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Abstract—Video information hiding and transmission over noisy channels leads to errors on video and 

degradation of the visual quality notably. In this paper, a video signal fusion scheme is proposed to 

combine sensed host signal and the hidden signal with quantization index modulation (QIM) 

technology in the compressive sensing (CS) and discrete cosine transform (DCT) domain. With 

quantization based signal fusion, a realistic solution is provided to the receiver, which can improve the 

reconstruction video quality without requiring significant extra channel resource. The extensive 

experiments have shown that the proposed scheme can effectively achieve the better trade-off between 

robustness and statistical invisibility for video information hiding communication. This will be 

extremely important for low-resolution video analytics and protection in big data era. 

Index Terms—Video information hiding; Statistical transparency; Compressive sensing; 

Quantization index modulation; Image Fusion. 

1 INTRODUCTION 

Video information hiding, especially for low-resolution ones, is an important secret communication 

technology, where significant amount of secure data is invisibly embedded inside a video carrier signal 

via digital watermarking and can only be retrieved by those authorized [1]. This process can be applied 

in several applications including the integrity of the carrier signal, copyright protection and multimedia 

security. To characterize the performances of information hiding systems, three major criteria are often 

utilized, which include capacity, robustness and imperceptibility (or transparency) [4]. These 

respectively refer to the amount of hidden information, the effectiveness of the technique, and any 

degradation to the visual quality of the original signal. For specific applications, the overall 

performance usually needs be tuned as a trade-off among these three criteria [2]. With increasing 

amount of hidden data, the robustness of the hidden signal is improved, yet the hidden signal may 

become visible and results in degraded imperceptibility. To maintain a certain level of imperceptibility, 

the capacity is limited, thus the robustness can also be affected.  

To enable as much as possible data hidden without noticeably decreasing the imperceptibility, 

QIM-based techniques and the Scalar Costa Scheme (SCS) are widely used [3][5]. Without using a 

secret key, the SCS scheme shows lack of security due to the non-statistical transparency while the 

hidden signal is embedded. As a result, potential attackers will be informed on the presence of the 

hidden data, where the host videos can be deliberately targeted for illegal usages. To tackle this 

problem, video information hiding with good statistical transparency is demanded. 

Actually, a number of watermarking based approaches with good statistical transparency have been 

proposed in the last decade. In general, these can be classified into two groups, i.e. quantization based 

and feature based approaches. In quantization based approaches, a specific quantization scheme is 
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applied to the signal to be embedded, using techniques such as Fractal based quantization [6] and 

Trellis Coded Quantization (TCQ) [7]. These quantization techniques help to remove unwanted noise 

in the probability density function (PDF) of the watermarked signal, caused by the use of a scalar 

quantizer such as the SCS. As a result, the imperceptibility can be significantly improved at the cost of 

degraded robustness. Feature based approaches usually work in a transform domain, such as 

Independent based schemes [8] and the Spread Transform [9]. Due to successfully redundancy removal, 

the robustness can be improved though the capacity is constrained, especially for high statistical 

transparency. As can be seen, these two groups of approaches work better in different aspects, and they 

actually complement to each other. As a result, they can be potentially fused together, and this forms 

the major motivation of our proposed approach.   

Due to the strong capability in significantly reducing the data yet preserving the information of the 

signal, CS based watermarking has attracted increasing attention in recent years [11, 12, 13]. In Zhao et 

al [11], distributed CS for secure signal processing in the cloud is discussed. In Zhang et al [12], 

combining CS and compositive reconstruction is used for watermarking with self-recoverable quality. 

In Wang et al [13], CS based framework for secure watermarking detection and privacy preserving 

storage is proposed. Other CS based approaches include Sheik et al. [14] and Zhao et al. [15]. However, 

statistical transparency is seldom addressed in existing work.  

In this paper, we propose a hybrid approach for video information hiding, based on Quantization 

Index Modulation (QIM) in the DCT-CS Domain. In the proposed approach, DCT and QIM are 

respectively used for feature extraction and quantization, where compressive sensing (CS) techniques 

[10] are employed to obtain a sparse representation of the host signal before embedding the 

watermarking data. With the secure watermarking principle in [16], we evaluate the statistical 

transparency using PSNR (Peak Signal-to-Noise Ratio) [17], the KLD (Kullback-Leibler Divergence) 

[18], and PDF (Probability Density Function). We also measure several evaluation metrics for general 

watermarking and signal fusion, including robustness and perceptual transparency. Tests with real 

video sequences are carried out for performance assessment, where it has validated that our proposed 

DCT-CS methodology can help to maximize the imperceptibility of the watermarking whilst reaching a 

good tradeoff between robustness and statistical transparency.  

