
A pipeline for the creaton of progressively rendered web 3D
scenes
Alun Evans*, Javi Agenjo**, Josep Blat**

Afliatons
*GTM - Grup de recerca en Tecnologies Mèdia, La Salle - Ramon Llull University, Quatre
Camins 30, 08022 Barcelona, Spain. Tel: +34 932 90 24 74

** Grup de Tecnologies Interactves, Universitat Pompeu Fabra, Roc Boronat 138, 08018,
Barcelona, Spain. Tel: +34 93542 2173

aevans@salleurl.edu; javi.agenjo@upf.edu; josep.blat@upf.edu;

ORCID IDs:
Alun Evans: 0000-0002-5713-0282

Josep Blat: 0000-0002-5308-475X

Abstract
We present an end-to-end pipeline for the export of 3D scenes from content creaton tools to
a real-tme rendering engine in an embeddable web-page, including a novel system for
compression/decompression of textured polygonal meshes. We show that the
compression/decompression outperforms the best state-of-the-art non-progressive
alternatve, especially as bandwidth increases, showing that web-specifc techniques should
consider the whole user pipeline. Our pipeline also includes progressivity, which is paramount
for a good interactve user experience, and permits full user interacton with lower resoluton
versions of the 3D scenes, while progressively higher resoluton data is downloaded. Finally,
we discuss how our method may be used in the future to facilitate the transfer of animated
meshes.

Keywords
3D, Web, Graphics, Pipeline, Compression, Mesh

1

http://orcid.org/0000-0002-5308-475X
http://orcid.org/0000-0002-5713-0282
mailto:josep.blat@upf.edu
mailto:javi.agenjo@upf.edu
mailto:aevans@salleurl.edu

1. Introducton
The web has become a truly multmedia experience. We have moved away from the concept
of ‘web pages’ and embraced the idea of ‘web applicatons’ – multmedia rich, client-server
systems, which allow users to engage in both of the original goals of the web: browsing and
editng content. The nature of the web means that several communites contribute regularly to
its ongoing development, and the multmedia research community is no excepton, with recent
efforts contributng in the felds of virtual reality [1], video labelling [2], and remote rendering
[3].

One factor in common with many of these improvements is the HTML5 standard and its
associated APIs. One such API is WebGL, which permits access to the GPU from the web
browser, and is supported by all major browsers (whether on desktop or mobile). Since its
inital release in 2011, there has been a steady rise of applicatons, technology, and research
concerning 3D graphics on the web [4]; and web developers now have a choice of several
higher-level engines (such as three.js [5]), which use WebGL to facilitate the development of
interactve 3D web applicatons.

In the entertainment industry, 3D scenes are invariably created and/or edited in one of a
variety of professional modelling and animaton sofware packages, such as Autodesk Maya
and 3ds Max [6]. Exportng resources (or assets) from these packages in a format suitable for
further processing and fnal use is frequently a central part of an asset pipeline: a workfow to
transform artstc ideas into their fnal 3D form. Asset pipelines form the backbone of most (if
not all) Digital Asset Management (DAM) systems [7], and the design and creaton of the
pipeline is frequently one of the frst tasks of any digital media producton [7].

Web-based productons also beneft from the presence of an efcient asset pipeline; yet they
must consider an additonal step in the pipeline, which is a central issue facing any interactve
3D web applicaton: that of data transmission. 3D data tend to be quite large, and any asset
must be exported in a suitable format, uploaded correctly to a server, and be fully downloaded
to the browser, before it can be rendered. Thus, a key parameter within any asset pipeline for
an interactve 3D web applicaton is the tme taken to transmit and decode the data, as any
delay has a negatve effect on user experience [8, 9].

A typical 3D scene consists of a variety of assets [10, 11]:

 3D object data, usually represented as a triangular mesh or implicit surface
 Materials, which specify the colour of an object and how it should interact with light
 Textures, 2D image fles which store per-pixel informaton to be used by the materials
 Animatons, which specify the spatal movement of 3D objects through tme
 Other components, such data relatng to lights and cameras (positon, directon, etc.)

Exportng these data to a web applicaton presents different levels of challenges. Data
regarding materials, cameras, lights and the like, is essentally metadata and can be specifed
as a lightweight text fle, easily compressed and transmited. Textures are stored as 2D images,
whose compression and transmission is a well understood problem that has resulted in the
very common standard formats (such as .jpg and .png) used every day on the web.

This leaves data related to 3D objects and animaton. A very common representaton of 3D
objects is the triangular mesh [10], which features geometry positon and connectvity data (at
a minimum). In its raw format, a large mesh may occupy a large amount of data; thus the

2

compression of meshes has been very well studied in the literature [12]. Mesh data can be
encoded using single-rate methods, where all data is compressed and decompressed as a
whole, or progressive methods, where a 3D mesh can be constructed contnuously from a
coarse to fne representaton, as more data is retrieved.

In the Web 3D community the issue of 3D data representaton is highly topical, because most
established mesh encoding techniques are optmiied purely in terms of bits per vertex (bpv) or
rate-distorton (R-D) performance, and ignore the important trade-off between compression
rate and decompression tme [12]. It is only recently that researchers have noted that, given
that web-based applicatons involve real-tme transmission of data, for the fnal user
experience, the decompression tme in the JavaScript layer of the browser is of equal or
greater importance than the compression rate [13–16].

In this paper, we present results which support this statement. We present a novel mesh
compression method, and furthermore propose a structure for an asset pipeline which exports
entre 3D scenes to the web. We also present an implementaton of that pipeline, and
demonstrate its advantages over a non-pipeline approach.

The main contributons of the paper are:

 A holistc, applicaton-level view of 3D graphics on the web, in the form of an end-to-
end pipeline which exports full scenes directly from a variety of popular modelling
packages, uploads them to an account-controlled server, and outputs a sample WebGL
rendering applicaton that can be embedded into any web-page, or used as part of a
custom applicaton. Our results demonstrate that using a such a pipeline reduces
completed export tme for 3D scenes by 37%.

 A single-rate mesh compression method which prioritses decompression rate over fle
siie. It improves on Google's WebGL-Loader [13] by employing efcient index buffer
storage and normal vector compression; and improves on Google’s recent Draco [17]
mesh compression system by demonstratng clearly the benefts of fast decompression
vs. overall fle compression.

 A progressive compression/rendering method, which uses spherical Fibonacci points to
store vertex normals at lower resolutons. Our method achieves considerably faster (4x
speed improvement) transfer of meshes compared to similar techniques [14], and
features support for multple meshes, materials and textures, unlike other approaches
[16].

For the partcular problem of mesh encoding/decoding, we quanttatvely and qualitatvely
compare our results to previous approaches, and evaluate according to metrics of compression
and decompression performance, progressive vs single rate coding, and fexibility to deal with
full scenes and more complex materials. For single rate encoding, we employ the McGuire 3D
mesh dataset [18] to evaluate our technique against the state-of-the-art.

Beyond this, central to our approach is the concept that meshes are merely part of a more
complete package of data which needs to be downloaded and processed, and as such any
mesh transmission system should be designed taking the whole graphics pipeline in
consideraton. In the conclusion, we discuss the further advantages of our approach, for
example when dealing with more complex materials or animatons, partcularly with regards to
future work.

3

2. Related Work
2.1 Transmission of 3D data for the web
3D web pages are relatvely uncommon, and for several years were mostly represented by
declaratve technologies developed in the academic domain [19, 20], or applicaton specifc
virtual worlds requiring custom installatons [21]. However, 3D web applicatons have been
growing in popularity since the release of WebGL in 2011. WebGL is a web-specifc version of
the OpenGL graphics API (more specifcally of the restricted embedded systems API, OpenGL
ES 2.0), and allows access to dedicated graphics processing hardware (the GPU) directly from
the browser (via JavaScript). It is now fully supported in the latest versions of all major
browsers. WebGL and associated HTML5 APIs (such as WebAudio1) are in many respects
enabling technologies, as they break down the barriers for the development of browser-based
interactve multmedia applicatons. Nevertheless, they also open up new research challenges
for the best way to transmit and interact with hybrid data (be it 3D, 2D image/video, audio, or
text) [22, 47-49].

3D data is typically large, and transferring it to a remote client for rendering is a persistent
problem for all web 3D applicatons. This is partcularly relevant for our work, in that the
multmodal visual data is stored in fles which reach many hundreds of megabytes in siie -
simply “waitng for them to download” does not provide an optmal user experience. While a
naive approach might be to simply compress the data using any number of established and
powerful algorithms, Limper et al. [15] show that straightorward data compression may not
necessarily be the soluton, as the decompression tme in a browser-based context may
outweigh any benefts gained in terms of compressed data, partcularly as bandwidth speeds
increase. For a more complete overview of these issues, and the current state of the art with
respect to web-based 3D, including techniques of remote rendering and progressive
transmission, we refer the reader to a recent survey paper [4].

