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Abstract 
We present an end-to-end pipeline for the export of 3D scenes from content creaton tools to
a real-tme  rendering  engine  in  an embeddable  web-page,  including  a  novel  system  for
compression/decompression  of  textured  polygonal  meshes.  We  show  that  the
compression/decompression  outperforms  the  best  state-of-the-art  non-progressive
alternatve, especially as bandwidth increases, showing that web-specifc techniques should
consider the whole user pipeline. Our pipeline also includes progressivity, which is paramount
for a good interactve user experience, and permits full user interacton with lower resoluton
versions of the 3D scenes, while progressively higher resoluton data is downloaded. Finally,
we discuss how our method may be used in the future to facilitate the transfer of animated
meshes. 
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1. Introducton
The web has become a truly multmedia experience. We have moved away from the concept
of ‘web pages’ and embraced the idea of ‘web applicatons’ – multmedia rich, client-server
systems, which allow users to engage in both of the original goals of the web: browsing and
editng content. The nature of the web means that several communites contribute regularly to
its ongoing development, and the multmedia research community is no excepton, with recent
efforts contributng in the felds of virtual reality [1], video labelling [2], and remote rendering
[3].

One  factor  in  common with  many of  these improvements  is  the HTML5 standard  and  its
associated APIs.  One such API  is  WebGL,  which permits  access  to  the GPU from the web
browser, and is supported by all major browsers (whether on desktop or mobile).  Since its
inital release in 2011, there has been a steady rise of applicatons, technology, and research
concerning 3D graphics on the web  [4]; and web developers now have a choice of several
higher-level engines (such as three.js  [5]), which use WebGL to facilitate the development of
interactve 3D web applicatons. 

In the entertainment industry,  3D scenes are invariably  created and/or edited in one of  a
variety of professional modelling and animaton sofware packages, such as Autodesk Maya
and 3ds Max [6].  Exportng resources (or assets) from these packages in a format suitable for
further processing and fnal use is frequently a central part of an asset pipeline: a workfow to
transform artstc ideas into their fnal 3D form. Asset pipelines form the backbone of most (if
not  all)  Digital  Asset Management  (DAM) systems  [7],  and the design and creaton of  the
pipeline is frequently one of the frst tasks of any digital media producton [7]. 

Web-based productons also beneft from the presence of an efcient asset pipeline; yet they
must consider an additonal step in the pipeline, which is a central issue facing any interactve
3D web applicaton: that of  data transmission. 3D data tend to be quite large, and any asset
must be exported in a suitable format, uploaded correctly to a server, and be fully downloaded
to the browser, before it can be rendered. Thus, a key parameter within any asset pipeline for
an interactve 3D web applicaton is the tme taken to  transmit and decode the data, as any
delay has a negatve effect on user experience [8, 9].

A typical 3D scene consists of a variety of assets [10, 11]:

 3D object data, usually represented as a triangular mesh or implicit surface
 Materials, which specify the colour of an object and how it should interact with light
 Textures, 2D image fles which store per-pixel informaton to be used by the materials
 Animatons, which specify the spatal movement of 3D objects through tme
 Other components, such data relatng to lights and cameras (positon, directon, etc.)

Exportng  these  data  to  a  web  applicaton  presents  different  levels  of  challenges.  Data
regarding materials, cameras, lights and the like, is essentally metadata and can be specifed
as a lightweight text fle, easily compressed and transmited. Textures are stored as 2D images,
whose compression and transmission is a well understood problem that has resulted in the
very common standard formats (such as .jpg and .png) used every day on the web. 

This leaves data related to 3D objects and animaton. A very common representaton of 3D
objects is the triangular mesh [10], which features geometry positon and connectvity data (at
a minimum). In its raw format, a large mesh may occupy a large amount of data; thus the
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compression of meshes has been very well studied in the literature  [12].  Mesh data can be
encoded using  single-rate  methods,  where all  data  is  compressed and decompressed as  a
whole,  or progressive methods, where a 3D mesh can be constructed contnuously from a
coarse to fne representaton, as more data is retrieved. 

In the Web 3D community the issue of 3D data representaton is highly topical, because most
established mesh encoding techniques are optmiied purely in terms of bits per vertex (bpv) or
rate-distorton (R-D) performance, and ignore the important trade-off between compression
rate and decompression tme [12]. It is only recently that researchers have noted that, given
that  web-based  applicatons  involve  real-tme  transmission  of  data,  for  the  fnal  user
experience,  the  decompression  tme in  the JavaScript  layer  of  the  browser  is  of  equal  or
greater importance than the compression rate [13–16]. 

In this  paper,  we present results  which support  this  statement.  We present a novel  mesh
compression method, and furthermore propose a structure for an asset pipeline which exports
entre  3D  scenes  to  the  web.  We  also  present  an  implementaton  of  that  pipeline,  and
demonstrate its advantages over a non-pipeline approach. 

The main contributons of the paper are:

 A holistc, applicaton-level view of 3D graphics on the web, in the form of an end-to-
end pipeline which exports full  scenes directly from a variety of popular modelling
packages, uploads them to an account-controlled server, and outputs a sample WebGL
rendering applicaton that can be embedded into any web-page, or used as part of a
custom applicaton.  Our  results  demonstrate  that  using  a  such  a  pipeline  reduces
completed export tme for 3D scenes by 37%.

 A single-rate mesh compression method which prioritses decompression rate over fle
siie. It improves on Google's WebGL-Loader  [13] by employing efcient index buffer
storage and normal vector compression; and improves on Google’s recent Draco [17]
mesh compression system by demonstratng clearly the benefts of fast decompression
vs. overall fle compression.

 A progressive compression/rendering method, which uses spherical Fibonacci points to
store vertex normals at lower resolutons. Our method achieves considerably faster (4x
speed improvement)  transfer  of  meshes compared  to similar  techniques  [14],  and
features support for multple meshes, materials and textures, unlike other approaches
[16].

For  the partcular problem of  mesh encoding/decoding, we quanttatvely and qualitatvely
compare our results to previous approaches, and evaluate according to metrics of compression
and decompression performance, progressive vs single rate coding, and fexibility to deal with
full scenes and more complex materials. For single rate encoding, we employ the McGuire 3D
mesh dataset [18] to evaluate our technique against the state-of-the-art.

Beyond this, central to our approach is the concept that meshes are merely part of a more
complete package of data which needs to be downloaded and processed, and as such any
mesh  transmission  system  should  be  designed  taking  the  whole  graphics  pipeline  in
consideraton.  In  the  conclusion,  we  discuss  the  further  advantages  of  our  approach,  for
example when dealing with more complex materials or animatons, partcularly with regards to
future work.
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2. Related Work
2.1 Transmission of 3D data for the web 
3D web pages are relatvely uncommon, and for several years were mostly represented by
declaratve technologies developed in the academic domain  [19, 20], or applicaton specifc
virtual worlds requiring custom installatons  [21]. However, 3D web applicatons have been
growing in popularity since the release of WebGL in 2011. WebGL is a web-specifc version of
the OpenGL graphics API (more specifcally of the restricted embedded systems API, OpenGL
ES 2.0), and allows access to dedicated graphics processing hardware (the GPU) directly from
the  browser  (via  JavaScript).  It  is  now fully  supported  in  the  latest  versions  of  all  major
browsers.  WebGL  and  associated  HTML5  APIs  (such  as  WebAudio1)  are  in  many  respects
enabling technologies, as they break down the barriers for the development of browser-based
interactve multmedia applicatons. Nevertheless, they also open up new research challenges
for the best way to transmit and interact with hybrid data (be it 3D, 2D image/video, audio, or
text) [22, 47-49].