  The rest of this paper is organized as follows. Section 2 describes the problems of classical data 

hiding scheme based on Costa’s theory. Based on the relation work of CS theory, section 3 introduces 

the video compressive sensing fusion (VCSF) Scheme proposed in this paper. Section 4 reports the 

experimental results for the VCSF in video watermarking, and demonstrates the effectiveness of the 

proposed the scheme. Finally, we give our conclusion in section 5. 

2 RELATED PROBLEMS FOR INFORMATION HIDING COMMUNICATION SCHEME 

The Costa’s quantization based watermarking scheme [4, 5, 20] herein is used as the baseline 

of our work. In this section, after briefly summarizing the general concepts of this scheme, we will 

discuss its drawbacks to motivate the proposed approach.  

2.1 Costa’s Scheme 

For a host signal X from a video document with the power
2
X , we aim to embed a hiding 

message 𝑀 = [𝑚1, ⋯ , 𝑚𝑛] into X. Denote the encoded watermark signal as W (with the power
2
W ) and the final fused signal as S, we have S = X+W. After transferring the fused signal over a 
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noisy communication channel (modeled as Gaussian noise with power
2
Z ), the received signal is 

R = S + Z. To extract the embedding information im ϵM from R, Costa’s approach is used to 

estimate the hidden signal 𝑀̅ as illustrated in Fig. 1.  

 

 

                            Fig 1.  SCS signal fusion scheme  

    In Fig.1, most of the SCS compression standards quantize the source data for better coding 

efficiency. This quantization step can be used for embedding data. Depending on the value of the 

data to be hidden, different quantizers are used in quantizing the source data. In the receiver side, 

the data hidden can be extracted by determining which quantizer is used. One of the most popular 

approach which utilizes this idea is Quantization Index Modulation (QIM) [21]. 

2.2 Analysis of SCS Scheme 

The host video signal X contains N components {xi }ϵX, iϵ[1,N], which can be in either spatial or 

transform domain. According to the approach in [21], QIM based data hiding can be processed as 

follows, where the bit b of {xi } is adaptively modulated by using the hidden signal vector {mi }ϵM. 

The signal 𝑤𝑖𝜖W is watermarked by: 

                     𝑤𝑖 = 𝑥𝑖 + 𝛼𝑖𝑚𝑖 , i = 1, 2, …, n                        (1) 

In the SCS signal fusion scheme, the fused signal S has two parts, i.e. S=X+W, and the goal of the 

statistical transparency is to reduce the chance for potential attackers to recognize whether the signal is 

a fused one or not. This can be represented as the following two hypothesis: Η1 (the signal is fused 

with a PDF of Sp ) and Η0 (the signal is not fused with a PDF of Xp ), where PDF denotes 

probability density function of the signal.  

The two hypotheses mean the false alarm probability faP  can be maximized by considering

)|( 01 HHPP rfa  , i.e. to maximize the probability for the attacker to erroneously believe the video 

signal is not watermarked. According to the Stein’s Lemma [4, 20], the Kullback-Leibler Divergence 

(KLD) is used for measuring the channel noise Z.  
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Herein maximizing faP  is equivalent to minimizing )||( SX ppD  between the fused signal S and 

the original signal X. As the perfect statistical transparency with Sp = Xp  is hard to achieve, an 

uresec  system with )||( SX ppD is defined for approximation [18]. In our work, we will use the 

determined KLD for evaluation of the statistical transparency. Smaller the divergence is, higher the 

faP  will be and more likely the attacker will be confused to decide whether the signal is a fused one or 

not.  

In the SCS signal fusion scheme, the main difficulty is the statistical transparency of the hidden 

information in the fused signal S. As shown in Fig 2, we consider 300 real images extracted from two 

videos, where the original signal X and the fused signal S show noticeable difference in terms of their 

statistics PDFs. It has been proven in [20] that this difference is caused by the discontinuity appearing 

in S when the regularity of the scalar quantization is used. These discontinuities are the evidence of the 

presence of the watermarking signal embedded in the original signal, which in turn may inform 

potential attackers the need to remove the hidden signal before any illegal usage. Herein our proposal is 
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to reduce or remove this discontinuity and reach a good statistical transparency to be validated using 

PSNR and other evaluation metrics. 