The majority of the previous work in the feld of web 3D transmission focuses on the
compression of meshes [12], which consist of positon and index data, with an optonal normal
vector, colour, and texture coordinate data. In parallel, 3D point clouds are increasingly
available and used, due to the widespread use of 3D scanning (see for instance [23–25]), and
volumetric rendering is central when dealing with 3D representaton of medical data [26].

It is also important to note that the community is beginning to realise that the present and
future of 3D on the web consists of the transmission of an entre 3D scene (as discussed
above), as opposed to meshes in isolaton, as this is more representatve of the needs of a
typical web 3D applicaton (for example, a game or an interactve experience). For example,
Zampoglou et al. [27] atempt to address this issue by using the MPEG-DASH standard to
encode and transmit an entre X3D scene. This is an interestng approach, as the MPEG-DASH
encoding schema is in theory designed to cover adaptve streaming of all informaton types. In
practce, however, the schema is highly tailored to audio and video, and 3D data requires some
formatng in order to ‘ft’. Other content distributon techniques for web-based 3D graphics
(such as server based rendering or hybrid server/client approaches), along with their positve
and negatve points, are surveyed extensively in [4].

1 http://www.w3.org/TR/webaudio/

4

2.1 Compression
In the following two subsectons, we survey work related to data compression for web-based
3D graphics. We frst survey single rate compression (where compression and decompression
are carried out in a single instance), before surveying progressive compression (where data is
compressed in a manner such that it can be decompressed at increasing levels of detail).

2.1.1 Single-rate compression
Data stored as binary geometry has the advantage that it can be directly transferred to the
GPU for rendering. This approach is taken by the X3DOM framework [20] which uses a simple
binary encoding format with 16-bit integer quantiaton, where foatng point data is stored as
an offset to a common point - or points, such as bounding box limits. Dequantiaton can be
done on the GPU, which means that processing in the slower JavaScript layer is completely
skipped. Nevertheless, this also means that no real compression can be carried out on the
data. In [28], this issue is addressed by proposing a `Sequental Image Geometry' format,
where mesh data is stored within an RGB image format, and then compressed using a lossless
technique such as PNG, which, afer transmission, can then be decompressed using low-level
code within the browser, and uploaded as texture data to the GPU. An advantage of this
approach (using a compressed image as a data vector) is that it takes advantage of the fast
(natve code) decompression of the image data which is permited by the WebGL/GPU
interface (thus skipping data decompression in the JavaScript layer). But passing vertex data
directly to the GPU makes it impossible to use an index buffer, which leads to increased
memory overhead.

Thus, to take advantage of the index buffer, it seems unavoidable that some decompression
should be carried out on the CPU. For non-web applicatons, a commonly used open binary
mesh format is OpenCTM [29], which is highly portable, provides good compression rates, and
is relatvely fast to decompress in a desktop context. It is built on entropy reducton and
Lempel-Ziv-Markov chain algorithm (LZMA) entropy encoding, which combines the classic LZ77
algorithm with Markov chains. Vertex positons are stored as offsets to a network of cells, and
delta coding is used to store only the difference of each vertex to the cell center. Delta coding
is also used to store connectvity data. The use of delta coding reduces the entropy and
therefore supports good compression when using LZMA. A JavaScript implementaton of
OpenCTM decompression is also now available [30], which makes the algorithm available for
web-based 3D applicatons. The primary disadvantage of using this technique for the web is
that has been demonstrated recently that LZMA decompression in the JavaScript layer of the
web browser is roughly an order of magnitude slower than in natve code [31].

Perhaps the most widely known technique to compress mesh data for web-based applicatons
is Google's WebGL-Loader[13, 32]. The technique relies on bounding box quantiaton of
vertex positons, and using delta coding to transmit the differences between values, as above.
It can be decompressed very quickly in JavaScript, with some aspects (such as the
dequantiaton) being pushed to the GPU. A vertex cache re-ordering algorithm [33] is used to
cluster faces sharing the same vertex data to deal with mesh connectvity. Further vertex
buffer reordering is then carried out to permit the implementaton of a “high water mark”
coding algorithm for the index buffer, where the value stored for each index represents the
difference to the highest value seen in the buffer up to that index. Delta and high-watermark
codings generate codes of different byte lengths, and thus are only effectve when the fle
format used to transmit the data supports variable byte encoding. Thus, WebGL-loader stores
data using UTF-8 strings, which support variable byte encoding and, crucially, are decoded not

5

by the JavaScript layer, but by the underlying natve-code of the browser applicaton. This fast
decompression was the primary motve to use of the UTF-8 format, yet it comes with several
downsides, most notably the block of surrogate pairs (reserved codes which permit encoding
of mult-byte codes) which limits any vertex buffer to a maximum 55,296 values. WebGL-
loader overcomes this by splitng larger meshes into chunks smaller than this value. Besides
being an inelegant restricton, a disadvantage of this strategy is that extending the technique
into progressive transmission (where lower resoluton meshes are downloaded and rendered
frst) becomes complicated to implement, due to the need to constantly track the current state
of the various sub-meshes.

Google recently released a new mesh compression system, called Draco [17]. Draco offers
several improvements over WebGL-loader, not least the removal of dependency on the UTF-8
format, and improved compression performance. However, this improved compression clearly
affects the decompression performance, which is considerably worse than WebGL-loader (as
demonstrated in the result secton below). Furthermore, Draco does not support progressive
encoding/decoding, which we discuss in the following secton.

2.1.2 Progressive compression
Research into user interacton on the web led Nielsen [8, 9] to propose three response tme
limits to keep in mind when optmiiing web and applicaton performance:

i) 0.1 second – the limit for user feeling that the system reacts instantaneously
ii) 1.0 second – the limit for user’s fow of thought to stay uninterrupted, even

though the delay is notced
iii) 10 seconds – the limit to keep the user’s atenton. Longer delays will ofen see a

user leave the site immediately

Based on these limits, for a web-based 3D rendering, it seems that a progressive encoding
scheme, where lower resoluton versions of the mesh are rendered while higher-resoluton
data contnues to download, opens the door to a signifcantly beter user experience. The
decision on whether to use a progressive encoding technique depends greatly on the
applicaton: when user-experience is paramount (such as public display of large models,
catering to a variety of bandwidths), or when view-dependent level-of-detail is required (i.e. as
the camera view focuses on specifc areas, more detail of the mesh in these areas is loaded), it
is logical to engage a progressive technique.

Seminal work on progressive meshes was carried out by Hoppe [34], where triangles and edges
are sorted according to a series of rules, and edges are collapsed (their consttuent vertces
merged) one-by-one, thus reducing mesh complexity. Each vertex split operaton stores a
code, which can then be used to recreate the geometry when decoding. Turning to the web,
progressive mesh decoding is difcult to implement in JavaScript, as it requires the engineering
of a robust mesh representaton structure which can be parsed quickly. Lavoue et al. [35]
tackle this with an efcient implementaton of the half-edge structure in JavaScript, which
enables them to implement a version of the valence coding technique of Alliei and Desbrun
[36].

Limper et al. [14] sacrifce efcient compression rates for a fast and highly progressive system.
Their method involves reorganising the geometry buffer to not waste bandwidth. It provides
an elegant soluton which is integrated into the X3DOM framework. The work presented in
[16] uses [31] to implement a hierarchical patch-based method for progressive and view-

6

dependent visualisaton of large meshes. The system features fast decompression and efcient
compression, but it currently only supports visualisaton of cultural heritage, and does not
support the texturing and materials required by many digital entertainment scenarios.

2.2 Coding methods
The technique used to encode/decode the data is critcally important to any compression
algorithm involving a real-tme applicaton, as the decompression tme (i.e. how fast the data
can be made usable, afer being initally accessed) can impact greatly on user experience (as
per Nielson’s limits, discussed above [8]). Entropy coding, where frequently occurring paterns
are represented with few bits, and rarely occurring paterns are encoded with many bits, is
one of the most common and effectve methods of lossless compression. Its decoding has long
been seen as a botleneck in many compression algorithms; indeed, as [31] shows, JavaScript
implementatons of several entropy decoding algorithms are an order of magnitude slower
than their C++ counterparts - a statement which is supported by the experimental results
presented later in this paper. The only scenario in which entropy coding can be used effectvely
is the HTTP transfer layer, where the giip (entropy coding) algorithm is implemented at a very
low level (both on the server for compression, and on the browser sofware for
decompression). Thus, as custom entropy coding on the web involves a high JavaScript
decoding cost, it means that other strategies, such as delta or the high-watermark coding
methods mentoned above, are more suitable for 3D web purposes.

3. Mesh encoding and transmission: theoretcal approach
In this secton, we present the theory behind our approach for progressive mesh transfer for
the web, which prioritses fast decompression over absolute fle compression to improve on
the state of the art. Our encoding method is designed to be client agnostc. While other
approaches require the use of a custom framework [27] or specialised shader code [14] to be
used, we have specifcally created our progressive transmission technique in a way that can be
integrated into any existng pipeline, and use any client-side rendering code.

