple or multi-triangulation principle between homologous optical
rays departing from the object and reaching the image sensor. For exam-
ple, Remondino et al. introduced a dense reconstruction method by applying
multi-image high density image matching [10]; and De Souza et al. used a
photogrammetric method to detect newborn infants’ head surface shape [18].

Triangulation-Based Laser Sensors usually emit a laser on the target and
employ a camera to detect the location of the laser dot, and then, based on the
distance that the laser strikes a surface, the laser dot will appear at different
places within the camera’s field of view. This method is called triangulation be-
cause the camera, the laser dot, and the laser emitter form into a triangle [19].
These kinds of sensors are generally able to acquire data with high-quality to
build precise 3D models, but are usually more expensive compared with other
types of sensors and they require expert knowledge to operate. Examples of
this kind of sensors include Cyberware Whole Body Color 3D Scanner, Nex-
tEngine desktop 3D scanner, and Creaform’s handheld HandyScan scanner.
Moreover, users always need to sit still during the capturing process, which is
difficult in certain situations, such as sensing 3D models for infants [20].



Development of an Automatic 3D Human Head Scanning-Printing System 5

Structured-Light Sensors project patterns consisting of many stripes at
once, or of arbitrary finges, and allow the acquisition of a multitude of samples
simultaneously. Microsoft’s Kinect v1 for Xbox 360 and for Windows, released
in 2010 and 2012 separately, are adopting this technology. The availability of
KinectFusion [12], a real-time 3D reconstruction and interaction algorithm,
further exploded the utilization of Kinect v1 as a 3D sensor. Many 3D re-
construction applications, such as KScan3D2 and ReconstructMe3, have been
developed with Kinect v1 and KinectFusion.

Time-of-Flight Sensors are different from structured-light sensors in work-
ing principles. ToF sensors actively measure the distance of a surface by record-
ing the round-trip time of the emitted infrared light, and commercially avail-
able ToF sensors commonly employ homodyning methods and operate within
continuous mode [21]. ToF sensors occupy several capabilities, such as captur-
ing depth images at video rate under low-light levels, being color and texture
invariance, and resolving silhouette ambiguities in pose [22]. Among ToF com-
panies, MESA Imaging produced Swiss Ranger SR4k family4, and Microsoft
created Kinect v2.

Among aforementioned sensors, Microsoft Kinect v1 and v2 sensors have
dramatically improved the 3D reconstruction research area. A comprehensive
review of Kinect-based reconstruction algorithms and applications aiming ad-
dressing traditional challenges in this field has been conducted by Han et al.
[23]. They outlined main research contributions in sparse feature matching and
dense point matching methods, and presented that advanced machine learning
techniques may be integrated to further improve the results. In our work, we
opted to use the Microsoft Kinect v2 RGB-D sensor as our depth device for
several reasons: Kinect v2 sensor has compact size, low consumer price, the
capability to capture color and depth data at video rate, easy availability on
the market, acceptable accuracy, and they operate safely for both the users
and the scanned subjects [24]. However, Kinect v2 suffers mobility limitations
because of its USB cable and power cable. Thus, we utilized a tablet and a
portable battery to overcome these problems.

2.2 3D Model Reconstruction

In this subsection, we address the challenge of reconstructing 3D models using
multiple views or point clouds obtained by the 3D sensing device. These multi-
ple views can be obtained by moving the 3D sensing device around the object
until a full set of 360◦ views of the object is obtained. Additionally, the object
can be spun 360◦ around its axis with the 3D sensing device fixed on a certain
viewing point. The range images must overlap with the previous ones. Full 3D
models of the objects can be reconstructed by registering these multiple views
[25,26]. Registration is the estimation of the rigid motion (translations and

2 KScan3D. http://www.kscan3d.com/
3 ReconstructMe. http://reconstructme.net/
4 Swiss Ranger. http://www.mesa-imaging.ch/swissranger4500.php

http://www.kscan3d.com/
http://reconstructme.net/
http://www.mesa-imaging.ch/swissranger4500.php
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rotations) of a set of points with respect to another set of points. The rigid
motion is estimated using the surface of the object that is common between
successive ”views”. These can be image pixels or 3D points. This rigid motion
is then estimated by using coarse or fine registration methods, as well as a
combination of both. Coarse registration methods are RANSAC-based algo-
rithms that use sparse feature matching, first introduced by Chen et al. [27]
and Feldmar [28]. These generally provide an initial guess for fine registration
algorithms, relying on minimizing point-to-point, point-to-plane, or plane-to-
plane correspondences. Genetic Algorithms and Iterative Closest Point (ICP)
are widely used to solve those problems [29,30,31]. In some cases, a coarse reg-
istration is not necessary, since the point clouds are already very close to each
other or semi-aligned, a fine registration can then be further implemented.