 

                                                              
Fig 2.  PDFs of the original signal X and the fused signal S in SCS for Basketball video (left) and Scene video (right). 

3 VIDEO COMPRESSIVE SENSING FUSION (VCSF) FRAMEWORK 

3.1 Related Works for CS 

In [22], [23], and [24], the CS asserts that when a signal can be represented by a small number of 

non-zero coefficients, it can be perfectly recovered after being transformed by a limited number of 

incoherent, non-adaptive linear measurements. Suppose a signal X∈ NR  is a K-sparse vector ( only K 

out of the N elements of f are nonzero), and can be transformed to NMRY M  , , where 

fXAY   , Y is an M×1 sampled vector, A is a sensing matrix, and  is an NM 

measurement matrix that is incoherent with ,   is called as the sparse matrix, respectively. For 

images, typical choices of   include the DCT and DWT. If   satisfies RIP (Restricted Isometry 

Property), [23] shows solving the bellow optimization problem 

  fXtsX ..||||min 1                         (3) 

This is equivalent to finding the sparsest solutions to xX  , provided that )/log( KNCKM  , 

where C is a small constant. The CS theory states that such a signal X can be reconstructed by taking 

only M linear projection. 

   Equation (3) presents an l1 minimization problem which can be solved by orthogonal matching 

pursuit algorithm [25]. It has been shown that it is feasible for many signal processing algorithms to be 

performed in the CS domain [26], and [27]. If the entries of matrix  are generated from a Gaussian 

distribution with zero mean and variance σ∈1/√M,  is a RIP matrix with overwhelming probability 

[23]. In our framework, the matrix  is generated from such a Gaussian distribution by reference 

previous work [16], and [19]. The Gaussian CS matrix suits include the seeds and a random function. 

   In practical application, an image with a size N= 21 NN  is divided into B×B blocks, and each 

block is sampled using an appropriately-sized measurement matrix B  in the CS domain. Let ix  be 

a sparse vector representing ith block of the input image NMRX M  , , the corresponding 

measurement sample iy  is determined by: 

                           fxAy BiBi                              (4) 

where the length of the signal iy  is M, and BA  is a 
2BM   measurement matrix. The size of im  
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is  NBM /2  and M is the number of samples needed by the CS measurement for the whole image. 

In this way, A has a block-diagonal structure as follow: 
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Therefore, the aforementioned approach was called block CS (BCS) [28]. 

3.2 Proposed VCSF’ Scheme 

In our proposed scheme, a measurement signal Y is obtained by compressing the host signal X in 

the CS domain, where the watermarked signal W is decided using the same procedure as previously 

described in the Costa’s encoder process yet based on the determined sparse signal M. By applying the 

QIM method in the DCT-CS domain, the watermarked signal W is generated by MYQW   with 

])([])([ ii mYMODmYQQ   , where   is the Costa’s robustness optimization parameter. 

Note that only the non-zero coefficients will be considered in quantizing the signal Y in the CS domain. 

By adding the determined sparse watermarked signal W to Y, the fused signal S =Y+W is obtained by 

the VCSF encoder in the DCT-CS domain as shown in Fig 3. This fused signal S is then transmitted 

along with the additive Gaussian white noise (AGWN) Z over the channel before being sent to the 

receiver side. 

At the receiver side, the received signal with noise is represented as R = S + Z, which is 

compressed by using the same sensing procedure in DCT-CS domain as in the embedding step. From 

the received signal R, the watermarked signal is extracted to estimate the hidden message M  in 

VCSF decoder in Fig 3. In the next several subsections, relevant details are presented for the DCT-CS 

operations used in our proposed VCSF’s scheme, where we first obtain the signal sparsity properties 

and then the inverse procedure to recover the original signal.  

 

3.2.1 Principle of the VCSF in Encoder 

By exploiting the sparsity structure of the signal, CS enables sampling beyond the Shannon limit 

[22],[23], and [24]. As a result, signals can be acquired and represented in CS at a significantly lower 

rate than the Nyquist rate in conventional solutions. Non-adaptive linear projection is used for fast 

sampling whilst preserving the signal structure. From these projections, sparsity regularized convex 

optimization is employed for decoding and signal reconstruction [24]. The CS theory affirms that the 

original signal can be reconstructed from much fewer measurements than conventional wisdom, though 

the performance is mainly affected by sparsity and incoherence of the original signal. 