3.1 Mesh atribute encoding
Atributes are propertes of the mesh (such as positon vector, normal vector, texture
coordinates, colour etc.). We use common quantsaton [12] techniques to reduce the number
of bits required to store vertex positons. The data format we employ for transmission (see
below) means that negatve integer values cannot be stored. Thus, delta encoded quantied
values are interleaved as described by [13]. De-quantiaton can be carried out either in
JavaScript or directly on the GPU, however our tests show that using the GPU for this purpose
provides only a negligible decrease in decompression tme. Furthermore, dequantiing in
JavaScript removes the need to write custom shader code, which permits use in any client
applicaton, and allows easy integraton with popular web-based APIs such as Three.JS, which
manage their own material/shader pipelines.

3.1.1 Octahedral normals
Other than positon, the most common atribute to be transmited is the vertex normal vector
(usually calculated by averaging each vertex's surrounding face normals, but for meshes
generated for digital entertainment, it is common for the artst to specify custom normals
[11]). Normals are usually represented by three component unit vectors. This means that they
can be quantied to positve integer values and encoded as per-positon atributes. While such
quantsaton of normals is quite precise (e.g. encoding a 3D unit normal vector using 11 bits

7

per axis leads to an accuracy of three decimal places), we employ a discretsaton strategy
which leads to beter compression results. By projectng the normals onto a unit octahedron,
and unfolding the faces of that octahedron into a plane, it is possible to encode the normal as
a two-component, instead of a three-component, vector, on a scale of 0-1 (the idea of
projectng onto planar geometric surfaces was frst proposed by [37]). This scale can then be
quantied to a predetermined bit depth; if 8 bits per component are used, the normal can be
stored in a maximum of 16 bits, effectvely discretsing the normal vector to one of 216 values.
In [38], the authors show several examples comparing this discretsaton with uncompressed 3-
component normals; with barely perceptble differences in rendering quality. The two
components of the octahedral normal can be delta encoded as we do for other atributes.

3.1.2 Fibonacci Normals as an Alternatve
The obvious advantage of encoding the normals in two 8-bit components is that the
compression performance is considerably beter than when using three 11-bit components
(used for the quantied XYZ normal). Nevertheless, if we could somehow reduce the number
of components required from two to one, we should be able to obtain further improvements
in compression performance. The simplest method of storing normals as a single component is
to use an array of vectors, and store (for each vertex) the index in this array. To be useful in a
general context, the ideal structure of this array would be the discretsaton of a unit sphere,
where each normal of the mesh is quantsed to a point on this sphere.

The quality of the sphere discretiaton depends on the quality of the distributon of the
sampling points. To select the sampling points we have resorted to the spherical Fibonacci (SF)
points [39, 40] as these points have intrinsic high quality propertes regarding the spherical cap
discrepancy and the inter-samples distance [41, 42]. Moreover, the SF point sets have already
shown to outperform state of the art solutons in different problems where a uniform
distributon of points over the sphere is required (e.g. [41–44]). In practce, the SF points are
generated by using the Fibonacci rato to evenly distribute the points over a spiral which
covers the sphere from its north to south poles, and the points are stored in an array.

There are several theoretcal advantages of mapping normals to Fibonacci sphere points, with
regards to compression, which we now discuss. As mentoned above, it enables the normal to
be stored to a single value which represents the index in a table of Fibonacci points on a
sphere. This table can be generated quickly at run-tme, thus leading to very fast and efcient
manner to transmit the normals. Furthermore, transmitng a single component also enables
us to more precisely control the balance between precision and compression performance. At
lower precision (fewer Fibonacci points generated), the delta encoding permits the normals to
be encoded in a single-byte, which is clearly an improvement over the 2-byte octahedral
encoding.

The research queston regarding the use of Fibonacci normals is whether they produce
sufcient quality during rendering. In the results below we carry out several tests in order to
answer this queston.

3.1.2 Texture coordinates and other atributes
Texture coordinates can be encoded by quantsing to a desired bit depth, and delta encoding
as above. 11-bit quantsaton will generate pixel-level precision in a 2048x2048 pixel texture,
which is considered sufcient for web applicatons (larger, 4096x4096 textures are rarely used
due to the transmission overhead). One potental issue with texture coordinates is that of
texture seams, where the same vertex shares multple texture coordinates (whose use

8

depends on the face being rendered). Texture seams present an interestng problem in terms
of pure mesh compression research, however from the perspectve of coding a fast rendering
applicaton, the desired confguraton is to present the GPU with consistent, aligned memory
across all atributes, each index accessed according to a single element buffer. As such, vertces
on texture seams are duplicated in our current system. For most meshes, this results in a small
increase in fnal fle siie, but this is compensated by the simplicity of the approach, which fts
in with our stated design goal of creatng a client-agnostc system.

In this paper, we do not present results featuring other atributes such as tangent vectors or
vertex colours. However, using the techniques presented above, any atribute could be added
and encoded for transmission, without any major restructuring of the overall method.

3.1.3 Connectvity
Triangle reordering algorithms are typically used to cluster indices of triangles that share the
same vertces, which is useful for vertex-caching purposes on the GPU. This reordering also has
an understandably high effect on the efciency of delta compression, as it reduces the average
delta value within the index buffer, which leads to encoding in fewer bytes. WebGL-loader
uses Forsyth's triangle reordering algorithm [33]. We implemented this algorithm, as well as
one other well-known alternatve, the Tipsify algorithm [45], as representatves of state of the
art triangle reorganising algorithms.

We further compress the index buffer by atemptng to encode neighbouring triangles using 4
indices rather than 6. It can be proved that for any given set of 3 indices forming a triangle,
ABC, if A > B and B > C then C < A. We can use this single bit of informaton to encode a
`neighbouring triangle' fag in the index buffer. If, when reading triangle ABC from the index
buffer, we see that A < B, then we can read a single further index, D, and draw triangle ADB.
When encoding this informaton, we may have to re-specify the winding order of certain
triangles to ensure that the A < B test works as expected, but this is a minor inconvenience for
the effectve reducton is index buffer siie. The gain of this technique clearly depends on the
number of neighbouring triangles encoded in the index buffer, again emphasising the
importance of the triangle reordering. When encoding the indices using this method, the high-
watermark must be advanced by multples of 3. This is because the index buffer may need to
be re-ordered to ensure that the vertex winding order, for each triangle, permits multple
paired triangles in a row, which means that there is a maximum step in the high-watermark of
3 (as opposed to 1).

3.1.4 Per axis optmisaton
In certain meshes, if the bounding box dimensions for a given axis are shorter than for any of
the others, by an integer factor o more, then it is possible to reduce the quantsaton bit-depth
for that axis, without losing overall precision. For example, in the case of the Happy Buddha
mesh, the x- and i-axes of the bounding box are less than half the siie of the y-axis. Thus,
these axes can be encoded with one bit less precision, and stll maintain the same real-world
precision as the y-axis.

3.1.5 Transmission format
The data format used for transmission is important as both delta and high-water-mark
encoding generate variable-byte integer (varint) values, and thus a variable byte format would
ensure optmum compression. Perhaps WebGL-loader's biggest drawback is its reliance on the
UTF-8 format, as discussed in the Related Work secton above.

9

An alternatve data storage strategy, described briefy earlier, is to bit-shif the data into RGBA
colour channels and save this using a lossless image compression format, such as a PNG,
advantageously using one of several well-established optmiiaton algorithms. There remains a
considerable botleneck for web-visualisaton, however: that of reading the data from the
image into the JavaScript layer. Our simple tests show that reading the pixel data for a
4096x4096 image (whether from a HTML5 canvas, WebGL context, or direct decoding) into a
JavaScript Typed Array takes a very minimum of 500ms on current hardware, an unacceptable
delay, as discussed in the results secton below. Researchers in [28], presented earlier, avoided
this botleneck by not storing index data and decoding all the geometry on the GPU; however,
this leads to reduced compression performance, and also means that the vertex transform
caches on the GPU cannot be exploited, and no indexing can be used.

Thus, a custom varint format seems a beter opton. Such a format requires bit-shifing
operatons in order to read it correctly, but our hypothesis was that the bit-shifing speed
currently available to modern browsers, thanks to the JavaScript Typed Array specifcaton,
would be sufcient. Our format is a simple base-128 varint format (stored with the *.b128
extension), where integer data is stored in groups of 7 bits, and every 8th bit is used as a fag
to indicate whether the next byte in the sequence is a contnuaton of the same integer or not.
Assuming a 32-bit CPU, this format allows 29 bits of precision for the index buffer, which
should be enough for the majority of 3D meshes suitable for real-tme rendering (29 bits
permits over 536 million individual vertces). The format is also highly suitable for compression
by the HTTP giip implementaton, with 'free' efcient compression and fast decompression, as
discussed above.