For the problem of registering multiple point clouds, many possible ap-
proaches have been examined. An offline multiple-view registration method
has been introduced by Pulli [32]. This method computes pair-wise registra-
tions as an initial step and uses their alignments as constraints for a global
optimization step. This global optimization step registers the complete set of
point clouds simultaneously and diffuses the pair-wise registration errors. A
similar approach was also presented by Nishino et al. [33]. Chen et al. [34]
developed a metaview approach to register and merge views incrementally.
Masuda introduced a method to bring pre-registered point clouds into fine
alignment using the signed distance functions [35]. A simple pair-wise incre-
mental registration would suffice to obtain a full model if the views contain
no alignment errors. This becomes a challenging task when dealing with noisy
datasets. Some approaches use an additional offline optimization step to com-
pensate for the alignment errors for the set of rigid transformations [36].

All of these previously mentioned algorithms target raw or filtered data
from the 3D sensing device (i.e., 3D points), which lack a resulting 3D model
that has a tight surface representation of the object. Thus, in order to convert
these 3D reconstructions to 3D CAD models, several post-processing steps
need to be applied. Initially, the set of points need to be transformed into a
water-tight (no hole) polygon mesh, this can be done by meshing algorithms.
Some popular meshing algorithms include: greedy triangulation [37], marching
cubes [38] and poisson reconstruction [39].

Recently, Newcombe et al. introduced their novel reconstruction system,
KinectFusion, which fuses dense depth data streamed from a Kinect into a
single global implicit surface model in real-time [40,12]. They use a volumet-
ric representation, called the truncated signed distance function (TSDF), and
combine it with a fast ICP (Iterative Closest Point). The TSDF representation
is suitable for generating 3D CAD models. In other words, in this approach
the surface is extracted beforehand (with the TSDF representation), then the
classical ICP-based registration approach is performed to generate the full
reconstruction. A commercial application released soon after Kinectfusion is
previously mentioned ReconstructMe. This software is based on the same prin-
cipal of incrementally aligning a TSDF from Kinect data on a dedicated GPU.
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Several researches have been conducted to deal with certain circumstances.
For example, Shum et al. [41] proposed a method to solve the occlusion prob-
lems. Their method improved the human subject recognition accuracy, and fur-
ther optimized the posture reconstruction results. To overcome the restrictions
that the subject must stay still during the entire scanning process, Barmpoutis
[42] presented a method of reconstructing moving human subjects with RGB-
D frames real-time. He proposed a method to estimate the positive-definite
tensor-splines, and obtained compelling results.

Since we target at an accurate reconstruction system, we require the user sit
still during the scanning process. Original KinectFusion algorithm is mainly
based on modified ICP methods, which may introduce accumulative errors.
Thus, we adopted a gyroscope, a digital compass, and an accelerometer to
provide additional tracking information of Kinect v2. Then the final sensor
locations and poses are calculated from both ICP matching results and hard-
ware tracking results with proper weighting values. Furthermore, the main
head portion of the reconstructed mesh can be extracted with our proposed
automatic selection method, based on our specific system configurations.

2.3 3D Printers

3D printing is an additive technology in which 3D objects are created using
layering techniques of different materials, such as plastic, metal, etc. The first
3D printing technology developed in the 1980’s was stereolithography (SLA)
[43]. This technique uses an ultraviolet (UV) curable polymer resin and an
UV laser to build each layer one by one. Since then numerous 3D printing
technologies have been introduced [44]. For example, the polyjet technology,
which works like an inkjet document printer instead of jetting drops of ink, jets
layers of liquid photopolymer and cures them with a UV light. Another 3D
printing technology is fused deposition modeling (FDM), based on material
extrusion, a thermoplastic material is heated up into semi-liquid state and
extruded from a computer-controlled print head. This FDM technology has
become specifically popular for commercial 3D printers.