 

 

 

 

 

 

 

                                                                                                                                                                                              
                  Fig 3.  Proposed VCSF scheme in DCT-CS domain 

As shown in Fig 3., let X be the input signal from a video stream, a sparse signal in VCSF encoder. 

Considered as a vector in a finite-dimensional subspace 
nR , },...,{ 1 nxxX   can be proven strictly 

  

VCSF decoder VCSF encoder 

 

Y Z 

X 

R W S M 
SCS Encoder 

SCS 

Decoder 

XAY   in CS domain 

RAY   

in CS domain 



 6 

or exactly sparse if most of its entries are (very close to) zero, i.e. its support 

}0],,1[{)(  ixniX  is of cardinality k << n. A signal X that contains exactly k non-zero 

valued samples is defined as k-sparse. A non-spare signal X can be made sparse via certain sparse 

transforms, i.e. in a transform domain. In our application, the original signal X is the frames from a 

video document f, which is generally not sparse. By using a specific spare base Ψ , we can obtain a 

sparse signal X as fX  . In our paper, we choose the sensing matrix A as the Restricted Discrete 

Cosine Transform (RDCT) matrix with RDCT (X)= XXAY  , where is a sparse basis and 

  is a DCT measurement matrix which can be determined by multiscale block compressed sensing 

(BCS) matrix B  in the CS domain [16]. Finally, the fused signal S is generated as shown in Fig. 4 

by integrating the sensing signal 𝑌 = [𝑦1 , ⋯ , 𝑦𝑀] of all sensing matrix BA and the hidden signal 

𝑊 = [𝑤1, ⋯ , 𝑤𝑚].  

                                  

 

 

 

 

 

 

Fig 4.  Process of the multi- dimensional signal fusion in VCSF encoder 

3.2.2 Fusion Processing of the Signal in DCT-CS Domain 

In video coding, the video sequence is first divided into groups of pictures (GOP) of I-frame, 

B-frame, and P-frame [29, 30]. According to the video sequence characteristics, the B-frame and 

P-frame are dependent on the I-frame and the raw video data can also be considered as a sequence of 

still images. As a result, the watermarking signal 𝑚𝑖 ∈ 𝑀 and the host CS signal 𝑦𝑖 ∈ 𝑌 are mainly 

fused into the luminance component of each I-frame. We extract I frame image by syntactic elements of 

the video stream [29] before sensing its DCT coefficients using the matrix A to select a suitable area 

for hiding the fusing signal in the CS domain. 

For I-frames extracted from videos in Fig. 4, we take several successive frames as a group, where 

each image within the group is divided into a number of blocks. Each block is transformed into the 

DCT domain and separately sensed by using the measurement matrix in CS domain. This process is 

illustrated in Fig. 5, where four consecutive I-frames are treated as a group. With the CS values 

obtained in the DCT-CS domain, the sum of the CS values and the watermarking weights is fused as 

follows.  

                     𝑦(𝑖, 𝑗, 𝑘) = 𝐴𝐵(𝑖, 𝑗, 𝑘) ∙ 𝑥(𝑖, 𝑗, 𝑘) 

          𝑤(𝑖, 𝑗, 𝑘) = y(𝑖, 𝑗, 𝑘) + α ∙ 𝑚𝑖,𝑗,𝑘                   (6) 

                  𝑠(𝑖, 𝑗, 𝑘) = ∑ [𝑦(𝑖, 𝑗, 𝑘)𝑖,𝑗,𝑘 + 𝑤(𝑖, 𝑗, 𝑘)]  

where 𝛼ϵ[0,1), 𝑖ϵ[1, n], and 𝑠(𝑖, 𝑗, 𝑘)ϵ𝑺 is the sum of all sensing CS values y(𝑖, 𝑗, 𝑘), and 𝑤(𝑖, 𝑗, 𝑘) 

is the watermarking weights. Herein y(𝑖, 𝑗, 𝑘)ϵ𝑌 and 𝑤(𝑖, 𝑗, 𝑘) = α𝑄ϵW respectively denote the kth 

CS sensing value and the kth modulated message corresponding to the jth block of successive frames 

within the ith frame group. Here, the initial weighting value 𝛼 can be decided by the owner of the 

source signal. Repeating the above process for all blocks over each frame within the same group, a 

fused sequence of sums of every block will be obtained. Fig.6 shows an example where each of the 
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four frames in a group is separated into a few 8×8 sized blocks. 