Beyond the binary b128 fle, we also store a JSON fle with metadata regarding the mesh, and
informaton regarding the material associated with the mesh. This is partcularly useful when it
comes to integratng the b128 into an established workfow, as described below.

3.2 Progressive Rendering
Progressivity is paramount for interactvity. Our system takes advantage of the fact that
aggressive quantiaton of geometry results in many triangles collapsing to lines or even to
single points. Thus, we harness this to create a system of progressive rendering where lower
precision is downloaded frst, to create a level-of-detail quantsaton of geometry. To this we
add differing amounts of normal compression at each level of data. We discussed above that
Fibonacci normals provide excellent compression with small number of points, but led to bad
visual results at larger numbers of points. However, at lower resolutons of geometry, the
resoluton of the mesh is low enough that highly quantsed normals do not further reduce the
perceived quality. Thus, we compress normals using the Fibonacci approach at lower
resolutons, and keep octahedral normals (with beter visual quality) at larger ones.

Of course, the number and precision of lower-resoluton meshes can change depending on the
user's needs. However, our empirical tests show that a 3-stage refnement process offers a
nice balance between fle siie and user-experience, per the following stages:

 1st stage: 7-bit bounding box quantsaton, 256 Fibonacci normals, low resoluton
textures

 2nd stage: 8-bit bounding box quantsaton, 256 Fibonacci normals, low resoluton
textures

 Final stage: 11-bit bounding box quantsaton, octahedral normals, high resoluton
textures

10

3.2.1 Client-side consideratons
As discussed, we have designed this encoding schema in a way such that it can be used in any
client-side renderer, using any shader. We have successfully implemented decoders in two 3D
web engines, three.js [5] and WebGLStudio [46]. The actual decoding code is identcal in either
case, as it outputs vertex arrays which are ready to uploaded directly to the GPU.

The decoder downloads each level of detail in turn, interactvely rendering the lower
resoluton meshes as it downloads the higher resoluton data.

As alluded to in the list above, our progressive method also features a mult-resoluton
material system, this is described further below.

4. Asset Pipeline
As mentoned in the introducton, much of the academic literature on efcient representaton
of 3D content for the web focuses almost exclusively on mesh compression; and including, at
most, support for vertex colour or texture coordinate atributes. Yet in the digital producton
world (such as videogame and digital cinema producton, or architecture), models are
invariably stored as several sub-meshes, each with different materials and shading groups. Our
JSON/b128 format addresses these needs, as it permits the representaton of such complex
scenes; specifcally:

 Multple groups, each representng a different mesh
 Multple shading groups, where different materials can be applied to different groups,

or even different areas of a single group
 Material descripton featuring diffuse, emissive, and specular colour
 Diffuse, normal and specular texture maps
 Mult-resoluton textures to ft the resoluton of the stages of the progressive

geometry

The fnal item in the list above refers to the likelihood, when using progressive techniques, that
high resoluton textures will not have downloaded when the frst stage progressive geometry is
available. This would result in rendering an un-textured geometry, which is not desirable. To
avoid this scenario, our material technique supports mult-resoluton textures for progressive
meshes, where lower resoluton geometry is rendered with lower resoluton textures.

In this sense, our mesh compression system is designed from a very practcal point of view:
that it should be able to ft into an asset pipeline capable of exportng a full 3D scene to the
web. An overview of the pipeline datafow is show in Figure 1. Figure 2 shows a series of
screenshots of the pipeline in acton.

11

Fig. 1 Overview of asset conversion pipeline. Scenes are either exported from a modelling
package using our custom plugin, or loaded directly from a Wavefront .OBJ fle. Our web
applicaton uploads the content to a server, converts to our compressed format, and renders it
using WebGL. 2

Fig. 2 Screenshots of the pipeline in acton. Lef->Right; Top->Botom: Inital login page;
upload page with drag-drop facility; holding page with fnishing tme estmaton; fnal browser
render.

2 ‘Small House Diorama’ © Glen Fox. Used according to CC BY_NC 4.0 license:
htps://creatvecommons.org/licenses/by-nc/4.0/

12

4.1 Modelling Package Plugin
To ensure smooth workfow, we have implemented a plugin for three popular modelling tools:
Autodesk Maya, Autodesk 3D Studio Max, and Blender. In the frst two, the plugin exists as a
dashboard buton which the user can press, in the later it is a context menu opton when the
user right-clicks on the viewport. In each case, the plugin exports the geometry, materials,
textures, and, where possible, the lightng and camera setngs. The various fles involved in
this export are archived into a single iip format, and an operatng system hook (functonal for
Windows, Mac and Linux) brings into focus a fle explorer window, opened at the folder where
this iip fle has been saved. This iip fle is now ready to be uploaded to the encoding web
applicaton (see next secton).

4.2 Web Applicaton
The key component of the pipeline is the client-server web applicaton, which is responsible
for encoding scenes into our proposed format and storing both original and encoded fles on
the server. While it is possible to implement the encoding process directly as part of the
modelling package plugin, we decided on a more general server-based approach, as this
permits encoding of fles/scenes created in other packages (for example, meshes output from
photogrammetry techniques) for which we have not yet created a plugin. Figure 3 shows an
overview of the components of the web applicaton.

Fig. 3 Overview of the web applicaton. User actons are shown to the lef, while the
components of the server are shown to the right.

4.2.1 Server Component
We chose to implement the server component as an original PHP applicaton, as this provided
us with complete fexibility regarding the structure and implementaton. The inital user
interacton with the server is via the account system: users must frst login to the applicaton
before being able to upload fles. Once uploaded correctly, the fles are stored on the server,
and a relevant entry is created in a MYSQL database. We use a concurrent database-flesystem
as this permits us to control access to any uploaded data (data security is an extremely
important issue in the audiovisual producton industry). Our fle upload system is implemented
in a manner such as to make it highly suitable for this specifc task:

 Each uploaded fle is stored in its own unique directory (named according to a random
6-character string). This directory name further serves as the scene’s unique identfer
(uid) for future reference.

 If the fle uploaded is a iip fle, it is automatcally decompressed inside the directory

13

 A (server-side) extension whitelist is employed such that only fles with pre-approved
extensions can be uploaded, or uniipped.

 Each user is assigned a quota of storage space; atemptng to upload fles which
surpass this quota results in a displayed error message. Storage space can be managed
via a control panel (see below).

4.3.2 Encoding Process
Once uploaded, the server starts the encoding process. The encoder is a compiled C++ binary
applicaton which converts input geometry to the format discussed in Secton 3 above, and
saves material and scene data in a json fle. It is called, as a command line applicaton, from the
PHP script with the correct parameters for the recently uploaded fle. Separately, the PHP
process converts texture fles (as described below) using the popular imagemagick suite of
command line tools3.

4.3.3 Front-end interface
The front-end interface of the applicaton frst requires the user to authentcate via a
username and password. Once authentcated, users drag-and-drop or select scene fles – these
can either be iip fles generated from modelling package plugin, or fles saved in the
Wavefront .obj format. The user can select whether they wish single-rate or progressive
encoding, before clicking a buton to upload the fle. Once uploaded, the server begins the
encoding process as described above; as this may take some tme (partcularly for complex
scenes, see results below), the front-end page changes to display an estmated fnish tme. To
manage space, the server features a storage space quota system, accessed through a
dashboard interface that allows users to manage and delete previously uploaded scenes.

4.3 Multresoluton textures
During the creaton of 3D assets, texture data is frequently stored in a lossless format, such as
Targa or TIFF. Such formats are not natvely readable by web-browsers. Thus, once uploaded
the server, the web applicaton converts all non-web-safe image formats to the web-safe
Portable Network Graphics (.png) format (we choose png as opposed to jpg due to its support
for transparency).

When encoding a scene for progressive rendering, the web-applicaton also saves lower
resoluton versions of each of the texture fles (default 50% resoluton). These lower-resoluton
fles are used with the lower-resoluton version of the mesh which are initally downloaded
during the progressive visualiiaton.

4.4 Sample three.js applicaton
Once the encoding process has fnished, the web-page redirects to an interactve WebGL
rendering of the encoded scene, created using three.js. From a code perspectve, the scene is
lef intentonally simple, to best demonstrate to other developers how to parse and use the
scene in its new, encoded format. The user can download the source code for the renderer,
the encoded fles, and the originally uploaded fles.

5. Results
In this secton, we present quanttatve results of our mesh compression method, comparing
against the state of the art. We then present quanttatve evaluaton of the benefts of using
the entre pipeline.

3 htps://www.imagemagick.org/

14

5.1 Metrics
The results of the mesh compression are discussed along the following parameters, which
interplay, and should be balanced:

 File size: the siie of the compressed fle is clearly an important factor for web 3D
applicatons, as larger fles take longer to download.

 Decompression tme: very important for interactvity; we measure tmes with which
the entre mesh/scene is decompressed. Compression tme is of lower priority; this
said, it should be in the order of seconds (as opposed to tens of seconds) from a
usability point of view [9].