3D data is typically large, and transferring it to a remote client for rendering is a persistent
problem for all  web 3D applicatons.  This  is  partcularly  relevant for our  work,  in that the
multmodal visual data is stored in fles which reach many hundreds of megabytes in siie -
simply “waitng for them to download” does not provide an optmal user experience. While a
naive approach might be to simply compress the data using any number of established and
powerful algorithms, Limper et al.  [15] show that straightorward data compression may not
necessarily  be  the  soluton,  as  the  decompression  tme  in  a  browser-based  context  may
outweigh any benefts gained in terms of compressed data, partcularly as bandwidth speeds
increase. For a more complete overview of these issues, and the current state of the art with
respect  to  web-based  3D,  including  techniques  of  remote  rendering  and  progressive
transmission, we refer the reader to a recent survey paper [4].

The  majority  of  the  previous  work  in  the  feld  of  web  3D  transmission  focuses  on  the
compression of meshes [12], which consist of positon and index data, with an optonal normal
vector,  colour,  and  texture  coordinate  data.  In  parallel,  3D  point  clouds  are  increasingly
available and used, due to the widespread use of 3D scanning (see for instance [23–25]), and
volumetric rendering is central when dealing with 3D representaton of medical data [26].

It is also important to note that the community is beginning to realise that the present and
future of  3D on the web consists  of  the transmission of  an entre 3D scene (as discussed
above), as opposed to meshes in isolaton, as this is more representatve of the needs of a
typical web 3D applicaton (for example, a game or an interactve experience). For example,
Zampoglou et  al.  [27] atempt to address  this  issue by  using the MPEG-DASH standard to
encode and transmit an entre X3D scene. This is an interestng approach, as the MPEG-DASH
encoding schema is in theory designed to cover adaptve streaming of all informaton types. In
practce, however, the schema is highly tailored to audio and video, and 3D data requires some
formatng in order to ‘ft’. Other content distributon techniques for web-based 3D graphics
(such as server based rendering or hybrid server/client approaches), along with their positve
and negatve points,  are surveyed extensively in [4].

1  http://www.w3.org/TR/webaudio/ 
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2.1 Compression
In the following two subsectons, we survey work related to data compression for web-based
3D graphics. We frst survey single rate compression (where compression and decompression
are carried out in a single instance), before surveying progressive compression (where data is
compressed in a manner such that it can be decompressed at increasing levels of detail).

2.1.1 Single-rate compression
Data stored as binary geometry has the advantage that it can be directly transferred to the
GPU for rendering. This approach is taken by the X3DOM framework [20] which uses a simple
binary encoding format with 16-bit integer quantiaton, where foatng point data is stored as
an offset to a common point - or points, such as bounding box limits. Dequantiaton can be
done on the GPU, which means that processing in the slower JavaScript layer is completely
skipped. Nevertheless, this also means that no real compression can be carried out on the
data. In  [28],   this issue is  addressed by proposing a `Sequental Image Geometry'  format,
where mesh data is stored within an RGB image format, and then compressed using a lossless
technique such as PNG, which, afer transmission, can then be decompressed using low-level
code within the browser,  and uploaded as texture data to the GPU. An advantage of  this
approach (using a compressed image as a data vector) is that it takes advantage of the fast
(natve  code)  decompression  of  the  image  data  which  is  permited  by  the  WebGL/GPU
interface (thus skipping data decompression in the JavaScript layer). But passing vertex data
directly  to  the  GPU makes it  impossible  to  use  an  index  buffer,  which  leads to  increased
memory overhead. 

Thus, to take advantage of the index buffer, it seems unavoidable that some decompression
should be carried out on the CPU. For non-web applicatons, a commonly used open binary
mesh format is OpenCTM [29], which is highly portable, provides good compression rates, and
is  relatvely  fast  to  decompress  in  a desktop context.  It  is  built  on entropy reducton and
Lempel-Ziv-Markov chain algorithm (LZMA) entropy encoding, which combines the classic LZ77
algorithm with Markov chains. Vertex positons are stored as offsets to a network of cells, and
delta coding is used to store only the difference of each vertex to the cell center. Delta coding
is  also  used  to  store  connectvity  data.  The  use  of  delta  coding  reduces  the  entropy  and
therefore  supports  good  compression  when  using  LZMA.  A  JavaScript  implementaton  of
OpenCTM decompression is also now available [30], which makes the algorithm available for
web-based 3D applicatons. The primary disadvantage of using this technique for the web is
that has been demonstrated recently that LZMA decompression in the JavaScript layer of the
web browser is roughly an order of magnitude slower than in natve code [31].

Perhaps the most widely known technique to compress mesh data for web-based applicatons
is  Google's  WebGL-Loader[13,  32].  The  technique  relies  on  bounding  box  quantiaton  of
vertex positons, and using delta coding to transmit the differences between values, as above.
It  can  be  decompressed  very  quickly  in  JavaScript,  with  some  aspects  (such  as  the
dequantiaton) being pushed to the GPU. A vertex cache re-ordering algorithm [33] is used to
cluster  faces  sharing  the same vertex data  to  deal  with  mesh connectvity.  Further vertex
buffer reordering is then carried out to permit the implementaton of a “high water mark”
coding algorithm for the index buffer, where the value stored for each index represents the
difference to the highest value seen in the buffer up to that index. Delta and high-watermark
codings generate codes of different byte lengths, and thus are only effectve when the fle
format used to transmit the data supports variable byte encoding. Thus, WebGL-loader stores
data using UTF-8 strings, which support variable byte encoding and, crucially, are decoded not
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by the JavaScript layer, but by the underlying natve-code of the browser applicaton. This fast
decompression was the primary motve to use of the UTF-8 format, yet it comes with several
downsides, most notably the block of surrogate pairs (reserved codes which permit encoding
of  mult-byte codes)  which limits  any vertex buffer to a maximum 55,296 values.  WebGL-
loader overcomes this by splitng larger meshes into chunks smaller than this value. Besides
being an inelegant restricton, a disadvantage of this strategy is that extending the technique
into progressive transmission (where lower resoluton meshes are downloaded and rendered
frst) becomes complicated to implement, due to the need to constantly track the current state
of the various sub-meshes.

Google recently  released a new mesh compression system, called Draco  [17].  Draco offers
several improvements over WebGL-loader, not least the removal of dependency on the UTF-8
format, and improved compression performance. However, this improved compression clearly
affects the decompression performance, which is considerably worse than WebGL-loader (as
demonstrated in the result secton below). Furthermore, Draco does not support progressive
encoding/decoding, which we discuss in the following secton.

2.1.2 Progressive compression
Research into user interacton on the web led Nielsen [8, 9] to propose three response tme
limits to keep in mind when optmiiing web and applicaton performance: 

i) 0.1 second – the limit for user feeling that the system reacts instantaneously 
ii) 1.0  second  –  the  limit  for  user’s  fow of  thought  to  stay  uninterrupted,  even

though the delay is notced
iii) 10 seconds – the limit to keep the user’s atenton. Longer delays will ofen see a

user leave the site immediately

Based on these limits, for a web-based 3D rendering, it seems that a progressive encoding
scheme, where lower resoluton versions of the mesh are rendered while higher-resoluton
data contnues to download, opens the door to a signifcantly beter user experience.  The
decision  on  whether  to  use  a  progressive  encoding  technique  depends  greatly  on  the
applicaton:  when  user-experience  is  paramount  (such  as  public  display  of  large  models,
catering to a variety of bandwidths), or when view-dependent level-of-detail is required (i.e. as
the camera view focuses on specifc areas, more detail of the mesh in these areas is loaded), it
is logical to engage a progressive technique. 

Seminal work on progressive meshes was carried out by Hoppe [34], where triangles and edges
are sorted according to a series of rules, and edges are collapsed (their consttuent vertces
merged)  one-by-one,  thus  reducing  mesh  complexity.  Each  vertex  split  operaton stores  a
code, which can then be used to recreate the geometry when decoding. Turning to the web,
progressive mesh decoding is difcult to implement in JavaScript, as it requires the engineering
of  a robust mesh representaton structure which can be parsed quickly.  Lavoue et al.  [35]
tackle this  with an efcient implementaton of  the half-edge structure in JavaScript,  which
enables them to implement a version of the valence coding technique of Alliei and Desbrun
[36]. 