3 The Proposed System

In this section, we illustrate the details of our proposed system. The system ar-
chitecture is shown in Fig. 1. The developed consumer-grade composite sensor
(including Kinect v2 sensor, gyroscope, digital compass, and accelerometer),
is mounted on a robot which automatically rotates around the subject with
approximate 1-meter radius. This sensing device captures depth images of a hu-
man subject in a 360◦ fashion. The depth images are then processed and fused
into a globally implicit surface model based on both KinectFusion algorithm
and the additional sensor locations and poses provided by the sensing device
with proper weighting values. Computation of data steams are processed by a
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Fig. 2: Developed scanning device with a composite sensor, tripod, Microsoft
Surface tablet, and robot.

tablet placed on the robot for enhanced mobility. Our system then creates a
virtual plane to select the main head portion. Finally, the reconstructed head
model is printed out by a 3D printer.

3.1 Proposed Scanning Device

Our proposed scanning device is show in Fig. 2, which contains a composite
sensor, a tripod, a Microsoft Surface tablet, and a robot. As mentioned before,
we choose Microsoft Kinect v2 sensor as our depth sensor. With time-of-flight
range detection technology, it can observe depth images of the subject with
detailed distance information. Because Kinect v2 requires extra power source,
we cut off its power adaptor cable and added an extra portable battery to in-
crease the mobility. To reduce the accumulative errors generated from fusing
depth images, we attached a gyroscope, an accelerometer, and a digital com-
pass on top of Kinect v2 to develop a composite sensor with additional global
locations and poses information. Microelectromechanical gyroscope is able to
monitor the pose rotations of Kinect v2, but it is sensitive to environments and
may cause drifting problems. Therefore, we applied Kalman filter algorithm
[45], which uses a series of measurements to provide the optimal estimation re-
sults, to reduce the noise, and fused it with the data from a digital compass to
achieve an angle precision as high as 0.01 degree without drifting problem. An
accelerometer was also adopted to measure the moving accelerations, and was
combined with previously obtained angle information to calculate the depth
sensor locations and poses.
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In order to realize automatic scanning of the human subject, we mounted
our composite sensor on a tripod, and fixed them with a robot, which is pro-
grammed to rotate around the subject with approximate 1-meter radius. The
robot we adopted is DFRobot’s HCR Mobile Robot5, a two-wheel drive plat-
form. We used Arduino Mega microcontroller to control the robot movements
and collect motion data from both the composite sensor and the robot itself.
The robot comes with two 12V direct-current (DC) geared motors. Its reduc-
tion ratio is 51:1 with the encoder resolution of 663 pulses per round. Since DC
motors may generate inconsistent motion, we utilized a proportional-integral-
derivative (PID) controller to improve the precision. After several testing, we
set the left-wheel speed as 13 rounds per minute and the right-wheel speed
as 16 rounds per minute. The microcontroller communicates with the motor
driver through serial communications, while receives data from the composite
sensor by I2C interface.

For mobility and proper payload, we used a tablet as our computational
resource, instead of a laptop. In our experiment, we adopted Microsoft Surface
tablet to fulfill Kinect v2’s high demanding for graphic processing units and
USB connection. It can also be easily placed on the robot as shown in Fig. 2.
Since both Kinect v2 and the robot microcontroller interact with the tablet
through USB serial connections, we use a USB 3.0 four-port hub from Unitek
to extend the tablet’s single USB port into multiple ones. Thus, the tablet can
successfully receive the data streams and process them.

3.2 3D Model Reconstruction

KinectFusion is based on incrementally fusing consecutive frames of depth
data into a 3D volumetric representation of an implicit surface. This is a rep-
resentation of the truncated signed distance function (TSDF) [46]. The TSDF
is basically a 3D point cloud stored in GPU memory using a 3D voxelized grid.
The global TSDF is updated every time a new depth image frame is acquired
and the current camera pose with respect to the global model is estimated.
Initially, the depth image from the Kinect v2 sensor is smoothed out using a
bilateral filter [47], which up-samples the raw data and fills the depth discon-
tinuities. Then the camera pose of the current depth image frame is estimated
with respect to the global model by applying a fast Iterative-Closest-Point
(ICP) algorithm between the currently filtered depth image and a predicted
surface model of the global TSDF extracted by ray casting. Once the camera
pose is estimated, the current depth image is transformed into the coordinate
system of the global TSDF and updated. In following parts, we illustrate the
details of our method.