 Visual quality: Our approach uses lossy compression, especially related to the normals,
thus visual quality needs to be addressed.

The beneft of using a complete asset pipeline, as proposed in this paper, can be measured by
comparing the tme taken to use the pipeline, compared to the tme it takes an experienced
user to carry out each individual step of the pipeline in isolaton, one afer the other.

5.2 Experimental Setng: Applicaton, Browser, Hardware and Meshes
5.2.1 Dataset
The detailed results in this paper (for single rate compression) are presented using three test
meshes (see Table 1). With these three meshes, we provide a detailed (Tables 2-5) breakdown
of the effects of the different elements of data compression which we employ.

Table 1 contains a summary of the data for these meshes, including the number of vertces and
faces of each, and the amount of memory each mesh occupies (its binary siie – this data is
calculated from the fact that the vertex data is stored in 4-byte foat format, and the face
indices as 4-byte integers). Each of the meshes features index buffers; each vertex has a
positon and a normal atribute, but no colour informaton or texture coordinates (although, as
mentoned above, our system supports them fully).

While these three meshes are used to test our work in detail, in order to obtain an integral and
more extensive testng we use the McGuire Computer Graphics Archive [18], a collecton of 34
meshes, to compare our work and the best performing single-rate encoding technique of the
state-of-the-art (Google Draco). Not all meshes in the archive were used, either because
DRACO was unable to read them, or their siie makes them unsuitable for real-tme rendering
(the unused meshes are noted as such in Annex 1).

Table 1: Table with data regarding the meshes used in the primary evaluaton. The binary siie
refers to the siie of the mesh when stored in binary .ply format, including vertex normal, but
without any other atributes (such as colours or texture coordinates).

Mesh #Vertices # Faces Binary Size
Happy Buddha 540K 1.1M 27.8MB
Chinese Dragon 430K 870K 21.8MB
Stanford Bunny 35K 70K 1.8MB

5.2.1 Experimental Setng
The results presented here are measured using a very simple WebGL applicaton with minimal
HTML and CSS. The browser used was Google Chrome 46, although the system has been

15

successfully tested to work with all major browsers, including mobile ones such as Mobile
Safari.

The results from other research were obtained by scraping HTML/JavaScript code from their
publicly available test sites, and re-hostng on our own server, thus ensuring a constant test
environment and consistent results. The decompression tmes were measured on a 2.5GHi
Intel Core i7 with a Geforce 650M graphics card with 2GB of VRAM, and using the natve
javascript performance.now() functon.

5.3 Experimental Results
This secton presents results demonstratng the effectveness of the novel compression steps
introduced by our compression algorithm (Tables 2 and 3). For comparatve evaluaton against
the state of the art, see the following secton (5.4).

5.3.1 Effect of paired-triangle index buffer compression
Table 2 shows that our novel paired-triangle index buffer method (described in Secton 3.1.3)
provides a considerable reducton in mesh siie, over the basic method employed by WebGL-
Loader and others. The paired-triangle method allows improved compression of the index-
buffer, as it atempts to encode paired triangles using four indices instead of 6. The table
shows that the technique provides a mean 15.3% reducton in mesh siie.

Table 2: Index Buffer Compression: Effect of using paired-triangle index compression (using
base compression + tpsify reordering + per-axis quantsaton + delta-encoded atributes +
high-watermark indices as a startng point). Siies in MB.

Model Base (WebGL-Loader) Paired-triangle technique (OUR)
Buddha 6.7 5.8
Dragon 5.3 4.6
Bunny 0.458 0.397

5.3.2 Normal Vector Compression and Visual Quality

Fig. 4 Effects of normal encoding. The fgure shows fve close up renders of the buddha
model using different normal encoding methods. (L -> R): Original normal, octahedral
encoding, 8192 points on a unit sphere, 4096 Fibonnaci points, 256 Fibonacci points.

Figure 4 shows a pictorial comparison of the quality of the different normal compression
techniques (see Sectons 3.1.1 and 3.1.2) compared to the original (uncompressed) values. This
fgure should be viewed in conjuncton with Table 3, which shows fle siies for the different
techniques. The fgure, which provides a closeup of critcal iones for different techniques,
shows that the octahedral method provides results which are nearly identcal to the original,
demonstratng its suitability for purpose. 4096 Fibonacci normals, which compress to a similar
level to octahedral normals show a slight degradaton, thus can be discarded. Indeed even
when there are 8192 points on the sphere, the rendering quality is not as good as that of the

16

octahedral method. With 256 Fibonacci points the quality is clearly unacceptable, but as it
does provide beter compression results, it seems suitable for a stage of a progressive
rendering approach. In terms of quality, it is perhaps unsurprising that the octahedral method
provides such results, as it means essentally discretsing the 3-component normal to 16-bit
precision (8-bits for each axis of the octahedron technique), and this provides much greater
precision than the fbonacci technique.

Table 3 shows the resultng fle siies for compression using the different normal encoding
methods discussed in this paper. When viewing this table in conjuncton with Figure 4, we can
see that the octahedral normal encoding method provides the best balance of quality vs
compression. The results also highlight the principal disadvantage of the Fibonacci normal
transmission: fewer than 13-bits precision (i.e. 8192 possible normal vectors) provides
unacceptable quality, and greater than 10-bit precision does not compress as well as the
octahedral normal encoding. Nevertheless, the excellent compression provided by 8-bit
Fibonacci precision is useful when generatng lower resoluton versions of the mesh. Based on
this this result, we use the Fibonacci method to encode normals at lower resolutons of our
progressive method.

Table 3: Normal encoding: Effect on flesiie of the use of different methods of encoding the
vertex normals. Siies in MB unless otherwise indicated. The numbers afer the Fibonacci
entries refer to the number of points generated on the unit sphere (i.e. maximum number of
possible normals).

Model 11-bit
Quantsaton

Octahedral Fibonacci 4096 Fibonacci 256

Buddha 5.8 4.9 4.5 1.3
Dragon 4.6 3.9 3.7 3.5
Bunny 0.397 0.330 0.313 0.294

5.4 Compression Comparatve Evaluaton
In this secton, we evaluate our method against the state of the art in single rate compression
(Secton 5.4.1) and progressive compression (Secton 5.4.2). Note that, for the single rate
comparisons, we deactvate the progressive component of our algorithm – at no tme is a
single rate method evaluated against a progressive method. The quantsaton bit-depth (the
number of bits used to store each positon variable) is set to 11 bits for each method.

5.4.1 Single Rate Techniques
Table 4: Comparison of single-rate compression performance for the happy buddha mesh
between our method (using octahedral normal compression), OpenCTM [29], WebGL-loader
[13], and Draco [17]. All results are taken afer HTTP giip compression. *10 submeshes,
decoded in series.

OUR
(octahedral)

OUR
(Fibonacci)

OpenCTM WebGL
Loader

Draco

File Siie (MB) 2.7 2.6 3.5 5.1 1.7
Decompression (ms) 300 300 2000 100* 2055
Decomp rate (Mtris/s) 0.33 0.33 2.2 0.11 3.3
Full download
@ 8mbps (ms)

3098 2935 5504 5217 3254

Mesh Split No No No Yes No

17

Table 4 shows a comparison of two of our methods (using octahedral or Fibonacci normals)
with what we have seen as best previous single rate encoding results. The table shows the
overall comparison, according to the key metrics for web compression discussed in Secton 5.1:
fle data siie (in megabytes); decompression tme (in milliseconds); decompression rate
(millions triangles per second); and total tme untl frst appearance (measured from the
moment the page is loaded untl the frst frame of the mesh is rendered, at a clamped
bandwidth of 8mbps); and an indicaton of the whether the method requires splitng the mesh
(regardless of WebGL index buffer limitaton).

As seen from the table, our methods improve signifcantly with respect to all metrics over
OpenCTM except for mesh splitng.

Our methods are also beter than those published for WebGL-Loader. It is worth statng that,
since publicaton, the WebGL-Loader method has undergone improvements, which lead to
compressed fle siies whose values are similar to those obtained with our method.
Unpublished results for the Happy Buddha mesh, using an experimental version of WebGL-
loader, are comparable to ours (2.7Mb for the fnal fle siie), yet it stll relies on the UTF-8 data
encoding and requires splitng of meshes larger than 55,000 vertces.

Table 4 shows that the best performing alternatve technique to ours is Google’s Draco [17]
algorithm. To beter evaluate the differences between the two techniques, we have carried
out a comparison using a larger dataset (the McGuire 3D dataset, discussed in Secton 5.2.1).
Table 5 presents the mean values for fle siie, decompression tme in JavaScript, and “tme to
display” (tme taken from the moment the fle is requested via HTTP, to the moment it is
displayed on screen) at two different bandwidths, 50mbps, and 8mbps.

The results show that, while Draco obtains a 31% smaller fle siie on average, it is 2.2 tmes
slower in data decompression. This contributes to our technique outperforming Draco in the
crucial metric of “tme to display”, which is what directly affects the user experience. The
difference is partcularly marked at higher network bandwidths, as the cost of decompression
outweighs the tme to download the data.