 

Fig.5. Sketch of the video fusion procedure in DCT-CS domain 

 

                Fig.6 The fused process worked on the signal )1,1(S in DCT-CS domain 

After computing 𝑠(𝑖, 𝑗, 𝑘) for all blocks, we use a determined threshold )(iT to balance the 

robustness and transparency of the hiding messages. )(iT is associated with the characteristic of the 

input video and the number of bits to be embedded, and it can be adjusted by the weighting value 

0 ≤ 𝛼 <1 depending on the demand and the trade-off between robustness and transparency. Based on 

the approach in [18], )(iT  is determined as follows.  

))(log()
512

log(

512
)(

iMax
R

R

RiT

sum

     (7) 

)1log(
Y

W
BR           (8) 

when the bandwidth B is decided, the reception variable bit rate R can be estimated to further derive 

)(iT , where  j jsum yiMax )( . The threshold )(iT can be regarded as the tolerance range for 

the quantizing process in QIM.  

After determining the )(iT above, an integer quantized quotient is obtained as follows: 

𝑄(𝑖, 𝑗, 𝑘) = ⌊
𝑆(𝑖,𝑗,𝑘)

𝑇(𝑖)
⌋                             (9) 

where 𝑄(𝑖, 𝑗, 𝑘) decides the quantization step Δ while utilizing the QIM to perform the embedding 

operation. Based on the QIM, the embedding domain is divided into several regions. The interval of 

every region is the same, which equals to )(iT , and an index is assigned to every region. Therefore, 

each region represents a bit (0 or 1) of the watermarking data. For the robustness of the signal hidden, 

the value of the fusion signal 𝑠(𝑖, 𝑗, 𝑘)  is changed to the median value in the corresponding section to 
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resist for the distortion embedded. 

As 𝑠(𝑖, 𝑗, 𝑘) consists of several signals, the modification of it by bit embedding is equal to the 

change of the CS values. Also note that the low frequency component is more robust and visually more 

sensitive than the high frequency component. As a result, modulating low frequency component  will 

cause more serious distortion, though it can be more robust to resist attacks than modulating the high 

frequency components. To this end, under noise Z, we apply the CS matrix A to fuse the estimated 

signal Skjis ),,(  as follows. 

 )],,(),,(),,([),,(
,,

kjizkjiykjiwkjis
kji

                  (10) 

where ),,( kjiz ϵ Z denote the k-th noise value corresponding to the j-th block of successive frames 

within the i-th group, which can be adjusted by the channel noise  power σZ
2 . According to 

𝑄(𝑖, 𝑗, 𝑘) and the k-th bits to be embedded, we can obtain ),( jis  by using QIM for w(i,j) modulating 

y(i,j) as follows.  

 

While s̅(i,j)= ]),(),([  jiwjiy    
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02),(
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end 

While s̅(i,j)= )],(),(),([ jizjiwjiy   

0

12),(

,,

,,





kji

kji

motherwise

mpjiQif

 
end 

  

where kjim ,,  is the embedded values of the watermarked signal W, and 1},，{0,, kjim  denotes the 

embedded bit of every block of the hidden signal from the modulated samples in DCT-CS domain. The 

parameter p is a random nonnegative integer determined the selection of quantizer with a step size  .  

For a noisy channel, it is easy to know whether ),,( kjis  needs be changed or not when 

),,( kjiQ  is an even or odd number corresponding to the hiding signal kjim ,, . After determining the 

embedding position, the original value of Xkjix ),,(  in that position can be modulated to the 

median value of the corresponding section by using kjim ,, . This procedure will repeat until all hidden 

bits are embedded. Finally, the sensing matrix A, quantizers ),,( kjiQ , the threshold )(iT  and all 

the embedding positions are recorded as the secret information of the embedding key. 

Usually, the QIM is independent of the video signal, which therefore may lead to serious 

degradation to visual quality. However, in our scheme, the conventional QIM algorithm is adjusted 

with some small amount of the CS signal ),,( kjiy  being modulated by using the hidden signal kjim ,,  

in the video stream. For other CS signal ),,( kjiy , they can be changed by using (6) and (10) to 

maintain a good visual quality and avoid severe distortion.  

3.3 Principle of the VCSF in Decoder 

3.3.1 Recover of Signal Hidden 

    In the decoder side of VCSF, the process of signal extraction is actually the inverse operation of 

embedding. First, the received video sequence is separated into groups of frames and each frame is 

further divided into blocks. The secret information is then applied to acquire the embedding positions. 