5 HCR Mobile Robot: http://www.dfrobot.com

http://www.dfrobot.com
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3.2.1 Camera Pose Estimation

The principal of the ICP algorithm is to find a data association between the
subset of the source points (Ps) and the subset of the target points (Pt) [29,
34]. Let’s define a homogenous transformation T of a point in Ps (denoted as
ps) with respect to a point in Pt (denoted as pt) as

pt = T (ps) =

[
R t
0 1

]
ps (1)

where R is a rotational matrix and t is a translational vector. Thus, ICP can
be formulated as

T ∗ = argmin
T

∑
ps∈Ps

(T (ps)− pt)
2

= argmin
T

∑
‖T (Ps)− Pt‖2 (2)

A special variant of the ICP-algorithm, the point-to-plane ICP [31], is used.
It minimizes the error along the surface normal of the target points nt, as in
the following equation:

T ∗ = argmin
T

∑
ps∈Ps

‖nt · (T (ps)− pt)‖2 (3)

where nt · (T (ps) − pt) is the projection of (T (ps) − pt) onto the sub-space
spanned by the surface normal (nt). After computing transformation T , the
new depth image is transformed into the global coordinate system.

Since ICP may introduce accumulative errors, we utilize aforementioned
gyroscope, digital compass, and accelerometer to track additional information,
i.e., Kinect v2’s location and orientation. The redundant information from
hardware are then fused with the software calculation results to improve the
system’s accuracy and robustness. Because ICP itself can realize acceptable
matching results mostly [48], we give it a large weighting value (0.8), while set
the weighting value from hardware smaller (0.2). Combining both hardware
and software information reduces the accumulative errors, while remaining the
advantages of original KinectFusion algorithm.

3.2.2 Global TSDF Updating

The global model is represented in a voxelized 3D grid and integrated using
a simple weighted running average. For each voxel, we have a value of signed
distance for a specific voxel point x as d1 (x), d2 (x), · · · , dn (x) from n depth
images (di) in a short time interval. To fuse them, we define n weights w1 (x),
w2 (x), · · · , wn (x). Thus, the weight corresponding point matching can be
written in the form

w∗n = arg
k

n−1∑
k=1

‖WkDk −Dn‖2 (4)
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(a) 3D point cloud. (b) Mesh.

Fig. 3: 3D reconstructed standard human head model. (a) point cloud format
(b) polygon mesh.

where

Dk+1 =
WkDk + wk+1dk+1

Wk + wk+1
(5)

Wk+1 = Wk + wk+1 (6)

Dk+1 is the cumulative TSDF and Wk+1 is the weight functions after the in-
tegration of the current depth image frame. Furthermore, by truncating the
update weights to a certain value Wα a moving average reconstruction is ob-
tained.

3.2.3 Meshing with Marching Cubes

The final global TSDF can be converted to a point cloud or polygon mesh rep-
resentation. The polygon mesh is extracted by applying the marching cubes al-
gorithm to the voxelized grid representation of the 3D reconstruction [38]. The
marching cubes algorithm extracts a polygon mesh by subdividing the points
cloud or set of 3D points into small cubes (voxels) and marching through each
of these cubes to set polygons that represent the isosurface of the points lying
within the cube. This results in a smooth surface that approximates the isosur-
face of the voxelized grid representation. In Fig. 3, a successful reconstruction
of a human head can be seen. We walked around the object closing a 360◦

loop. The resulting polygon mesh is to be used as CAD model to virtualize
the scanned object for 3D printing.

However, as shown in Fig. 3, this final 3D reconstructed model includes
portions of the table or the environment that we are not willing to print
or visualize. This holds for scans of people as well. When we create scans of
humans and want to print a 3D head, we need to manually trim the 3D models.
This is an obstacle for trying to create an automatic 3D sensing to printing
system. Thus, in the next subsection we present our proposed approach for
automatic 3D model post-processing which generates a ready-to-print polygon
mesh by applying selection method to the 3D point cloud of the reconstructed
models.
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3.3 3D Head Selection

Our head selection method is based on two specific assumptions of our designed
system. The first one is that the scanned standard human head model or real
human head is standing/sitting/lying on a plane. The second assumption is
that the 3D sensing device is approximately close a loop around this object,
namely, the robot must rotate around the scanned subject in a 360◦ fashion.

(a) Full recon-
structed model with
sensor poses

(b) Top view of selected
table plane and sensor
poses

(c) Side view of selected
table plane and sensor
poses

Fig. 4: Result of applying RANSAC based planar model fitting to the scene.
(a) Full 3D reconstruction (b) Top view and (c) Side view of the table-top
plane in green. Sensor poses ci are represented by the multiple coordinate
frames.