Table 5: Comparison of our technique vs Google Draco [17], using mean values for the meshes
of McGuire 3D graphics archive [18]. Full results are shown in Annex 1. The ‘beter’ results for
each metric are highlighted in bold.

Method File Siie (MB) Decompression
Time (ms)

Time-to-display
@ 50mbps

Time-to-display
@ 8 mbps

OUR 1.13 281 915 2485
Draco 0.86 626 1473 2997

To beter illustrate how this affects the overall performance, Figure 5 presents a graph which
compares our method with Draco, at different bandwidths. The data shows the overall tme for
a single test model (the Happy Buddha model) to render, from the moment the inital HTTP
request is made. The data agree with those presented in Table 5 in that, at 8 mbps, our
technique is marginally faster, yet as bandwidth increases, our method is considerably faster.
This is because our method’s decompression tme (as seen in table 5) is 2.2 tmes faster than
Google’s technique, meaning that, as bandwidth increases, our method provides increasingly
beter results.

18

5 8 12 18 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Draco OUR

Download Speed (mbps)

To
ta
l t
m
e
(s
)

Fig. 5 Google Draco [17] vs our method (using octahedral normals), for the Happy Buddha
model.

Perhaps the biggest limitaton of both Draco and WebGL-loader is their lack of a progressive
approach, which seem necessary for most interactve 3D web graphics applicatons. Our
method allows for immediate transformaton to progressive. Let us turn to evaluate this now.

5.4.2 Progressive Methods
Table 6: Comparison of the tme taken to visualise the Happy Buddha mesh between our
method, 3DHOP [16] and the POP Buffer [14].

OUR 3DHOP POP
Siie (MB) 3.5 3.9 15
3Mbps 0.2/12.3 0.2/12.5 0.8/46.1
5Mbps 0.1/8.2 0.1/7.3 0.2/26.0
8Mbps 0.1/7.3 0.1/7.6 0.2/18.1

19

Fig. 6 Progressive loading of the untextured Happy Buddha model, a comparison of four
different techniques downloaded at the same bandwidth. Each corner of the fgure shows the
results from (clockwise from top-lef) our method, 3DHOP[16], POP buffer [14], WebGL-
loader[13]

Table 6 shows a quanttatve comparison of our (progressive method) results with those of
3DHOP and the POP buffer, the best ones according to our review. Here we use a simple
metric, that of tme taken to display the model at different bandwidths. We present two
results in each table cell, the frst is the tme taken to display the inital, low-resoluton model,
the second is the tme taken to fnish downloading the complete model. In all cases, the low-
resoluton model is displayed in a fully interactve 3D scene from the moment it appears, and a
user interface informs the user that further data is being downloaded, untl the fnal mesh
appears. The results show that POP buffer performs four tmes worse compared to our
method and 3DHOP, although the visual effect of increasing resoluton is very elegant. The
3DHOP method is also very elegant, and the results are similar to our method. As mentoned
previously, 3DHOP currently only supports vertex colours, while ours supports a variety of
materials by implementng a mult-resoluton material system.

Figure 6 shows a visual comparison between our method, 3DHOP, the POP buffer, and WebGL-
Loader In the fgure, the three meshes shown (from lef to right, for each technique) represent
the rendering of model afer 1 second, 5 seconds, 12 seconds (tme from page refresh). In all
but one case (the POP buffer), the right-most mesh represents the fnal mesh render. The
visual results of the three progressive techniques, 3DHOP, POP buffer and ours, are quite
similar in quality. While WebGL-Loader is not a progressive technique, the mesh is loaded in
chunks (refectng the limit of the UTF-8 format), and we include it to show the benefts of
progressive rendering.

20

With respect to both 3DHOP and POP buffer, our progressive method improves compression
performance at lower resoluton through mapping vertex normals to spherical Fibonacci
points.

Figure 7 shows three screenshots of our progressive method loading the Lee Perry Smith head
model (from the McGuire 3D dataset [18]), complete with multresoluton diffuse and normal
maps. The use of Fibonacci normals (lowest resoluton image, far lef) clearly affects render
quality, yet the lower fle siie ensure that this model is displayed on the screen in a mater of
milliseconds, while the higher resoluton data is downloaded.

Fig. 7 Progressive loading of the Lee Perry Smith head model. Lef -> Right: lowest resoluton
mesh, displayed frst, mid-resoluton mesh (with low resoluton texture maps), fnal model and
textures.

5.5 Online Pipeline
In this secton, we compare the tme taken to export the scene to a three.js web applicaton,
with and without our pipeline. Accurate quantfcaton of this tme without using the pipeline
can be difcult as it depends on the siie and complexity of the scene. To address this, we
tested our pipeline with three very different scenes, described in Table 7 – the ‘Batman’ scene
being the most complex, as it features several highly detailed meshes and 14 high-resoluton
textures. Figure 8 shows images of the Cartoon House and Batman scenes, rendered in the
browser. All our measurements in this table were made with Autodesk Maya (both with and
without our pipeline) and Adobe Photoshop for texture conversion (without pipeline). To
simplify the comparison, we used the non-progressive version of our pipeline.

Table 8 shows a mean speed increase of 37% when using the pipeline. The standard deviaton
is quite high (34%), as there is clearly a large difference in performance. This is clearly linked to
whether the scene features texture data, as the manual process of scaling textures is very tme
consuming.

21

Table 7: Scenes used to measure performance of pipeline

Scene # meshes
in scene

Total #
faces

Size
as .obj

Size in .b128
(our format)

Textures

Happy
Buddha

1 1.1M 80MB 2.7MB None

Small
House

27 13,000 1.26MB 88.5KB 4 (albedo); 2048x2048; .tga
format

Batman 4 2.5M 261MB 4.3MB 14 (albedo, normal maps,
specular maps); 4096x4096;
.tga format

Fig. 8 The Small House (lef) and Batman4 (right) scenes which were used to test the pipeline.

4 The Batman © Dani Candil 2017. Used with permission.

22

Table 8: Comparison of tmes taken to export three different scenes to a pre-coded three.js
web 3D applicaton. All units (other than percentages) are seconds.

Happy Buddha Cartoon House Batman
Step Without

pipeline
With
pipeline

Without
pipeline

With
pipeline

Without
pipeline

With
pipeline

Exportng scene to
disk

36 65* 13 10* 112 350*

Conversion of
multresoluton
textures to web
format

- - 120 - 420 -

Compression for
upload

44 - 3 - 251 -

Uploading to server
@3mbps

66 66 10 10 693 693

Conversion to b128
format

- 77 - 30 - 330

Modifcaton of
threejs scene code

60 - 60 - 120 -

Full scene download
(including textures)
@ 8mbps

16 3 19 10 608 75

Total time 222 211 226 60 2204 1448
Percentage
improvement

5% 73% 33%

Mean percentage
improvement

37%
(standard deviaton 34%)

* (‘With pipeline’ results include data compression – it is built into the exporter plugin)

6. Discussion
In this paper, we have argued about the importance of a holistc view of exportng of 3D
content for the web. The principal concepts are:

 Exportng a scene for web use presents challenges which differ from those of the non-
web case, specifcally in the formats and mesh compression techniques required.
Mesh compression, while clearly important, is just one part of complete 3D package to
be processed by the asset pipeline. Texture conversion, multresoluton issues, online-
conversion systems are all factors that infuence the validity and usefulness of the
pipeline.

 In additon, the type of mesh compression used should refect the fact that bandwidth
speeds are increasing at a faster rate than browser processing power. Thus, aggressive,
probability based compression techniques lose out in terms of pure performance to
those techniques that prioritse rapid decompression.

We have provided quanttatve and qualitatve results to demonstrate that our compression
methods, both single rate and progressive, improve upon existng results. Moreover, the
soluton we present in this paper concerns an end-to-end asset pipeline, which allows users to
export directly from their modelling package to a ready-to-use interactve WebGL rendering of

23

the scene; we demonstrate that our pipeline provides clear speed benefts over a non-pipeline
approach.

6.1 Improvement over the state-of-the-art
In this paper, we have provided comparatve performance evaluaton against three other
techniques (Table 4) and extended this with detailed comparatve evaluaton against the best-
performing of these techniques (Table 5, Figure 5, Annex 1). Comparatve evaluaton of our
progressive method, against two methods from the state of the art, is present in Table 6 and
Figure 6. Qualitatve evaluaton of the use of the pipeline is presented in Table 8. We now
discuss this evaluaton with reference to the improvement of our work over the state of the
art.

In terms of single rate mesh compression (Tables 4 and 5, Figure 5), for some years WebGL-
Loader has been widely accepted as the best method for the web, and since its original release
has been improving. Yet it stll relies on the UTF-8 fle format, which, as discussed above, has
several drawbacks. The base-128 varint format we use requires some bit-shifing at JavaScript
level to decompress, but the total decompression rate is stll greater than 3M
triangles/second, that of WebGL-Loader. The most important advantage of the base-128
format is that is permits a 29-bit index buffer, which avoids the need to split the mesh, which
simplifes greatly any further mesh manipulaton or deformaton in the 3D applicaton (for
example, for animaton), and therefore is more suitable to more complex interactve 3D
scenes, such as games.