After determining the embedding blocks, the selected DCT blocks ),,( kjir ϵR rather than all blocks 

are transformed into the DCT-CS domain. By applying sensing matrix A to all selected DCT blocks 
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y̅(𝑖, 𝑗, 𝑘) = 𝐴𝐵(𝑖, 𝑗, 𝑘) ∙ 𝑟(𝑖, 𝑗, 𝑘), we can further obtain an estimated original value y̅(𝑖, 𝑗, 𝑘) from 

),,( kjir , which is the sum of kth values of jth blocks in fused stero-frames within the ith group. Then 

we compute the quotient ),,( kjiQ  derived from ),,( kjir  divided by the threshold )(iT , which is 

recorded in the secret embedding information. After computing ),,( kjiQ , we can exactly decide which 

bit in y̅(𝑖, 𝑗, 𝑘) is embedded as follows.  



 


otherwise

pkjiQif
m kji

,1

2),,(,0
,,      (11) 

By repeating the above steps, the embedded bit kjim ,,  can be exactly ensured one by one until all 

bits are extracted. Finally, if 𝑀 ̅̅ ̅ denotes estimated signal of the embedded kjim ,, , 

T
nmmmM ],...,,[ 21 can be recovered using the secret key of video transmission.   

3.3.2 Recover of Original Signal with Min-TV Criterion 

Assume 𝑋 ̅ is an estimated value of original signal X from  𝑌̅  in the VCSF decoder as shown Fig. 

3, X is homogenous to a scaled quantization error given by  

nimYMODmYQQ ii ,...,1],)([])([                  (12) 

For the sensing signal )(XRDCTY   and XAY B  , based on the property that the gradient 

for natural image generally follows a heavy-tailed distribution [31],[32], we consider the Total 

Variation (TV) optimization problem such as min- TV(W) subject to 𝑋̅=IRDCT(𝑌̅) where IRDCT(𝑌̅) 

stands for inverse RDCT(𝑌̅) and  

 
ij ijkvijkh YDYDXTV 2

;
2

; ||||)(                        (13) 
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For the aforementioned min-TV criterion, it can be solved efficiently with a much reduced 

computational cost in the CS domain [33], and [34]. Eventually, we can obtain an estimated signal 𝑋̅ 

with a reasonably high PSNR over 40dB in the receiver side. In addition, the normalized correlation 

(NC) of structural similarity coefficient (SSIM), defined in Section 4, is computed between M and M , 

and its high value ( 98.0NC ) also confirms the good perceptual transparency performance for the 

reconstruction of hidden signal [35]. As a stopping criterion, we apply cross validation [36] to predict 

the TV performance. 

4  EXPERIMENTS AND RESULTS 

To test and verify the performance of the proposed scheme in which the CS procedure was applied 

to every image of the video document. The experimental results are compared with SCS’s method in [5] 

and Huang’s 3D-DCT method in [21] to perform various attacks, including MPEG compression, noise 

contamination, and collusion attack.  

In the experiments, a binary symmetric channel (BSC) is simulated in order to observe the effects 

of channel bit errors on the bit stream. For the experiments, two test sequences, Baskedball and Scene 

are encoded by an MPEG codec in various bit rates and passed through the BSC for two different 

channel bit error rates (BER). The Basketball sequence includes highly textured areas and some various 
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motions, which provides high frequency also in temporal domain. On the contrary, the Scene sequences 

contain low motion and smooth regions yielding with smaller number of DCT coefficients when 

compared to the Basketball sequence. These variations from the test sequences will ensure a thorough 

evaluation of the proposed approach. In our experiments, the test sequences are coded in six different 

bit rates and then transmitted through the BSC with two different BERs at 10−4  and 10−5 , 

respectively. 

The visual reconstruction quality is determined in terms of Peak Signal-to-Noise ratio (PSNR) 

between the original signal X and the received signal R. This process is repeated 100 times with 

different random seeds for the CS sensing matrix pattern and average reconstructed PSNR is calculated 

for the luminance and chrominance components of each frame. The PSNR can clearly judge the every 

received frame image quality by comparing the degree of diversity between the received signal R and 

the original one X. The mean square error (MSE) and )/log(20 max MSEHPSNR   are used for 

quantitative evaluation: 


  


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
h vI

i

I

j

n

kvh

kjixkjir
II

MSE
1 1 1
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1

   (16) 

where maxH  is 255 gray value for a gray-level image; Rkjir ),,(  and Xkjix ),,(  denote the 

received kth video data and the original one corresponding to i and j coordinates in 3D space. hI  and 

vI  denote the height and width of the video frames, respectively. 