Limper et al. [14] sacrifce efcient compression rates for a fast and highly progressive system.
Their method involves reorganising the geometry buffer to not waste bandwidth. It provides
an elegant soluton which is integrated into the X3DOM framework. The work presented in
[16] uses  [31] to  implement  a  hierarchical  patch-based  method for  progressive  and view-
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dependent visualisaton of large meshes. The system features fast decompression and efcient
compression, but it  currently only supports visualisaton of cultural  heritage, and does not
support the texturing and materials required by many digital entertainment scenarios.

2.2 Coding methods
The technique used to encode/decode the data is  critcally  important  to  any compression
algorithm involving a real-tme applicaton, as the decompression tme (i.e. how fast the data
can be made usable, afer being initally accessed) can impact greatly on user experience (as
per Nielson’s limits, discussed above [8]). Entropy coding, where frequently occurring paterns
are represented with few bits, and rarely occurring paterns are encoded with many bits, is
one of the most common and effectve methods of lossless compression. Its decoding has long
been seen as a botleneck in many compression algorithms; indeed, as [31] shows, JavaScript
implementatons of several entropy decoding algorithms are an order of magnitude slower
than their  C++ counterparts -  a  statement which is  supported by the experimental  results
presented later in this paper. The only scenario in which entropy coding can be used effectvely
is the HTTP transfer layer, where the giip (entropy coding) algorithm is implemented at a very
low  level  (both  on  the  server  for  compression,  and  on  the  browser  sofware  for
decompression).  Thus,  as  custom  entropy  coding  on  the  web  involves  a  high  JavaScript
decoding cost,  it  means that other strategies,  such as delta or  the high-watermark coding
methods mentoned above, are more suitable for 3D web purposes.

3. Mesh encoding and transmission: theoretcal approach
In this secton, we present the theory behind our approach for progressive mesh transfer for
the web, which prioritses fast decompression over absolute fle compression to improve on
the  state  of  the art.  Our  encoding  method is  designed to  be  client  agnostc.  While  other
approaches require the use of a custom framework [27] or specialised shader code [14] to be
used, we have specifcally created our progressive transmission technique in a way that can be
integrated into any existng pipeline, and use any client-side rendering code.

3.1 Mesh atribute encoding
Atributes  are  propertes  of  the  mesh  (such  as  positon  vector,  normal  vector,  texture
coordinates, colour etc.). We use common quantsaton [12] techniques to reduce the number
of bits required to store vertex positons. The data format we employ for transmission (see
below) means that negatve integer values cannot be stored. Thus, delta encoded quantied
values  are  interleaved as  described by  [13].   De-quantiaton can be carried  out  either  in
JavaScript or directly on the GPU, however our tests show that using the GPU for this purpose
provides  only  a  negligible  decrease  in  decompression  tme.  Furthermore,  dequantiing  in
JavaScript removes the need to write custom shader code,  which permits use in any client
applicaton, and allows easy integraton with popular web-based APIs such as Three.JS, which
manage their own material/shader pipelines.

3.1.1 Octahedral normals
Other than positon, the most common atribute to be transmited is the vertex normal vector
(usually  calculated  by  averaging  each  vertex's  surrounding  face  normals,  but  for  meshes
generated for digital  entertainment,  it  is  common for the artst  to specify  custom normals
[11]). Normals are usually represented by three component unit vectors. This means that they
can be quantied to positve integer values and encoded as per-positon atributes. While such
quantsaton of normals is quite precise (e.g. encoding a 3D unit normal vector using 11 bits
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per axis leads to an accuracy of three decimal places), we employ a discretsaton strategy
which leads to beter compression results. By projectng the normals onto a unit octahedron,
and unfolding the faces of that octahedron into a plane, it is possible to encode the normal as
a  two-component,  instead  of  a  three-component,  vector,  on  a  scale  of  0-1  (the  idea  of
projectng onto planar geometric surfaces was frst proposed by [37]). This scale can then be
quantied to a predetermined bit depth; if 8 bits per component are used, the normal can be
stored in a maximum of 16 bits, effectvely discretsing the normal vector to one of 216 values.
In [38], the authors show several examples comparing this discretsaton with uncompressed 3-
component  normals;  with  barely  perceptble  differences  in  rendering  quality.  The  two
components of the octahedral normal can be delta encoded as we do for other atributes.

3.1.2 Fibonacci Normals as an Alternatve
The  obvious  advantage  of  encoding  the  normals  in  two  8-bit  components  is  that  the
compression performance is considerably beter than when using three 11-bit components
(used for the quantied XYZ normal). Nevertheless, if we could somehow reduce the number
of components required from two to one, we should be able to obtain further improvements
in compression performance. The simplest method of storing normals as a single component is
to use an array of vectors, and store (for each vertex) the index in this array. To be useful in a
general context, the ideal structure of this array would be the discretsaton of a unit sphere,
where each normal of the mesh is quantsed to a point on this sphere.

The quality  of  the  sphere  discretiaton depends on the quality  of  the  distributon of  the
sampling points. To select the sampling points we have resorted to the spherical Fibonacci (SF)
points [39, 40] as these points have intrinsic high quality propertes regarding the spherical cap
discrepancy and the inter-samples distance [41, 42]. Moreover, the SF point sets have already
shown  to  outperform  state  of  the  art  solutons  in  different  problems  where  a  uniform
distributon of points over the sphere is required (e.g.  [41–44]). In practce, the SF points are
generated by  using  the Fibonacci  rato to evenly  distribute  the points  over  a  spiral  which
covers the sphere from its north to south poles, and the points are stored in an array. 

There are several theoretcal advantages of mapping normals to Fibonacci sphere points, with
regards to compression, which we now discuss. As mentoned above, it enables the normal to
be stored to a single value which represents the index in a table of  Fibonacci  points on a
sphere. This table can be generated quickly at run-tme, thus leading to very fast and efcient
manner to transmit the normals. Furthermore, transmitng a single component also enables
us to more precisely control the balance between precision and compression performance. At
lower precision (fewer Fibonacci points generated), the delta encoding permits the normals to
be  encoded in  a  single-byte,  which  is  clearly  an improvement  over  the 2-byte  octahedral
encoding. 

The  research  queston  regarding  the  use  of  Fibonacci  normals  is  whether  they  produce
sufcient quality during rendering. In the results below we carry out several tests in order to
answer this queston.

3.1.2 Texture coordinates and other atributes
Texture coordinates can be encoded by quantsing to a desired bit depth, and delta encoding
as above. 11-bit quantsaton will generate pixel-level precision in a 2048x2048 pixel texture,
which is considered sufcient for web applicatons (larger, 4096x4096 textures are rarely used
due to the transmission overhead).  One potental issue with texture coordinates is that of
texture  seams,  where  the  same  vertex  shares  multple  texture  coordinates  (whose  use
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depends on the face being rendered). Texture seams present an interestng problem in terms
of pure mesh compression research, however from the perspectve of coding a fast rendering
applicaton, the desired confguraton is to present the GPU with consistent, aligned memory
across all atributes, each index accessed according to a single element buffer. As such, vertces
on texture seams are duplicated in our current system. For most meshes, this results in a small
increase in fnal fle siie, but this is compensated by the simplicity of the approach, which fts
in with our stated design goal of creatng a client-agnostc system. 

In this paper, we do not present results featuring other atributes such as tangent vectors or
vertex colours. However, using the techniques presented above, any atribute could be added
and encoded for transmission, without any major restructuring of the overall method.

3.1.3 Connectvity
Triangle reordering algorithms are typically used to cluster indices of triangles that share the
same vertces, which is useful for vertex-caching purposes on the GPU. This reordering also has
an understandably high effect on the efciency of delta compression, as it reduces the average
delta value within the index buffer,  which leads to encoding in fewer bytes. WebGL-loader
uses Forsyth's triangle reordering algorithm [33]. We implemented this algorithm, as well as
one other well-known alternatve, the Tipsify algorithm [45], as representatves of state of the
art triangle reorganising algorithms. 