3.3.1 Selection for Standard Human Head Model

The first step for selecting the reconstructed head model (with the assumption
that it lies on a table) is to find the table top area where the standard human
head model is located. We use a Random Sample Consensus (RANSAC)-based
method to iteratively estimate parameters of the mathematical model of a
plane from a set of 3D points of the scene [49]. The mathematical model of a
plane is specified in the Hessian normal form as follows:

ax + by + cz + d = 0 (7)

where a, b, c are the normalized coefficients of the x, y, z coordinates of the
plane’s normal and d is the Hessian component of the plane’s equation. The
largest fitted plane is selected from the point cloud, this plane represents the
object-supporting surface (i.e., table or counter) of the scene. Now that the
plane of the table-top has been identified, we are interested in extracting the
set of points that lie on top of this plane and below the maximum z-value of
the set of sensor poses C, with respect to the table plane. (Fig. 4)

In order to extract the points “on top” of the table without removing
any useful information, we transform the plane so that its surface normal ni



Development of an Automatic 3D Human Head Scanning-Printing System 13

(a) 3D prism for selection. (b) Segmented 3D model (blue)

Fig. 5: Selection procedure for standard human head model. (a) Constructed
3D prism which represents the scanned head model (b) 3D model after selec-
tion

directions are parallel to the z-axis and the plane is orthogonal to the z-axis
and parallel to the x-y plane of the world coordinate system.

Algorithm 1 Selection for Standard Human Head Model

Input: T (rigid transformation), Pplane(point cloud of the selected plane), Pfull(full point
cloud of reconstruction), C(tracked sensor poses from reconstruction)

Output: Pobject (point cloud representing the object on top of the table)
P ∗
plane = T · Pplane

P ∗
full = T · Pfull

C∗ = T · C
3DPrism← construct3DPrism(P ∗

plane)

P ∗
object ← extractPointswithinPrism(C∗, P ∗

full, 3DPrism)

Pobject = T−1 · P ∗
plane

Finally, we construct a homogeneous transformation matrix Tp = [R, t],
where t = [0, 0, 0]T . The procedure to extract the object from the full 3D
reconstruction is listed in Algorithm 1. Specifically, Pplane, Pfull and C are
transformed by T so that the plane is orthogonal to the z-axis. Then we create
a 3D prism between the convex hull of the Pplane and the convex hull of the
loop generated from the sensor poses C. As seen in Fig. 5, the face of the 3D
prism is contracted from the convex hull of the shape of the loop of sensor
poses projected to the plane. This shape is then extruded in the negative Z
direction until it crosses the table plane. The points within this 3D bounding
prism are extracted and transformed back to the original world coordinate
system, resulting in a point cloud containing only the object on the table top.

3.3.2 Selection for Real Human Head

Since human head models are usually produced in the form of human busts,
which contains a little part of human upper body, to increase stability, we also
propose an automatic selection for real human bust as well. When scanning
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a human to print a bust, we generally tend to concentrate on the head, even
though the human is standing or sitting down. There is no ground plane in
either case. The only spatial knowledge we have about the scan is the sensor
poses and that the human is sitting or standing upright. However, in order to
create our 3D prism for selection, as mentioned in the last section, we create a
virtual plane on top of the subject’s head. The procedure is listed in Algorithm
2.

Algorithm 2 Selection for Real Human Head

Input: Pfull(full point cloud of reconstruction), C(Tracked sensor poses from reconstruc-
tion)

Output: Phuman (point cloud representing the human bust)
Ccentroid = compute3DCentroid(C)
Headtop = nearestNeighbors(C, k, Pfull)
Pplane = fitplane(Headtop)
T = findP laneTransform(Pplane)
P ∗
plane = T · Pplane

P ∗
full = T · Pfull

C∗ = T · C
3DPrism← construct3DPrism(C∗, P ∗

plane, offsethead)

P ∗
human ← extractPointswithinPrism(P ∗

full, 3DPrism)

Phuman = T−1 · P ∗
plane

(a) Headtop, Pplane and Ccentroid (b) 3D prism for selection.

Fig. 6: Selection for real human head. (a) Side view of top head points
(Headtop) virtual plane (Pplane), camera pose centroid and (Ccentroid) (b)
constructed 3D prism which represents the human head.

As we can see, the difference between Algorithm 2 and Algorithm 1 is only
the first four lines, where we create a virtual plane in order to construct the
3D prism for selection. Initially, we compute the 3D centroid of the sensor
poses. Then, we find the k nearest neighbors of the centroid with respect to
the human reconstruction. A reasonable value for k, can vary depending on the
resolution of the reconstruction and the total number of points. These points
(headtop) represent the closest set of points from the top of the head of the
human subject to the centroid of the sensor poses. Once headtop is obtained,
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we search for a planar model as in Section 3.3.1 and further estimate the planar
transformation matrix T for Pplane. The resulting 3D prism and human head
selection can be seen in Fig. 6.