The performance of statistical transparency of the test sequences are showed by using the PDF of 

the original video signal X and the fused video signal S. For secure signal, robustness is also one of 

important performances in video information hiding communication. In our experiments, a 

measurement of the normalized correlation (NC) used for calculating the difference between the 

extracted the watermarking signal M  in VCSF decoder and the original watermark signal M in 

VCSF encoder. The NC is defined as  
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where 21 NNN   denotes the fingerprint size of the watermark image, and 1N  and 2N  are the 

height and width of one. 

4.1 Experiment Dataset 

In our experiment, the hidden signal (watermarking message) M is generated by measurements 

values of sensing matrix A for a gray level fingerprint image with the size 160×160 from database FVC 

2008. Our ideal of fingerprint image used for the original watermark is to explore a new secure 

application of e-commerce with the principle of biological recognition in information security field 

[37]. For example, watermarking data of fingerprint images can be used to secure central databases 

from which fingerprint images are transmitted on request to intelligence agencies in order to use them 

for identification and classification purposes. 

For the host video signal X, experimental frames are extracted from the videos for testing. The 

size of each frame is 720×480 in the video, and every video sequence consists of 300- 382 frames. We 

take fifty successive frames as a GOP (group of picture) and each frame is decomposed into several 
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8×8 non-overlapping blocks and each block is individually and compressively sensed by using a DCT 

measurement matrix in the CS domain [16]. We consider in this experiment that the sender transmits 

each frame where each block is compressively sensed with m (m/n=50%) measurements to the 

transcoder.        

4.2 Experiment Results 

4.2.1 The Statistical Transparency of the Scheme 

The PSNR values in the “original” plot belong to the frames of the video encoded by baseline MPEG-2 

codec. The bit stream created by the baseline VCSF and SCS as well as 3D-DCT encoder is passed 

through the BSC and decoded by the corresponding baseline decoder again for 100 times, respectively. 

The average reconstructed PSNR values are labeled as “VCSF”, and “SCS” and “3D-DCT”, 

respectively. The reconstructed PSNR value versus frame plots for luminance component only are 

given in the figures from Figs. 7-10 for Basketball and Scene, respectively. 

 

(a) (b) 

(c) (d)

(e) (f) 

Fig.7 Performance comparison of the proposed VCSF system with the baseline SCS and 3D-DCT codec for 382 frames (1intra 

per 20 frames) Basketball sequence at the BER of 10−4 and the bit rates of (a) 2 Mbit/sec, (b)1.5M bit/sec, (c) 1.2Mbit/sec, 
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(d)1.0M kbit/sec, (e) 800 kbit/sec and (f) 600kbit/sec. 

 

For each test video we plot two curves for comparison, one for BER 10−4 and one for BER 10−5. 

In each figure there are four plots, corresponding to six different bit rates including 2M, 1.5M, 1.2M, 

1.0M, 800k and 600k bps. In our experiment, the proposed system shows better performance in terms 

of high bit rates and improved BER due to two reasons. First, more CS measurements will result in 

higher bit rates of the modulated signal and thus a proportionally small decrease in PSNR during data 

hiding in comparison to the lower bit rates. Second, the small number of errors in low BER decreases 

the PSNR of VCSF slightly, however, the PSNR level is still no less than those from “3D-DCT” when 

the BER is 10−5. 

 

(a) (b) 

(c) (d) 

(e) (f) 
 

Fig.8 Performance comparison of the proposed VCSF system with the baseline SCS and 3D-DCT codec for the 

382frames(1intra/20frames) Basketball sequence at the BER of 10−5 and at the bit rates of (a) 2 Mbit/sec, (b)1.5M bit/sec, (c) 
1.2Mbit/sec, (d)1.0M kbit/sec, (e) 800 kbit/sec, (f) 600kbit/sec. 
 