We further compress the index buffer by atemptng to encode neighbouring triangles using 4
indices rather than 6. It can be proved that for any given set of 3 indices forming a triangle,
ABC, if  A >  B and  B >  C then  C <  A.  We can use this single bit of informaton to encode a
`neighbouring triangle' fag in the index buffer. If, when reading triangle  ABC from the index
buffer, we see that A < B, then we can read a single further index, D, and draw triangle ADB.
When encoding this  informaton,  we may have  to re-specify  the  winding order  of  certain
triangles to ensure that the A < B test works as expected, but this is a minor inconvenience for
the effectve reducton is index buffer siie. The gain of this technique clearly depends on the
number  of  neighbouring  triangles  encoded  in  the  index  buffer,  again  emphasising  the
importance of the triangle reordering. When encoding the indices using this method, the high-
watermark must be advanced by multples of 3. This is because the index buffer may need to
be re-ordered to ensure that the vertex winding order,  for each triangle,  permits multple
paired triangles in a row, which means that there is a maximum step in the high-watermark of
3 (as opposed to 1).

3.1.4 Per axis optmisaton
In certain meshes, if the bounding box dimensions for a given axis are shorter than for any of
the others, by an integer factor o more, then it is possible to reduce the quantsaton bit-depth
for that axis, without losing overall precision. For example, in the case of the Happy Buddha
mesh, the x- and i-axes of the bounding box are less than half the siie of the y-axis. Thus,
these axes can be encoded with one bit less precision, and stll maintain the same real-world
precision as the y-axis.

3.1.5 Transmission format
The  data  format  used  for  transmission  is  important  as  both  delta  and  high-water-mark
encoding generate variable-byte integer (varint) values, and thus a variable byte format would
ensure optmum compression. Perhaps WebGL-loader's biggest drawback is its reliance on the
UTF-8 format, as discussed in the Related Work secton above.
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An alternatve data storage strategy, described briefy earlier, is to bit-shif the data into RGBA
colour  channels  and save this  using  a  lossless  image compression format,  such as  a PNG,
advantageously using one of several well-established optmiiaton algorithms. There remains a
considerable  botleneck for  web-visualisaton,  however:  that  of  reading the data  from the
image  into  the  JavaScript  layer.  Our  simple  tests  show that  reading  the  pixel  data  for  a
4096x4096 image (whether from a HTML5 canvas, WebGL context, or direct decoding) into a
JavaScript Typed Array takes a very minimum of 500ms on current hardware, an unacceptable
delay, as discussed in the results secton below. Researchers in [28], presented earlier, avoided
this botleneck by not storing index data and decoding all the geometry on the GPU; however,
this leads to reduced compression performance, and also means that the vertex transform
caches on the GPU cannot be exploited, and no indexing can be used. 

Thus,  a  custom  varint  format  seems  a  beter  opton.  Such  a  format  requires  bit-shifing
operatons in order to read it  correctly, but our hypothesis  was that the bit-shifing speed
currently available to modern browsers, thanks to the JavaScript Typed Array specifcaton,
would be sufcient. Our format is a simple base-128 varint format (stored with the *.b128
extension), where integer data is stored in groups of 7 bits, and every 8th bit is used as a fag
to indicate whether the next byte in the sequence is a contnuaton of the same integer or not.
Assuming a 32-bit  CPU,  this  format allows 29 bits  of  precision for the index buffer,  which
should be enough for  the majority  of  3D meshes suitable  for  real-tme rendering  (29 bits
permits over 536 million individual vertces). The format is also highly suitable for compression
by the HTTP giip implementaton, with 'free' efcient compression and fast decompression, as
discussed above. 

Beyond the binary b128 fle, we also store a JSON fle with metadata regarding the mesh, and
informaton regarding the material associated with the mesh. This is partcularly useful when it
comes to integratng the b128 into an established workfow, as described below.

3.2 Progressive Rendering
Progressivity  is  paramount  for  interactvity.  Our  system  takes  advantage  of  the  fact  that
aggressive quantiaton of geometry results in many triangles collapsing to lines or even to
single points. Thus, we harness this to create a system of progressive rendering where lower
precision is downloaded frst, to create a level-of-detail quantsaton of geometry. To this we
add differing amounts of normal compression at each level of data. We discussed above that
Fibonacci normals provide excellent compression with small number of points, but led to bad
visual  results at larger numbers of points.  However,  at lower resolutons of geometry,  the
resoluton of the mesh is low enough that highly quantsed normals do not further reduce the
perceived  quality.  Thus,  we  compress  normals  using the  Fibonacci  approach  at  lower
resolutons, and keep octahedral normals (with beter visual quality) at larger ones.

Of course, the number and precision of lower-resoluton meshes can change depending on the
user's needs. However, our empirical tests show that a 3-stage refnement process offers a
nice balance between fle siie and user-experience, per the following stages:

 1st  stage:  7-bit  bounding  box  quantsaton,  256  Fibonacci  normals,  low  resoluton
textures

 2nd stage:  8-bit  bounding box quantsaton,  256 Fibonacci  normals,  low resoluton
textures

 Final  stage:  11-bit  bounding  box  quantsaton,  octahedral  normals,  high  resoluton
textures
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3.2.1 Client-side consideratons
As discussed, we have designed this encoding schema in a way such that it can be used in any
client-side renderer, using any shader. We have successfully implemented decoders in two 3D
web engines, three.js [5] and WebGLStudio [46]. The actual decoding code is identcal in either
case, as it outputs vertex arrays which are ready to uploaded directly to the GPU. 

The  decoder  downloads  each  level  of  detail  in  turn,  interactvely  rendering  the  lower
resoluton meshes as it downloads the higher resoluton data. 

As  alluded  to  in  the  list  above,  our  progressive  method  also  features  a  mult-resoluton
material system, this is described further below.

4. Asset Pipeline
As mentoned in the introducton, much of the academic literature on efcient representaton
of 3D content for the web focuses almost exclusively on mesh compression; and including, at
most, support for vertex colour or texture coordinate atributes. Yet in the digital producton
world  (such  as  videogame  and  digital  cinema  producton,  or  architecture), models  are
invariably stored as several sub-meshes, each with different materials and shading groups. Our
JSON/b128 format addresses these needs, as it permits the representaton of such complex
scenes; specifcally: 

 Multple groups, each representng a different mesh
 Multple shading groups, where different materials can be applied to different groups,

or even different areas of a single group
 Material descripton featuring diffuse, emissive, and specular colour
 Diffuse, normal and specular texture maps
 Mult-resoluton  textures  to  ft  the  resoluton  of  the  stages  of  the  progressive

geometry

The fnal item in the list above refers to the likelihood, when using progressive techniques, that
high resoluton textures will not have downloaded when the frst stage progressive geometry is
available. This would result in rendering an un-textured geometry, which is not desirable. To
avoid this scenario, our material technique supports mult-resoluton textures for progressive
meshes, where lower resoluton geometry is rendered with lower resoluton textures.  

In this sense, our mesh compression system is designed from a very practcal point of view:
that it should be able to ft into an asset pipeline capable of exportng a full 3D scene to the
web. An overview of the pipeline datafow is  show in Figure 1. Figure 2 shows a series of
screenshots of the pipeline in acton. 
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Fig. 1 Overview of asset conversion pipeline. Scenes are either exported from a modelling
package using our  custom plugin,  or loaded directly  from a Wavefront  .OBJ  fle.  Our web
applicaton uploads the content to a server, converts to our compressed format, and renders it
using WebGL. 2 

Fig. 2 Screenshots  of  the  pipeline  in  acton.  Lef->Right;  Top->Botom:  Inital  login  page;
upload page with drag-drop facility; holding page with fnishing tme estmaton; fnal browser
render.