3.4 Scaling Post-Processing

(a) Real spatial dimensions of
reconstructed model.

(b) Scaled spatial dimensions
to printer size.

Fig. 7: Automatic scaling of the reconstructed model to the volume of a 3D
printer. (a) Real dimensions (b) scaled dimensions.

In order to have a direct scaling of the world to the 3D volume of a 3D
printer, we create a circle which represents the closed loop of the measurements
on the X-Y plane, namely, the approximate camera pose loop. The diameter of
this approximate loop (dloop) is obtained by computing the maximum distance
between axis from the sensor poses:

dloop = arg max(||xmin − xmax||, ||ymin − ymax||) (8)

Since the maximum possible diameter of the scaled world in the printer’s
volume is the length (lvol) of the face of the model base, the scaling factor
(sf) is computed as follows:

sf = lvol/dloop; (9)

The final selected reconstructed model is then scaled by sf . Fig. 7 shows the
automatic scaling of the reconstructed model to the volume of a 3D printer.

3.5 3D Printing

After applying selection and scaling to the reconstructed model, we generate a
printable polygon mesh. The system then automatically uploads the resulting
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.stl file through WiFi to the machine connected to the 3D printer. Once a
model of the printer has been imported to the modeling software (Fig. 8), the
layers as well as the necessary support material are computed. However, even
if we automatize this procedure when sending the ready part to the printer a
confirmation button has to be pushed and a new model base has to be loaded.
If the printer manufacturers provide the option of having a remote interface,
we can fully accomplish the automatic pipeline.

(a) 3D part for printing of
an inanimate standard head
model.

(b) 3D part for printing of a
human head.

Fig. 8: Generated layers and support material for the final 3D model. (a)
Standard human head model (b) Real human head.

4 Implementation and Results

4.1 Implementation

The implementation of our proposed system was conducted with the following
hardware and software:

– To enhance the mobility of our system, we used DFRobot’s HCR Mobile
Robot to carry the composite sensor, its external battery, a tripod, and
a tablet (Microsoft Surface) which realized all computational work. PID
control was adopted to make the robot circulate around the subject with
approximate 1-meter radius. In addition, Kinect v2’s power adaptor was
replace by an external battery to avoid cable limitation.

– To acquire and fuse depth data from Kinect v2 (with depth image reso-
lution 512×424), we modified KinectFusion and open-source Point Cloud
Library (PCL) [50,51] on the tablet as introduced before.

– The 3D printer we adopted is Stratasys’ Dimension 1200es, a professional
3D printer with the build size 254×254×305mm and layer thickness 0.25mm.
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Its printing technology is Fused Deposition Modeling (FDM), which is
based on material extrusion. The accuracy of this 3D printer is ±0.127mm,
which is acceptable when considering the size of the head model.

– The software we used to compute two 3D models’ Hausdorff distances is
MeshLab6 version 1.3.3, an open-source 3D tool supported by the 3D-
CoForm project. MeshLab provides the function to calculate and visualize
Hausdorff distances.

The complete flow of our implementation, with both standard human head
model and real human subject, are shown in Fig. 1. In addition, more detailed
experimental results are shown in the following subsections.

4.2 Computational Cost

Currently, the reconstruction algorithm runs almost real-time (i.e., 15 frames
per second) and the post-processing steps take a few minutes depending on
the subject and the scanning quality. The required time for 3D printing also
depends on the complexity and the size of the models, as well as the printer
itself. For example, in our implementation, the standard head model took
approximately 7 hours to print, whereas the head model from real head takes
approximately 12 hours to print.

4.3 Accuracy of Reconstructed Head

To test the accuracy of our results, we compared the 3D models generated by
our proposed system with the ones reconstructed by FastSCAN7 and Cyber-
ware8 commercial laser scanning systems on both printed standard head model
and real human subject separately. All the scanned 3D data is published on The
MCRLab 3D Human Head Scanning Repository 9. We computed the geomet-
ric differences between the 3D model data acquired by different scanners. Our
numerical evaluation is based on computing the approximate error between
two triangular meshes representing the same surface or object (M1 ↔ M2),
as introduced by Cignoni et. al. [52]. The approximation error is defined with
the two-sided Hausdorff distance dH [53], which is the maximum value from
M1 →M2 and M2 →M1 in the Euclidean space, as follows:

dH (M1,M2)

= max

{
sup

m1∈M1

(
inf

m2∈M2

d (m1,m2)