Google recent release of Draco seems to indicate that it has shifed away from purely web-
based mesh compression to a more unifed approach. This has paid dividends as far as the
compressed fle siies achievable with Draco are very impressive. However, the evaluaton
presented in this paper supports one of the central theses of our work: that decompression
speed is more important than absolute fle compression. Our experiments (Table 5, Figure 5,
Annex 1) show that the unavoidable decompression tme of Draco’s JavaScript implementaton
results in a slower user experience at at all but very modest bandwidths.

Indeed, at all bandwidths, it can be argued that a progressive approach (Table 6, Figure 6)
provides a more optmal user experience [9], as the user obtains an interactve rendering of
the scene in very litle tme. While our approach is perhaps not quite as visually atractve as
that of the POP buffer - which constantly updates the mesh in small increments, the results
suggest that this does not merit the large overhead in fle siie, which leads to a longer tme to
download the fnal mesh. Our soluton presents only three levels of detail; and this reduced
amount of data, coupled with our compression of atributes, provides a faster experience for
the user.

The 3DHOP method achieves a speed similar to ours - supportng a good user experience - by
reparameteriiing the mesh according to a patch-based method. This also provides an elegant
and signifcantly faster update soluton. Yet, 3DHOP does not currently support texture
coordinates, and the recalculaton of texture coordinates for the reparameterised mesh does
not seem to be straightorward. Furthermore, any mesh deformaton, such as blend shapes or
bone-weight animaton, would require considerable recalculaton for any patch-based method.
Thus, 3DHOP, conceived for digital heritage, seems unsuitable for digital entertainment
applicatons.

24

6.2 Future Work
Our implementaton of animaton using mesh compression is at its inital stages, but it is worth
discussing these efforts. The direct mapping between original and quantied vertces of our
method should make any deformaton relatvely straightorward to encode accurately. Indeed,
blendshape, or morph target, animaton, should be relatvely straightorward to add to our
single rate compression technique, as it is simply a case of delta encoding blend offsets for
those vertces which require it. For our progressive technique, it is slightly more complex, as
we would need to maintain a mapping between the vertces across resolutons, in order to
ensure that the correct vertces in the lower resoluton meshes are morphed. Skeletal
animaton offers further challenges. While skeleton structure and bone transformatons can be
encoded fairly easily, ensuring that the weights for each bone are accurately represented for
lower resoluton meshes is an interestng problem.

In terms of pure compression, we intend to research re-triangulaton algorithms that prioritse
the longest possible chains of sequental triangles, which clearly beneft our paired-triangle
index buffer compression. We plan to implement predicton techniques (such as parallelogram
predicton) to improve geometry compression, and investgate methods to store multple
texture coordinates per vertex, to reduce the compression overhead at texture seams.

A potental weakpoint of our pipeline is that it does not support view-dependent downloading
of higher resoluton data. A further potental improvement, then, would be to incorporate
spatal parttoning and download higher resoluton data only when the viewport is focused on
a partcular area of the mesh. This would enable our system to deal with meshes and scenes
containing many millions of polygons.

An interestng comparison of our work is

Finally, we will implement the encoding algorithm in JavaScript, allowing users to beneft not
only from faster download of their assets from the web, but potentally from faster upload too.

References
1. de Paiva Guimarães M, Dias DRC, Mota JH, et al (2016) Immersive and interactve

virtual reality applicatons based on 3D web browsers. Multmed Tools Appl 1–15. doi:
10.1007/s11042-016-4256-7

2. Ioannidou A, Apostolidis E, Collyda C, Meiaris V (2015) A web-based tool for fast
instance-level labeling of videos and the creaton of spatotemporal media fragments.
Multmed Tools Appl 76:1735–1774. doi: 10.1007/s11042-015-3125-0

3. Quax P, Liesenborgs J, Barian A, et al (2016) Remote rendering solutons using web
technologies. Multmed Tools Appl 75:4383–4410. doi: 10.1007/s11042-015-2481-0

4. Evans A, Romeo M, Bahrehmand A, et al (2014) 3D graphics on the web: A survey.
Comput Graph 41:43–61. doi: 10.1016/j.cag.2014.02.002

5. Cabello R, Ulicny B, Koo J (2010) Three.JS. htp://threejs.org/. Accessed 12 Sep 2017

6. Autodesk (2017) Autodesk. htps://www.autodesk.com/. Accessed 14 Sep 2017

7. McIntyre L (2010) Building a DAM, one brick at a tme. J Digit Asset Manag 6:344–348.
doi: 10.1057/dam.2010.41

8. Nielsen J (1994) Usability engineering. Elsevier

25

9. Nielsen J (1999) Designing Web Usability. New Riders

10. Akenine-Möller T, Haines E, Hoffman N (2008) Real-tme rendering. CRC Press

11. Gregory J (2009) Game engine architecture. CRC Press

12. Maglo A, Lavoué G, Dupont F, Hudelot C (2015) 3D Mesh Compression: Survey,
Comparisons, and Emerging Trends. ACM Comput Surv 47:44. doi: 10.1145/2693443

13. Chun W (2012) WebGL models: End-to-End. In: Coiii P, Riccio C (eds) OpenGL Insights.
CRC Press, p 431

14. Limper M, Jung Y, Behr J, Alexa M (2013) The POP Buffer: Rapid Progressive Clustering
by Geometry Quantiaton. Comput Graph Forum 32:197–206. doi: 10.1111/cgf.12227

15. Limper M, Wagner S, Stein C, et al (2013) Fast delivery of 3D web content: a case study.
In: Proc. 18th Int. Conf. 3D Web Technol. ACM, pp 11–17

16. Poteniiani M, Callieri M, Dellepiane M, et al (2015) 3DHOP: 3D Heritage Online
Presenter. Comput Graph 52:129–141. doi: 10.1016/j.cag.2015.07.001

17. Google Google Open Source Blog: Introducing Draco: compression for 3D graphics.
htps://opensource.googleblog.com/2017/01/introducing-draco-compression-for-
3d.html. Accessed 1 Feb 2017

18. McGuire M (2017) Computer Graphics Archive. htp://casual-
effects.com/data/index.html. Accessed 12 Sep 2017

19. Sons K, Klein F, Rubinstein D, et al (2010) XML3D. In: Proc. 15th Int. Conf. Web 3D
Technol. - Web3D ’10. ACM Press, New York, New York, USA, p 175

20. Behr J, Eschler P, Jung Y, Zöllner M (2009) X3DOM: a DOM-based HTML5/X3D
integraton model. Proc 14th Int Conf 3D Web Technol 127–136.

21. Chim J, Lau RWH, Leong HV, Si A (2003) CyberWalk: a web-based distributed virtual
walkthrough environment. IEEE Trans Multmed 5:503–515. doi:
10.1109/TMM.2003.819094

22. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From acton to actvity: Sensor-based actvity
recogniton. Neurocomputng 181:108–115. doi: 10.1016/j.neucom.2015.08.096

23. Evans A, Agenjo J, Blat J (2014) Web-based visualisaton of on-set point cloud data. In:
Proc. 11th Eur. Conf. Vis. Media Prod. ACM, p 10

24. Blat J, Evans A, Kim H, et al (2016) Big Data Analysis for Media Producton. Proc IEEE
104:2085–2113. doi: 10.1109/JPROC.2015.2496111

25. Kim H, Evans A, Blat J, Hilton A (2017) Mult-modal Visual Data Registraton for Web-
based Visualisaton in Media Producton. IEEE Trans Circuits Syst Video Technol 1–1.
doi: 10.1109/TCSVT.2016.2642825

26. Cavalcant MGP, Rocha SS, Vannier MW (2004) Craniofacial measurements based on
3D-CT volume rendering: Implicatons for clinical applicatons. Dentomaxillofacial Radiol
33:170–176. doi: 10.1259/dmfr/13603271

27. Zampoglou M, Kapetanakis K, Stamoulias A, et al (2016) Adaptve streaming of complex
Web 3D scenes based on the MPEG-DASH standard. Multmed Tools Appl 1–24. doi:
10.1007/s11042-016-4255-8

26

28. Behr J, Jung Y, Franke T, Sturm T (2012) Using images and explicit binary container for
efcient and incremental delivery of declaratve 3D scenes on the web. In: Proc. 17th
Int. Int. Conf. 3D Web Technol. pp 17–25

29. Geelnard M (2010) OpenCTM, the Open Compressed Triangle Mesh fle format.
htp://openctm.sourceforge.net/. Accessed 12 Sep 2017