2 ‘Small House Diorama’ © Glen Fox. Used according to CC BY_NC 4.0 license: 
htps://creatvecommons.org/licenses/by-nc/4.0/
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4.1 Modelling Package Plugin
To ensure smooth workfow, we have implemented a plugin for three popular modelling tools:
Autodesk Maya, Autodesk 3D Studio Max, and Blender. In the frst two, the plugin exists as a
dashboard buton which the user can press, in the later it is a context menu opton when the
user right-clicks on the viewport. In each case, the plugin exports the geometry, materials,
textures, and, where possible, the lightng and camera setngs. The various fles involved in
this export are archived into a single iip format, and an operatng system hook (functonal for
Windows, Mac and Linux) brings into focus a fle explorer window, opened at the folder where
this iip fle has been saved. This iip fle is now ready to be uploaded to the encoding web
applicaton (see next secton). 

4.2 Web Applicaton
The key component of the pipeline is the client-server web applicaton, which is responsible
for encoding scenes into our proposed format and storing both original and encoded fles on
the server.  While  it  is  possible to implement  the encoding process directly  as part  of  the
modelling  package  plugin,  we  decided  on  a  more  general  server-based  approach,  as  this
permits encoding of fles/scenes created in other packages (for example, meshes output from
photogrammetry techniques) for which we have not yet created a plugin. Figure 3 shows an
overview of the components of the web applicaton.

Fig. 3 Overview  of  the  web  applicaton.  User  actons  are  shown  to  the  lef,  while  the
components of the server are shown to the right. 

4.2.1 Server Component
We chose to implement the server component as an original PHP applicaton, as this provided
us  with  complete  fexibility  regarding  the  structure  and  implementaton.  The  inital  user
interacton with the server is via the account system: users must frst login to the applicaton
before being able to upload fles. Once uploaded correctly, the fles are stored on the server,
and a relevant entry is created in a MYSQL database. We use a concurrent database-flesystem
as  this  permits  us  to  control  access  to  any  uploaded  data  (data  security  is  an  extremely
important issue in the audiovisual producton industry). Our fle upload system is implemented
in a manner such as to make it highly suitable for this specifc task:

 Each uploaded fle is stored in its own unique directory (named according to a random
6-character string). This directory name further serves as the scene’s unique identfer
(uid) for future reference.

 If the fle uploaded is a iip fle, it is automatcally decompressed inside the directory
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 A (server-side) extension whitelist is employed such that only fles with pre-approved
extensions can be uploaded, or uniipped.

 Each  user  is  assigned  a  quota  of  storage  space;  atemptng  to  upload  fles  which
surpass this quota results in a displayed error message. Storage space can be managed
via a control panel (see below).

4.3.2 Encoding Process
Once uploaded, the server starts the encoding process. The encoder is a compiled C++ binary
applicaton which converts input geometry to the format discussed in Secton 3 above, and
saves material and scene data in a json fle. It is called, as a command line applicaton, from the
PHP script  with the correct  parameters for the recently uploaded fle. Separately,  the PHP
process converts texture fles (as described below) using the popular imagemagick suite of
command line tools3.

4.3.3 Front-end interface
The  front-end  interface  of  the  applicaton  frst  requires  the  user  to  authentcate  via  a
username and password. Once authentcated, users drag-and-drop or select scene fles – these
can  either  be  iip  fles  generated  from  modelling  package  plugin,  or  fles  saved  in  the
Wavefront  .obj  format.  The  user  can  select  whether  they  wish  single-rate  or  progressive
encoding, before clicking a buton to upload the fle. Once uploaded, the server begins the
encoding process as described above; as this may take some tme (partcularly for complex
scenes, see results below), the front-end page changes to display an estmated fnish tme. To
manage  space,  the  server  features  a  storage  space  quota  system,  accessed  through  a
dashboard interface that allows users to manage and delete previously uploaded scenes.

4.3 Multresoluton textures
During the creaton of 3D assets, texture data is frequently stored in a lossless format, such as
Targa or TIFF. Such formats are not natvely readable by web-browsers. Thus, once uploaded
the  server,  the web applicaton converts  all  non-web-safe  image  formats  to  the web-safe
Portable Network Graphics (.png) format (we choose png as opposed to jpg due to its support
for transparency).

When  encoding  a  scene  for  progressive  rendering,  the  web-applicaton  also  saves  lower
resoluton versions of each of the texture fles (default 50% resoluton). These lower-resoluton
fles are used with the lower-resoluton version of the mesh which are initally downloaded
during the progressive visualiiaton.

4.4 Sample three.js applicaton
Once  the  encoding  process  has  fnished,  the  web-page  redirects  to  an  interactve  WebGL
rendering of the encoded scene, created using three.js. From a code perspectve, the scene is
lef intentonally simple, to best demonstrate to other developers how to parse and use the
scene in its new, encoded format. The user can download the source code for the renderer,
the encoded fles, and the originally uploaded fles.

5. Results
In this secton, we present quanttatve results of our mesh compression method, comparing
against the state of the art. We then present quanttatve evaluaton of the benefts of using
the entre pipeline.

3  htps://www.imagemagick.org/
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5.1 Metrics
The results  of  the mesh compression are discussed along the following parameters,  which
interplay, and should be balanced:

 File  size:  the siie of  the compressed fle  is  clearly  an important factor for web 3D
applicatons, as larger fles take longer to download. 

 Decompression  tme: very important for interactvity; we measure tmes with which
the entre mesh/scene is  decompressed.  Compression tme is  of lower priority;  this
said,  it  should be in the order of  seconds (as opposed to tens of  seconds)  from a
usability point of view [9].

 Visual quality: Our approach uses lossy compression, especially related to the normals,
thus visual quality needs to be addressed.

The beneft of using a complete asset pipeline, as proposed in this paper, can be measured by
comparing the tme taken to use the pipeline, compared to the tme it takes an experienced
user to carry out each individual step of the pipeline in isolaton, one afer the other.

5.2 Experimental Setng: Applicaton, Browser, Hardware and Meshes
5.2.1 Dataset
The detailed results in this paper (for single rate compression) are presented using three test
meshes (see Table 1). With these three meshes, we provide a detailed (Tables 2-5) breakdown
of the effects of the different elements of data compression which we employ. 

Table 1 contains a summary of the data for these meshes, including the number of vertces and
faces of each, and the amount of memory each mesh occupies (its binary siie – this data is
calculated from the fact that the vertex data is stored in 4-byte foat format, and the face
indices  as  4-byte  integers).  Each  of  the meshes  features  index buffers;  each vertex  has  a
positon and a normal atribute, but no colour informaton or texture coordinates (although, as
mentoned above, our system supports them fully). 

While these three meshes are used to test our work in detail, in order to obtain an integral and
more extensive testng we use the McGuire Computer Graphics Archive [18], a collecton of 34
meshes, to compare our work and the best performing single-rate encoding technique of the
state-of-the-art  (Google  Draco).   Not  all  meshes in  the archive  were used,  either  because
DRACO was unable to read them, or their siie makes them unsuitable for real-tme rendering
(the unused meshes are noted as such in Annex 1).

Table 1: Table with data regarding the meshes used in the primary evaluaton. The binary siie
refers to the siie of the mesh when stored in binary .ply format, including vertex normal, but
without any other atributes (such as colours or texture coordinates).

Mesh #Vertices # Faces Binary Size
Happy Buddha 540K 1.1M 27.8MB
Chinese Dragon 430K 870K 21.8MB
Stanford Bunny 35K 70K 1.8MB

5.2.1 Experimental Setng
The results presented here are measured using a very simple WebGL applicaton with minimal
HTML and CSS.  The browser  used was Google  Chrome 46,  although the system has  been
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successfully  tested to work with all  major browsers,  including mobile ones such as Mobile
Safari.