 

To further analyze the performance in terms of statistical transparency, for both the basketball and scene 

videos, the average differences in terms of MSE between the PDF of 300 frames of the fused signal S and 

the original signal X are compared in Table 1. In comparison to the same technique for the SCS in Fig. 2, the 

watermarked signal from our approach is widely closer to the non-watermarked one, i.e. less distortion is 

introduced. By computing the KLD, we are able to find that the document-to-watermark ratio (DWR) 
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obtained from our proposed VCSF’s approach is generally lower than those from SCS and 3D-DCT as 

shown in Fig 11. This has confirmed again the improved statistical transparency of the proposed method 

where we have 
3106  .  

 

Table 1: Comparison of MSE between the PDF of the fused signal S and the original signal X 

 SCS Proposed Approach 

Basket ball sequence 1.7% 0.2% 

Scene sequence 1.5% 0.14% 

 
 

(a) (b) 
    

 (c) (d)       

 (e) (f) 

Fig.9 Performance comparison of the proposed VCSF system with the baseline SCS and 3D-DCT codec for the 300frames 

(1intra/20frames) Scene sequence at the BER of 10−4 and at the bit rates of (a) 2 Mbit/sec, (b)1.5M bit/sec, (c) 1.2Mbit/sec, 
(d)1.0M kbit/sec, (e) 800 kbit/sec, (f) 600kbit/sec. 

 

(a) (b) 
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(c) (d) 

(e) (f) 

Fig.10 Performance comparison of the proposed VCSF system with the baseline SCS and 3D-DCT codec for the 300 

frames(1intra/20frames) Scene sequence at the BER of 10−5 and at the bit rates of (a) 2 Mbit/sec, (b)1.5M bit/sec, (c) 2Mbit/sec, 
(d)1.0M kbit/sec, (e) 800 kbit/sec, (f) 600kbit/sec. 

 

    
Fig.11 KLD comparison with the proposed VCSF’s scheme and SCS’s as well as 3D-DCT’s ones at the BER of 10−5 and at 

the bit rates of 2 Mbit/sec for Basketball video (left) and Scene video (right). 

 

4.2.2 The Robustness of the Signal Hidden 

In order to study the robustness of the signal hidden in the information hiding communication, we 

consider various intentional or unintentional attacks, such as Gaussian noise (with zero mean and 

variance 0.05) and wiener filter and median filter attacks to demonstrate the performances of the 

proposed approach. For the Scene video, Fig.12 present the experimental results of the signal hidden 

recovered by using the Min-TV Criterion for VCSF and SCS as well as 3D-DCT after various attacks. 

From these results, we can find that no matter what the attacks are, the NC values of the fingerprint 

image of signal hidden recovered from our proposed VCSF scheme can still exceed 0.98, and the 

fingerprint image can reconstruct with higher quality than the methods of SCS and 3D-DCT. In other 

words, the VCSF proposed in this paper have a better ability to resist various attacks. In this case, we 

take fully advantage of CS values in which a signal can be retrieved with a high probability by using a 

relatively small number of measurements.  
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i)  (j) (k) (l)   

Fig.12 Comparison result against different attack for 2 Mbit/sec Scene video at the BER of 10−5. From top to down, the three 
rows are results from VCSF, 3D-DCT and SCS approaches. From left to right, the four columns respectively are for results under 

attacks of winner filtering, median filtering, Gaussian noise and Pepper&salt noise. The NC values for (a-l) are 0.998, 0.990, 

0.999, 0.980, 0.769, 0.778,0.878, 0.782, 0.615, 0.665, 0.777, and 0.651, respectively. 

 

5. CONCLUSIONS 

In this paper, a hybrid approach for robust video information hiding and communication is 

proposed. With Quantization Index Modulation (QIM) and Discrete Cosine Transform based feature 

extraction and quantization, the compressive sensing (CS) techniques have effectively obtained a 

sparse representation of the host signal before embedding the watermarking data. Using real video test 

sequences, we have demonstrated the efficacy of the proposed approach in terms of statistical 

transparency, robustness and perceptual transparency. The proposed VCSF approach can effectively 

resist attacks such as compressions, noise, filtering attacks, and can maintain a good tradeoff between 

statistical transparency and robustness. Also it is found that the proposed approach can help to 

maximize the imperceptibility of the watermarking in VCSF. Future work will involve further study on 

CS related information forensics and secure communications, including visual perception [38], deep 

learning [39], frequency domain processing [40] even for embedded implementation [41] and intrusion 

detection [42]. Another direction is to address hashing based techniques for data hiding, such as 

dictionary-based hashing [43], probability based hashing [44], machine learning based hashing [45] 

and even for hardware implementation of fingerprint generation [46].  
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