30. Mellado J (2014) js-openctm. htps://github.com/jcmellado/js-openctm. Accessed 15
Mar 2017

31. Ponchio F, Dellepiane M (2015) Fast decompression for web-based view-dependent 3D
rendering. In: Proc. 20th Int. Conf. 3D Web Technol. pp 199–207

32. Blume A, Chun W, Kogan D, et al (2011) Google body: 3d human anatomy in the
browser. In: ACM SIGGRAPH 2011 Talks. ACM, p 19

33. Forsyth T (2006) Linear-speed vertex cache optmisaton.
htps://tomforsyth1000.github.io/papers/fast_vert_cache_opt.html. Accessed 12 Sep
2017

34. Hoppe H (1996) Progressive meshes. In: Proc. 23rd Annu. Conf. Comput. Graph.
Interact. Tech. SIGGRAPH. pp 99–108

35. Lavoué G, Chevalier L, Dupont F (2013) Streaming Compressed 3D Data on the Web
using JavaScript and WebGL. In: Proc. 18th Int. Conf. 3D Web Technol. pp 19–27

36. Alliei P, Desbrun M (2001) Progressive compression for lossless transmission of triangle
meshes. In: Proc. 28th Annu. Conf. Comput. Graph. Interact. Tech. ACM, pp 195–202

37. Praun E, Hoppe H (2003) Spherical parametriiaton and remeshing. ACM Trans Graph
22:340–349. doi: 10.1145/882262.882274

38. Cigolle ZH, Donow S, Evangelakos D (2014) A survey of efcient representatons for
independent unit vectors. J Comput Graph Tech 3:1–30.

39. Hannay JH, Nye JF (2004) Fibonacci numerical integraton on a sphere. J Phys A Math
Gen 37:11591.

40. Swinbank R, James Purser R (2006) Fibonacci grids: A novel approach to global
modelling. Q J R Meteorol Soc 132:1769–1793.

41. Brauchart JS, Dick J (2012) Quasi--Monte Carlo rules for numerical integraton over the
unit sphere. Numer Math 121:473–502.

42. Marques R, Bouville C, Ribardière M, et al (2013) Spherical Fibonacci point sets for
illuminaton integrals. Comput Graph Forum 32:134–143. doi: 10.1111/cgf.12190

43. Goniálei Á (2010) Measurement of areas on a sphere using Fibonacci and lattude--
longitude latces. Math Geosci 42:49–64. doi: 10.1007/s11004-009-9257-x

44. Keinert B, Innmann M, Sänger M, Stamminger M (2015) Spherical fbonacci mapping.
ACM Trans Graph 34:193. doi: 10.1145/2816795.2818131

45. Sander P V, Nehab D, Barciak J (2007) Fast triangle reordering for vertex locality and
reduced overdraw. ACM Trans Graph 26:89. doi: 10.1145/1276377.1276489

46. Agenjo J, Evans A, Blat J (2013) WebGLStudio – a Pipeline for WebGL Scene Creaton. In:
Proc. 18th Int. Conf. 3D Web Technol. Pp 79–82

27

47. Liu Y, Zhang L, Nie L, Yan Y, Rosenblum D (2016) Fortune Teller: Predictng Your Career
Path. In: Proc 30th AAAI Conference on Artfcial Intelligence. Pp 201-207

48. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum D (2016) Recogniiing Complex Actvites by a
Probabilistc Interval-Based Model. In: Proc of the 30th AAAI Conference on Artfcial
Intelligence. Pp 1266-1272

49. Liu Y, Nie L, Han L, Zhang L, Rosenblum D (2015) Acton2Actvity: Recogniiing Complex
Actvites from Sensor Data. In: Proc. 24th Internatonal Joint Conference on Artfcial
Intelligence. Pp 1617-1623

28

Annex 1: Single rate compression using McGuire 3D dataset
This table shows the full data for each of the meshes [18] used to compare our single-rate compression algorithm vs that of Google Draco [17]. This data is
used to provide the mean values in Table 5 above. Compressed Size refers to the siie of the fle downloaded from the server, afer giip compression.
Decompression Time is the number of milliseconds taken to convert the raw compressed data untl it is added to the Three.js scene. Time to display refers to
the milliseconds taken to download and display a model (measured from the moment the HTTP request is made, to the moment the uncompressed mesh is
added to the Three.JS scene. The table contains values at clamped bandwidths of 50 mbps and 8 mbps. Some meshes in the dataset were not used, the
reasons are included in the table.

Model .obj siie
(MB)

OUR DRACO
Compressed
Siie (MB)

Decompression
Time (ms)

Time to
display @50

mbps

Time to
display @8

mbps

Compressed
Siie (MB)

Decompression
Time (ms)

Time to
display @50

mbps

Time to
display @8

mbps
Happy Buddha 90 2.7 307 1412 3098 1.7 2055 3189 3254

Stanford
Bunny

13.4 0.641 211 793 1427 0.328 312 915 1087

Cornell Box Not used: geometry too simple
Clouds Not used: geometry not suitable

Conference
Room

26.6 0.406 130 544 947 0.109 378 1074 1373

Crytek Sponia 20.6 1.1 293 1149 2380 0.72 579 1246 2525
Cube Not used: geometry too simple

Dabrovic
Sponia

5.5 0.173 107 352 541 0.114 110 835 1442

Chinese
Dragon

45.3 2.6 466 1465 5134 1.6 1130 2508 5400

Erato Not used: DRACO failed to load input mesh
Fireplace
Room

27.3 0.44 153 458 1082 0.916 494 1332 3516

Gallery 106.9 3.6 586 1693 6982 1.2 1319 2398 5335

29

Hairball 230.5 6.1 913 3253 11732 4.8 3959 6424 9720
Holodeck 0.305 0.024 43 208 204 0.016 23 498 1274
Horse

Chestnut Tree
35.7 1.1 423 916 2521 1.9 851 2311 4734

Indonesian
Statue

90.1 3.7 543 2333 7172 3.9 1819 3496 9331

Lost Empire 8.3 0.339 472 786 1567 0.662 822 1450 2623
Living Room Not used: DRACO failed to load input mesh
LPS Head 1.4 0.103 126 400 513 0.028 33 676 1844
Mori Knob 0.93 0.058 52 202 320 0.032 35 656 1487

Mitsuba Knob 6 0.296 98 480 781 0.124 133 709 1733
Power Plant Not used: geometry too large for real-tme rendering
Road Bike Not used: DRACO failed to load input mesh
Rungholt Not used: geometry too large for real-tme rendering

Salle de bain Not used: geometry too large for real-tme rendering
San Miguel Not used: both DRACO and OUR failed to load input mesh
Scrub Pine

Tree
0.047 0.049 12 120 134 .006 9 528 1270

Serapis Bust 13 0.575 184 727 1458 0.509 341 900 2359
Sibenik

Cathedral
5 0.317 380 949 1177 0.164 150 457 1100

Sports Car 16.4 1.1 450 1558 2851 0675 470 1097 1854
Teapot 0.849 0.043 98 258 503 0.035 42 800 1453
Vokselia
Spawn

Not used: both DRACO and OUR failed to load input mesh

White Oak
Tree

3.9 0.311 118 451 760 0.286 134 628 1477

Amaion
Lumberyard

Not used: geometry too large for real-tme rendering

Mean 1.130 280 915 2443 0.95 625 1473 2

30

31

	A pipeline for the creation of progressively rendered web 3D scenes
	Alun Evans*, Javi Agenjo**, Josep Blat**
	Affiliations
	ORCID IDs:

	Abstract
	Keywords

	1. Introduction
	2. Related Work
	2.1 Transmission of 3D data for the web
	2.1 Compression
	2.1.2 Progressive compression
	2.2 Coding methods

	3. Mesh encoding and transmission: theoretical approach
	3.1 Mesh attribute encoding
	3.1.1 Octahedral normals
	3.1.2 Fibonacci Normals as an Alternative
	3.1.2 Texture coordinates and other attributes
	3.1.3 Connectivity
	3.1.4 Per axis optimisation
	3.1.5 Transmission format

	3.2 Progressive Rendering
	3.2.1 Client-side considerations

	4. Asset Pipeline
	4.1 Modelling Package Plugin
	4.2 Web Application
	4.2.1 Server Component
	4.3.2 Encoding Process
	4.3.3 Front-end interface

	4.3 Multiresolution textures
	4.4 Sample three.js application

	5. Results
	5.1 Metrics
	5.2 Experimental Setting: Application, Browser, Hardware and Meshes
	5.2.1 Dataset
	5.2.1 Experimental Setting

	5.3 Experimental Results
	5.3.1 Effect of paired-triangle index buffer compression
	5.3.2 Normal Vector Compression and Visual Quality

	5.4 Compression Comparative Evaluation
	5.4.1 Single Rate Techniques
	5.4.2 Progressive Methods

	5.5 Online Pipeline

	6. Discussion
	6.1 Improvement over the state-of-the-art
	6.2 Future Work

	References
	
	Annex 1: Single rate compression using McGuire 3D dataset