The results from other research were obtained by scraping HTML/JavaScript code from their
publicly available test sites, and re-hostng on our own server, thus ensuring a constant test
environment and consistent results.  The decompression tmes were measured on a 2.5GHi
Intel  Core i7 with a Geforce 650M graphics card with 2GB of  VRAM,  and using the natve
javascript performance.now() functon.

5.3 Experimental Results
This secton presents results demonstratng the effectveness of the novel compression steps 
introduced by our compression algorithm (Tables 2 and 3). For comparatve evaluaton against 
the state of the art, see the following secton (5.4).

5.3.1 Effect of paired-triangle index buffer compression
Table 2 shows that our novel paired-triangle index buffer method (described in Secton 3.1.3)
provides a considerable reducton in mesh siie, over the basic method employed by WebGL-
Loader and others.  The paired-triangle method allows improved compression of the index-
buffer,  as it  atempts to encode paired triangles using four indices instead of 6.  The table
shows that the technique provides a mean 15.3% reducton in mesh siie.

Table 2:  Index Buffer Compression: Effect of using paired-triangle index compression (using
base compression + tpsify  reordering  + per-axis  quantsaton + delta-encoded atributes +
high-watermark indices as a startng point). Siies in MB.

Model Base (WebGL-Loader) Paired-triangle technique (OUR)
Buddha 6.7 5.8
Dragon 5.3 4.6
Bunny 0.458 0.397

5.3.2 Normal Vector Compression and Visual Quality

Fig. 4 Effects  of  normal  encoding.  The fgure shows fve close  up renders  of  the buddha
model  using  different  normal  encoding  methods.  (L  ->  R):  Original  normal,  octahedral
encoding, 8192 points on a unit sphere, 4096 Fibonnaci points, 256 Fibonacci points.

Figure  4  shows a  pictorial  comparison  of  the  quality  of  the  different  normal  compression
techniques (see Sectons 3.1.1 and 3.1.2) compared to the original (uncompressed) values. This
fgure should be viewed in conjuncton with Table 3, which shows fle siies for the different
techniques.  The fgure, which provides a closeup of  critcal  iones for  different techniques,
shows that the octahedral method provides results which are nearly identcal to the original,
demonstratng its suitability for purpose. 4096 Fibonacci normals, which compress to a similar
level to octahedral normals show a slight degradaton, thus can be discarded. Indeed even
when there are 8192 points on the sphere, the rendering quality is not as good as that of the
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octahedral method.  With 256 Fibonacci points the quality is clearly unacceptable, but as it
does  provide  beter  compression  results,  it  seems  suitable  for  a  stage  of  a  progressive
rendering approach. In terms of quality, it is perhaps unsurprising that the octahedral method
provides such results, as it means essentally discretsing the 3-component normal to 16-bit
precision (8-bits for each axis of the octahedron technique), and this provides much greater
precision than the fbonacci technique.

Table 3 shows the resultng fle siies for compression using the different normal encoding
methods discussed in this paper. When viewing this table in conjuncton with Figure 4, we can
see  that  the  octahedral  normal  encoding  method provides  the  best  balance  of  quality  vs
compression.  The results  also highlight the principal  disadvantage of  the Fibonacci  normal
transmission:  fewer  than  13-bits  precision  (i.e.  8192  possible  normal  vectors)  provides
unacceptable  quality,  and greater  than  10-bit  precision  does  not  compress  as  well  as  the
octahedral  normal  encoding.  Nevertheless,  the  excellent  compression  provided  by  8-bit
Fibonacci precision is useful when generatng lower resoluton versions of the mesh. Based on
this this result, we use the Fibonacci method to encode normals at lower resolutons of our
progressive method.

Table 3: Normal encoding: Effect on flesiie of the use of different methods of encoding the
vertex  normals.  Siies  in  MB unless  otherwise  indicated.  The  numbers  afer  the  Fibonacci
entries refer to the number of points generated on the unit sphere (i.e. maximum number of
possible normals).

Model 11-bit 
Quantsaton

Octahedral Fibonacci 4096 Fibonacci 256

Buddha 5.8 4.9 4.5 1.3
Dragon 4.6 3.9 3.7 3.5
Bunny 0.397 0.330 0.313 0.294

5.4 Compression Comparatve Evaluaton
In this secton, we evaluate our method against the state of the art in single rate compression 
(Secton 5.4.1) and progressive compression (Secton 5.4.2). Note that, for the single rate 
comparisons, we deactvate the progressive component of our algorithm – at no tme is a 
single rate method evaluated against a progressive method. The quantsaton bit-depth (the 
number of bits used to store each positon variable) is set to 11 bits for each method.

5.4.1 Single Rate Techniques
Table  4: Comparison of  single-rate  compression performance for  the happy buddha mesh
between our method (using octahedral normal compression), OpenCTM [29], WebGL-loader
[13],  and Draco  [17].  All  results  are taken afer HTTP giip compression.    *10 submeshes,
decoded in series.

OUR 
(octahedral)

OUR 
(Fibonacci)

OpenCTM WebGL 
Loader

Draco

File Siie (MB) 2.7 2.6 3.5 5.1 1.7
Decompression (ms) 300 300 2000 100* 2055
Decomp rate (Mtris/s) 0.33 0.33 2.2 0.11 3.3
Full download 
@ 8mbps (ms)

3098 2935 5504 5217 3254

Mesh Split No No No Yes No
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Table 4 shows a comparison of two of our methods (using octahedral or Fibonacci normals)
with what we have seen as best previous single rate encoding results. The table shows the
overall comparison, according to the key metrics for web compression discussed in Secton 5.1:
fle  data  siie  (in  megabytes);  decompression  tme  (in  milliseconds);  decompression  rate
(millions  triangles  per  second);  and  total  tme  untl  frst  appearance  (measured  from the
moment  the  page  is  loaded  untl  the  frst  frame  of  the  mesh  is  rendered,  at  a  clamped
bandwidth of 8mbps); and an indicaton of the whether the method requires splitng the mesh
(regardless of WebGL index buffer limitaton).  

As seen from the table, our methods improve signifcantly with respect to all  metrics over
OpenCTM except for mesh splitng. 

Our methods are also beter than those published for WebGL-Loader. It is worth statng that,
since publicaton, the WebGL-Loader method has undergone improvements,  which lead to
compressed  fle  siies  whose  values  are  similar  to  those  obtained  with  our  method.
Unpublished results for the Happy Buddha mesh, using an experimental version of WebGL-
loader, are comparable to ours (2.7Mb for the fnal fle siie), yet it stll relies on the UTF-8 data
encoding and requires splitng of meshes larger than 55,000 vertces.

Table 4 shows that the best performing alternatve technique to ours is Google’s Draco  [17]
algorithm. To beter evaluate the differences between the two techniques, we have carried
out a comparison using a larger dataset (the McGuire 3D dataset, discussed in Secton 5.2.1).
Table 5 presents the mean values for fle siie, decompression tme in JavaScript, and “tme to
display” (tme taken from the moment the fle is requested via HTTP, to the moment it  is
displayed on screen) at two different bandwidths, 50mbps, and 8mbps.

The results show that, while Draco obtains a 31% smaller fle siie on average, it is 2.2 tmes
slower in data decompression. This contributes to our technique outperforming Draco in the
crucial  metric of “tme to display”,  which is  what directly affects the user experience.  The
difference is partcularly marked at higher network bandwidths, as the cost of decompression
outweighs the tme to download the data. 

Table 5: Comparison of our technique vs Google Draco [17], using mean values for the meshes
of McGuire 3D graphics archive [18]. Full results are shown in Annex 1. The ‘beter’ results for
each metric are highlighted in bold.