)
, sup
m2∈M2

(
inf

m1∈M1

d (m1,m2)

)}
6 MeshLab. http://meshlab.sourceforge.net/
7 FastSCAN. http://polhemus.com/scanning-digitizing/fastscan-cobra-ci/
8 Cyberware. http://cyberware.com/products/scanners/px.html
9 The MCRLab 3D Human Head Scanning Repository. https:

//2d38791be59e3ad62ca59c967554ea6389b91bf9.googledrive.com/host/

0B4TnftTwy3ThVXQ3R2lEb0I1aGs/3D_Head_Repository.html

http://meshlab.sourceforge.net/
http://polhemus.com/scanning-digitizing/fastscan-cobra-ci/
http://cyberware.com/products/scanners/px.html
https://2d38791be59e3ad62ca59c967554ea6389b91bf9.googledrive.com/host/0B4TnftTwy3ThVXQ3R2lEb0I1aGs/3D_Head_Repository.html
https://2d38791be59e3ad62ca59c967554ea6389b91bf9.googledrive.com/host/0B4TnftTwy3ThVXQ3R2lEb0I1aGs/3D_Head_Repository.html
https://2d38791be59e3ad62ca59c967554ea6389b91bf9.googledrive.com/host/0B4TnftTwy3ThVXQ3R2lEb0I1aGs/3D_Head_Repository.html
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where sup represents the supremum, inf is the infimum, m = (x, y, z) is the
3D vertex points of the corresponding triangular mesh and d is the Euclidean
distance between two points in Euclidean space E3. To provide comparative
results between the ground-truth model (Mgt) and the laser scanned model
(Mf ), as well as the Kinect v2 scanned mode (Mk), we take the full set of
vertex points (68k) from the ground truth model and search for the closest
point on the scanned models to compute error metrics based on the Hausdorff
distance dH . The unit to represent Hausdorff distance in MeshLab is Hausdorff
Distance unit (HDu), represented as color bar in Fig. 10 and 12.

4.3.1 Standard Human Head Model

To validate the capabilities of our proposed scanning system, a visualized
3D CAD model of a standard human head model is prototyped, 3D printed
and scanned separately by our proposed scanning system and by a commercial
handheld 3D laser scanner FastSCAN. Furthermore, we computed the geomet-
ric differences (represented by Hausdorff distances) between the two scanned
3D models and the ground-truth model separately, as illustrated in Fig. 9.

Original 3D Human 
Head Model

3D Printer Real-Size Standard
Human Head Model

Proposed Kinect v2 sensor
Kinect v2 Scanned

Human  Head

FastSCAN 3D
Laser Scanner

3D Laser Scanned
Human Head

Output 2: Accuracy
Comparison 2

Output 1: Accuracy
Comparison 1

Input: Digital 
CAD Model

Fig. 9: Experimental setup for the evaluation of standard head model scanning.

In Table 1, we present the accuracy results for each scanned model. Since
we have the detail model and the printed size of the original ground-truth
model, we translate Hausdorff Distance unit (HDu) from MeshLab to real-
word distance. Each column corresponds to the scanning system that was used
(first column: FastSCAN, second column: proposed system). For each scanned



Development of an Automatic 3D Human Head Scanning-Printing System 19

model, we compute the mean, maximum and RMS (Root Mean Square) trans-
lated from the Hausdorff distances between all the points (first multi-row). We
also present the error with respect to the diagonal of the bounding box of the
mesh (second multi-row), which, to the human eye, is a more understandable
error.

Table 1: Comparative results with the standard human model

Error Metrics FastSCAN Proposed
System System

Hausdorff mean 0.1868 0.5443
Distance [cm] max 0.6177 1.5026

RMS 0.2257 0.7580
Bbox mean 0.4283 1.2853
Diagonal [%] max 1.4168 7.1472

RMS 0.5177 1.7901

These errors are visualized in Fig. 10. Same as we predicted, the FastSCAN
laser scanning result showed a higher degree of accuracy than our proposed
Kinect v2 sensor based scanning system. However, the maximum Hausdorff
distance error of our proposed system is only two-fold that of the laser scanner,
the mean and RMS errors stay within the same decimal range. Furthermore, if
we analyze the values with respect to the bounding box diagonal we show an
error of less than 2%, which is acceptable for the types of applications for which
the scanner is intended. If we take a closer look at the error visualization, we
can identify where our proposed system exceeds the average distance compared
to the original mesh. In facial areas such as the nose and eyes, the Kinect v2
scanner fails due to the proximity of the sensor (which has to be approximately
0.5m, with depth image resolution 512×424), this produces the lack of detail
in these areas. Another problematic area is behind the ears, also due to the
proximity-resolution of the sensor. Finally, the most error prone area is the
back of the head. In this case, ICP may get lost when evaluating such similar
surface patches. The FastSCAN scanner on the other hand, has no problem
with these previously mentioned areas. One of the reasons is that the proximity
of the sensor is approximately 0.1m, thus it achieves much higher resolution
and can be swept many time within corners, such as behind the ears to achieve
an accurate model. Based on these facts and the price difference, result from
our proposed system is highly acceptable.