Method File Siie (MB) Decompression
Time (ms)

Time-to-display
@ 50mbps

Time-to-display
@ 8 mbps

OUR 1.13 281 915 2485
Draco 0.86 626 1473 2997

To beter illustrate how this affects the overall performance, Figure 5 presents a graph which
compares our method with Draco, at different bandwidths. The data shows the overall tme for
a single test model (the Happy Buddha model) to render, from the moment the inital HTTP
request  is  made.  The data agree with  those presented in  Table  5 in  that,  at  8 mbps,  our
technique is marginally faster, yet as bandwidth increases, our method is considerably faster.
This is because our method’s decompression tme (as seen in table 5) is 2.2 tmes faster than
Google’s technique, meaning that, as bandwidth increases, our method provides increasingly
beter results. 
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Fig. 5 Google Draco  [17] vs our method (using octahedral normals), for the Happy Buddha
model. 

Perhaps the biggest limitaton of both Draco and WebGL-loader is their lack of a progressive
approach,  which  seem necessary  for  most  interactve  3D  web  graphics  applicatons. Our
method allows for immediate transformaton to progressive. Let us turn to evaluate this now.

5.4.2 Progressive Methods
Table  6: Comparison of  the tme taken to visualise the Happy Buddha mesh between our
method, 3DHOP [16] and the POP Buffer [14].

OUR 3DHOP POP
Siie (MB) 3.5 3.9 15
3Mbps 0.2/12.3 0.2/12.5 0.8/46.1
5Mbps 0.1/8.2 0.1/7.3 0.2/26.0
8Mbps 0.1/7.3 0.1/7.6 0.2/18.1
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Fig. 6 Progressive  loading of  the untextured Happy Buddha model,  a  comparison of  four
different techniques downloaded at the same bandwidth. Each corner of the fgure shows the
results  from  (clockwise  from  top-lef)  our  method,  3DHOP[16],  POP  buffer  [14],  WebGL-
loader[13]

Table  6 shows a quanttatve comparison of our (progressive method)  results with those of
3DHOP and the POP buffer,  the best ones according to our review. Here we use a simple
metric,  that  of  tme taken to display  the model  at  different  bandwidths.  We present  two
results in each table cell, the frst is the tme taken to display the inital, low-resoluton model,
the second is the tme taken to fnish downloading the complete model. In all cases, the low-
resoluton model is displayed in a fully interactve 3D scene from the moment it appears, and a
user interface informs the user that further data is being downloaded, untl the fnal mesh
appears.  The  results  show  that  POP  buffer  performs  four  tmes  worse  compared  to  our
method and 3DHOP, although the visual effect of increasing resoluton is very elegant. The
3DHOP method is also very elegant, and the results are similar to our method. As mentoned
previously,  3DHOP currently only supports vertex colours,  while ours supports a variety of
materials by implementng a mult-resoluton material system.   

Figure 6 shows a visual comparison between our method, 3DHOP, the POP buffer, and WebGL-
Loader In the fgure, the three meshes shown (from lef to right, for each technique) represent
the rendering of model afer 1 second, 5 seconds, 12 seconds (tme from page refresh). In all
but one case (the POP buffer),  the right-most mesh represents the fnal mesh render.  The
visual  results  of  the three progressive  techniques,  3DHOP,  POP buffer and ours,  are quite
similar in quality. While WebGL-Loader is not a progressive technique, the mesh is loaded in
chunks (refectng the limit of the UTF-8 format), and we include it to show the benefts of
progressive rendering.
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With respect to both 3DHOP and POP buffer, our progressive method improves compression
performance  at  lower  resoluton  through  mapping  vertex  normals  to  spherical  Fibonacci
points.

Figure 7 shows three screenshots of our progressive method loading the Lee Perry Smith head
model (from the McGuire 3D dataset [18]), complete with multresoluton diffuse and normal
maps. The use of Fibonacci normals (lowest resoluton image, far lef) clearly affects render
quality, yet the lower fle siie ensure that this model is displayed on the screen in a mater of
milliseconds, while the higher resoluton data is downloaded.

Fig. 7 Progressive loading of the Lee Perry Smith head model. Lef -> Right: lowest resoluton
mesh, displayed frst, mid-resoluton mesh (with low resoluton texture maps), fnal model and
textures.

5.5 Online Pipeline
In this secton, we compare the tme taken to export the scene to a three.js web applicaton,
with and without our pipeline. Accurate quantfcaton of this tme without using the pipeline
can be difcult as it depends on the siie and complexity of the scene. To address this, we
tested our pipeline with three very different scenes, described in Table 7 – the ‘Batman’ scene
being the most complex, as it features several highly detailed meshes and 14 high-resoluton
textures. Figure 8 shows images of the Cartoon House and Batman scenes, rendered in the
browser. All our measurements in this table were made with Autodesk Maya (both with and
without  our  pipeline)  and  Adobe  Photoshop  for  texture  conversion  (without  pipeline).  To
simplify the comparison, we used the non-progressive version of our pipeline.

Table 8 shows a mean speed increase of 37% when using the pipeline. The standard deviaton
is quite high (34%), as there is clearly a large difference in performance. This is clearly linked to
whether the scene features texture data, as the manual process of scaling textures is very tme
consuming.
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Table 7: Scenes used to measure performance of pipeline

Scene #  meshes
in scene

Total  #
faces

Size
as .obj

Size in .b128
(our format)

Textures

Happy
Buddha

1 1.1M 80MB 2.7MB None

Small
House

27 13,000 1.26MB 88.5KB 4 (albedo); 2048x2048; .tga
format

Batman 4 2.5M 261MB 4.3MB 14  (albedo,  normal  maps,
specular maps); 4096x4096;
.tga format

Fig. 8 The Small House (lef) and Batman4 (right) scenes which were used to test the pipeline.

4 The Batman © Dani Candil 2017. Used with permission.
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Table  8: Comparison of tmes taken to export three different scenes to a pre-coded three.js
web 3D applicaton. All units (other than percentages) are seconds.

Happy Buddha Cartoon House Batman
Step Without 

pipeline
With 
pipeline

Without 
pipeline

With 
pipeline

Without 
pipeline

With 
pipeline

Exportng scene to 
disk

36 65* 13 10* 112 350*

Conversion of 
multresoluton 
textures to web 
format

- - 120 - 420 -

Compression for 
upload

44 - 3 - 251 -

Uploading to server 
@3mbps

66 66 10 10 693 693

Conversion to b128 
format

- 77 - 30 - 330

Modifcaton of 
threejs scene code

60 - 60 - 120 -

Full scene download 
(including textures) 
@ 8mbps

16 3 19 10 608 75

Total time 222 211 226 60 2204 1448
Percentage 
improvement

5% 73% 33%

Mean percentage 
improvement

37% 
(standard deviaton   34%)

* (‘With pipeline’ results include data compression – it is built into the exporter plugin)

6. Discussion
In this  paper,  we have argued about the importance of  a  holistc  view of  exportng of  3D
content for the web. The principal concepts are:

 Exportng a scene for web use presents challenges which differ from those of the non-
web  case,  specifcally  in  the  formats  and  mesh  compression  techniques  required.
Mesh compression, while clearly important, is just one part of complete 3D package to
be processed by the asset pipeline. Texture conversion, multresoluton issues, online-
conversion systems are all  factors that infuence the validity and usefulness of  the
pipeline.

 In additon, the type of mesh compression used should refect the fact that bandwidth
speeds are increasing at a faster rate than browser processing power. Thus, aggressive,
probability based compression techniques lose out in terms of pure performance to
those techniques that prioritse rapid decompression.

We have provided quanttatve and qualitatve results to demonstrate that our compression
methods,  both  single  rate  and  progressive,  improve  upon  existng  results. Moreover,  the
soluton we present in this paper concerns an end-to-end asset pipeline, which allows users to
export directly from their modelling package to a ready-to-use interactve WebGL rendering of

23



the scene; we demonstrate that our pipeline provides clear speed benefts over a non-pipeline
approach.

6.1 Improvement over the state-of-the-art
In  this  paper,  we  have  provided  comparatve  performance  evaluaton  against  three  other
techniques (Table 4) and extended this with detailed comparatve evaluaton against the best-
performing of these techniques (Table 5, Figure 5, Annex 1). Comparatve evaluaton of our
progressive method, against two methods from the state of the art, is present in Table 6 and
Figure 6. Qualitatve evaluaton of the use of the pipeline is presented in Table 8. We now
discuss this evaluaton with reference to the improvement of our work over the state of the
art.

In terms of single rate mesh compression (Tables 4 and 5, Figure 5),  for some years WebGL-
Loader has been widely accepted as the best method for the web, and since its original release
has been improving. Yet it stll relies on the UTF-8 fle format, which, as discussed above, has
several drawbacks. The base-128 varint format we use requires some bit-shifing at JavaScript
level  to  decompress,  but  the  total  decompression  rate  is  stll  greater  than  3M
triangles/second,  that  of  WebGL-Loader.  The  most  important  advantage  of  the  base-128
format is that is permits a 29-bit index buffer, which avoids the need to split the mesh, which
simplifes greatly any further mesh manipulaton or deformaton in the 3D applicaton (for
example,  for  animaton),  and  therefore  is  more  suitable  to  more  complex  interactve  3D
scenes, such as games.

Google recent release of Draco seems to indicate that it has shifed away from purely web-
based mesh compression to a more unifed approach. This has paid dividends as far as the
compressed fle  siies  achievable  with  Draco  are  very  impressive.  However,  the evaluaton
presented in this paper supports one of the central theses of our work: that decompression
speed is more important than absolute fle compression. Our experiments (Table 5, Figure 5,
Annex 1) show that the unavoidable decompression tme of Draco’s JavaScript implementaton
results in a slower user experience at at all but very modest bandwidths.

Indeed, at all bandwidths, it can be argued that a progressive approach  (Table 6, Figure 6)
provides a more optmal user experience [9], as the user obtains an interactve rendering of
the scene in very litle tme. While our approach is perhaps not quite as visually atractve as
that of the POP buffer - which constantly updates the mesh in small increments, the results
suggest that this does not merit the large overhead in fle siie, which leads to a longer tme to
download the fnal mesh. Our soluton presents only three levels of detail; and this reduced
amount of data, coupled with our compression of atributes, provides a faster experience for
the user. 

The 3DHOP method achieves a speed similar to ours - supportng a good user experience - by
reparameteriiing the mesh according to a patch-based method. This also provides an elegant
and  signifcantly  faster  update  soluton.  Yet,  3DHOP  does  not  currently  support  texture
coordinates, and the recalculaton of texture coordinates for the reparameterised mesh does
not seem to be straightorward. Furthermore, any mesh deformaton, such as blend shapes or
bone-weight animaton, would require considerable recalculaton for any patch-based method.
Thus,  3DHOP,  conceived  for  digital  heritage,  seems  unsuitable  for  digital  entertainment
applicatons. 
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6.2 Future Work
Our implementaton of animaton using mesh compression is at its inital stages, but it is worth
discussing these efforts. The direct mapping between original and quantied vertces of our
method should make any deformaton relatvely straightorward to encode accurately. Indeed,
blendshape, or morph target, animaton, should be relatvely straightorward to add to our
single rate compression technique, as it is simply a case of delta encoding blend offsets for
those vertces which require it. For our progressive technique, it is slightly more complex, as
we would need to maintain a mapping between the vertces across resolutons, in order to
ensure  that  the  correct  vertces  in  the  lower  resoluton  meshes  are  morphed.  Skeletal
animaton offers further challenges. While skeleton structure and bone transformatons can be
encoded fairly easily, ensuring that the weights for each bone are accurately represented for
lower resoluton meshes is an interestng problem. 

In terms of pure compression, we intend to research re-triangulaton algorithms that prioritse
the longest possible chains of sequental triangles, which clearly beneft our paired-triangle
index buffer compression. We plan to implement predicton techniques (such as parallelogram
predicton)  to  improve  geometry  compression,  and  investgate  methods  to  store  multple
texture coordinates per vertex, to reduce the compression overhead at texture seams.

A potental weakpoint of our pipeline is that it does not support view-dependent downloading
of  higher resoluton data. A further potental improvement,  then, would be to incorporate
spatal parttoning and download higher resoluton data only when the viewport is focused on
a partcular area of the mesh. This would enable our system to deal with meshes and scenes
containing many millions of polygons.

An interestng comparison of our work is 

Finally, we will implement the encoding algorithm in JavaScript, allowing users to beneft not
only from faster download of their assets from the web, but potentally from faster upload too.
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Annex 1: Single rate compression using McGuire 3D dataset
This table shows the full data for each of the meshes [18] used to compare our single-rate compression algorithm vs that of Google Draco [17]. This data is
used to provide the mean values in Table 5 above.  Compressed Size refers to the siie of the fle downloaded from the server, afer giip compression.
Decompression Time is the number of milliseconds taken to convert the raw compressed data untl it is added to the Three.js scene. Time to display refers to
the milliseconds taken to download and display a model (measured from the moment the HTTP request is made, to the moment the uncompressed mesh is
added to the Three.JS scene. The table contains values at clamped bandwidths of 50 mbps and 8 mbps. Some meshes in the dataset were not used, the
reasons are included in the table. 

Model .obj siie
(MB)

OUR DRACO
Compressed
Siie (MB)

Decompression
Time (ms)

Time to
display @50

mbps

Time to
display @8

mbps

Compressed
Siie (MB)

Decompression
Time (ms)

Time to
display @50

mbps

Time to
display @8

mbps
Happy Buddha 90 2.7 307 1412 3098 1.7 2055 3189 3254

Stanford
Bunny

13.4 0.641 211 793 1427 0.328 312 915 1087

Cornell Box Not used: geometry too simple
Clouds Not used: geometry not suitable

Conference
Room

26.6 0.406 130 544 947 0.109 378 1074 1373

Crytek Sponia 20.6 1.1 293 1149 2380 0.72 579 1246 2525
Cube Not used: geometry too simple

Dabrovic
Sponia

5.5 0.173 107 352 541 0.114 110 835 1442

Chinese
Dragon

45.3 2.6 466 1465 5134 1.6 1130 2508 5400

Erato Not used: DRACO failed to load input mesh
Fireplace
Room

27.3 0.44 153 458 1082 0.916 494 1332 3516

Gallery 106.9 3.6 586 1693 6982 1.2 1319 2398 5335
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Hairball 230.5 6.1 913 3253 11732 4.8 3959 6424 9720
Holodeck 0.305 0.024 43 208 204 0.016 23 498 1274
Horse

Chestnut Tree
35.7 1.1 423 916 2521 1.9 851 2311 4734

Indonesian
Statue

90.1 3.7 543 2333 7172 3.9 1819 3496 9331

Lost Empire 8.3 0.339 472 786 1567 0.662 822 1450 2623
Living Room Not used: DRACO failed to load input mesh
LPS Head 1.4 0.103 126 400 513 0.028 33 676 1844
Mori Knob 0.93 0.058 52 202 320 0.032 35 656 1487

Mitsuba Knob 6 0.296 98 480 781 0.124 133 709 1733
Power Plant Not used: geometry too large for real-tme rendering
Road Bike Not used: DRACO failed to load input mesh
Rungholt Not used: geometry too large for real-tme rendering

Salle de bain Not used: geometry too large for real-tme rendering
San Miguel Not used: both DRACO and OUR failed to load input mesh
Scrub Pine

Tree
0.047 0.049 12 120 134 .006 9 528 1270

Serapis Bust 13 0.575 184 727 1458 0.509 341 900 2359
Sibenik

Cathedral
5 0.317 380 949 1177 0.164 150 457 1100

Sports Car 16.4 1.1 450 1558 2851 0675 470 1097 1854
Teapot 0.849 0.043 98 258 503 0.035 42 800 1453
Vokselia
Spawn

Not used: both DRACO and OUR failed to load input mesh

White Oak
Tree

3.9 0.311 118 451 760 0.286 134 628 1477

Amaion
Lumberyard

Not used: geometry too large for real-tme rendering

Mean 1.130 280 915 2443 0.95 625 1473 2
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