4.3.2 Real Human Head

Previous comparison was implemented on a 3D printed inanimate head made
with only one kind of homogenous texture-less material. To further validate
our experimental results, we compared scanned models from our proposed sys-
tem with the ones from commercial Cyberware laser scanning system on real-
human subjects. The experimental setup is illustrated in Fig. 11. We scanned
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(a) Front View    (b) Back View                    (c) Isometric View   (d) Side View

0.000 HDu

0.028 HDu

0.014 HDu(a) (b) (c)                          (d)

(a) (b) (c)                                  (d)

Top Row:

Bottom Row:

Fig. 10: Visualization of Hausdorff distance between scanned models and the
ground-truth model separately. Top Row: Proposed system result. Bottom
Row: FastSCAN scanner result.

Input: Real 
Human Subject

Proposed Scanning 
SystemResult From 

Proposed System

Cyberware 3D
Laser Scanner

Output: 
Accuracy

Comparison

Result From 
Cyberware

Fig. 11: Experimental setup for the evaluation of real human scanning.

real human subjects with both proposed system and Cyberware separately,
and then calculated the Hausdorff distance between the two acquired models.

Detail comparison results are shown in Fig. 12. We demonstrated the real
images, results from proposed system, results from Cyberware, and Hausdorff
distance visualization results of two male subjects and two female subjects
separately. As we can see from both Fig. 11 and 12, Cyberware can recon-
struct certain regions with more details than the proposed system, in human
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eyes, eyebrows, ears, nose, and mouth, mainly because its closer capture dis-
tance, higher resolution, and more stable fixed rotation configuration. How-
ever, Cyberware laser scanner does not work well with optically uncooperative
materials, such as human hairs. Thus, the back-view comparisons (Fig. 12(e))
show a larger Hausdorff distance (green and blue areas in the visualization
images) than other views, especially for women with long hairs or ponytail.
As a result, our proposed system has superior hair-style reconstruction ca-
pabilities compared with Cyberware system. Based on the facts that most
facial comparison are in red color (small Hausdorff distance range), better
hair-style reconstruction capabilities, lower cost, and more outstanding mobil-
ity, the overall performance of our proposed system can be considered to be
comparable with the expensive commercial Cyberware laser scanning system.

Subject 1:      (a)                 (b)        (c)                           (d)              (e) 

(a) Real Image   (b) Result From   (c) Result From  (d) Hausdorff Distance (e) Hausdorff Distance 
Proposed System  Cyberware    Side Visualization 

Subject 2:      (a)                 (b)        (c)                           (d)               (e) 

Subject 3:      (a)                 (b)        (c)                           (d)               (e) 

Subject 4:      (a)                 (b)        (c)                           (d)               (e) 

0.000 HDu 

0.028 HDu 

0.014 HDu 

   Back Visualization 

Fig. 12: Male and female subjects’ real image, scanned results from our pro-
posed system and Cyberware separately, and the Hausdorff distance visualiza-
tion results.

5 Conclusion

In this paper, we proposed an automatic human head scanning-printing sys-
tem, which provides a complete pipeline to scan, reconstruct, select, and print
out 3D human heads. With our developed composite sensor, a tablet, and a
robot, we realized movement freedom of the developed sensing device without
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human intervention. In addition, we proposed an automatic selection method
for both standard head model and real human head. After a computational
cost evaluation, and accuracy comparisons with two commercial 3D laser scan-
ning systems, we showed that our system achieves comparable results with
expensive commercial laser scanning systems, and could be an instrument in
generating large-scale human shape databases for ergonomics, product design
or anthropological studies at a much lower cost.

For future work, we plan to utilize a stabilizer to increase the stability of
Kinect v2 when capturing images under movement, and aim at porting our
scanning-printing pipeline to the cloud, thus any individual that does not have
the required processing power on their machine can simply send the raw data
to a server and the final reconstructed human head can be digitally delivered
in a matter of minutes.
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