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Abstract —Conventional image steganalysis mainly focus on presence detection rather than the 

recovery of the original secret messages that were embedded in the host image. To address this issue, 

we propose an image steganalysis method featured in the compressive sensing (CS) domain, where 

block CS measurement matrix senses the transform coefficients of stego-image to reflect the statistical 

differences between the cover and stego- images. With multi-hypothesis prediction in the CS domain, 

the reconstruction of hidden signals is achieved efficiently. Extensive experiments have been carried 

out on five diverse image databases and benchmarked with four typical stegographic algorithms. The 

comprehensive results have demonstrated the efficacy of the proposed approach as a universal scheme 

for effective detection of stegography in secure communications whilst it has greatly reduced the 

numbers of features requested for secret signal reconstruction. 

Keywords: Compressive Sensing (CS); Image Steganalysis; Secret Signal Recovery; Secure 

Communication. 

 

1. Introduction 

Aiming to detect the presence of the embedded secret signal (also namely payload) from the host 

images coming from a known source, steganalysis has been extensively studied in the last decade. In 

steganography, the media for embedding a message is denoted as cover, which can be texts or images. 

Also it is defined a stego-object is the cover with the secret message embedded. Often, the task of 

steganalysis can be formulated to a binary classification problem to distinguish between the cover and 

the stego-objects, where we are more interested in recovering the secret message.  

In general, existing approaches for steganalysis include two main steps, i.e. feature extraction and 

classification based decision making [1]. For feature extraction, a set of handcrafted features is often 

extracted from each image to capture the impacts of embedding operations [2], which usually 

determines the success of steganalysis. However, this can be complicated due to the lack of accurate 

models of natural images, which has facilitated various feature-based steganalysis methods. The most 

reliable feature design paradigm starts with computing a noise residual and then modelling the residual 

using conditional or joint probability distributions of adjacent elements [2,3,4,5,6]. In [7], Kodovsky et 

al proposed to use a completing feature set to solve the relation between feature residuals and 

complementarity in blind steganalysis. However, the completing feature set is unable to work 

efficiently with some modern steganalysis functions. To boost feature selection, a feature fusion 

boosting-based algorithm was proposed in Dong et al [8], which shows a higher accuracy with 

constructed classifier weights for selecting features. However, the algorithm does not consider the 

relationship synthetically between selected features, which also suffers from high computational cost.  
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To achieve better sampling of features, compressive sensing (CS) theory has been proposed recently, 

which has provided an efficient solution for unifying sensing and compressing feature signal by using a 

simplified linear measurement. Actually, CS can help to reach the best trade-off between the security 

and robustness as described in [9], [10], [11], [12]. In Wang et al. [12], a CS domain scheme is 

proposed for integrated secure watermark detection and privacy preserving storage of multimedia data. 

By combining Least Significant Bit (LSB) and Discrete Cosine Transform (DCT) [30], two new 

CS-based methods are proposed in [13] for the detection of steganographic content.  

In this paper, a CS-based steganalysis approach is proposed, which is mainly focused on the 

recovery of the secret messages. The aim of the selected CS-based feature space is to improve the 

accuracy of classification between cover or stego so as to further reconstruct/recover the original signal 

of the hidden messages. The proposed work is applied on images generated from five steganography 

tools, i.e. nsF5, PQ, Outguess JPHS, HUGO. The features are extracted from DCT and DWT feature 

vectors using block CS (BCS) measurement matrix in [14], respectively, where the results from BCS 

are compared with other state-of-the-art approaches for benchmarking. 

The remaining paper is structured as follows. In Section 2, the proposed CS-based steganalysis 

framework is presented, which include feature measurement, measurement matrix design, hidden 

signal extraction and recovery of secret signal. In Section 3, the experimental results and analysis are 

reported. Finally, some concluding remarks are drawn in Section 4. 

 

2. The Proposed CS-based Steganalysis Framework  

As steganography may cause image content changed imperceptibly, it is expected such changes can 

be detected by using transform domain coefficients in a fine scale, where CS can play an important role 

to characterize the changes from the local transform coefficients introduced by the embedded secret 

messages. Therefore, we aim to BCS to detect DCT or Discrete Wavelet Transform (DWT) 

steganographic embedding data in images, especially to reconstruct the original secret signal. As 

illustrated in Figure 1, the proposed framework contains five modules, i.e. CS domain feature 

extraction, measurement matrix design, hidden signal extraction and recovery of secret signal as well 

as performance assessment. These are detailed in the next sections. 

 

 

 

 

 

Figure 1. Flowchart of the proposed framework 

2.1. The Measurement of the Feature Data in CS Domain 

In the proposed framework, for simplicity we assume the total numbers of pixels in the input 

image X is NN  . The image X is divided into four sub-images denoted by 

X1, X2, X3 and X4, and all the four sub-images are divided into n1 × n2 blocks. For the given 

NN   image X, the subsampling procedure is given as follows: 
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where n1, n2 = 1,2, … , INT[
N

2
]. 

For each block of the four sub-images, it is transformed by using a sparse basis matrix Ψi, which 

can be DCT or DWT according to the distinction of image types [15], respectively. Accordingly, four 

blocks of transform coefficients can be formed as 4,3,2,1, iX i . Let 
21 nn   be the blocking 

measurement matrix of the CS, it can be deployed to sense these coefficients independently within each 

block. The resulting subsampled measurement iY  can be decided by  

4,...,1,
21

  iXY inni          (2) 

where the length of the signal iY  is m, and 
21 nn  is a 𝑛1 × 𝑛2 measurement matrix. Fig. 2 shows 

sub-sampling process for image signal in CS domain. 

 

 

 

 

   

 

 

 

 

 

 

In Fig. 2, for each sub-image block, the number of measurement samples can be determined as 

M=  Nnnm /21 , where M is the size of the feature samples required by the CS measurement for 

the whole image. In this way, the fusion measurement matrix   for the CS has a block-diagonal 

structure as follows:  

][
21 nndiag                                 (3) 

The overall CS-based sub-sampling technique above is called block-CS (BCS) [14]. This process 

is simply a random linear projection, which can be achieved by the inner product operation of the two 

corresponding elements between sparse matrix Ψi and the measurement matrix 
21 nn  . According to 

the CS theory [15, 16], the selected 
21 nn   can be incoherent with Ψi, and this has been formalized 

into the restricted isometry property (RIP) [15]. Since the sparse basis Ψi is a type of DCT or DWT 
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Figure 2. Sub-sampling process of the CS-based feature data 



matrix, the constraint can be solved by designing an appropriate measurement matrix
21 nn   which 

will be discussed in a later subsection. Finally, the fused feature signal Y is generated by combining the 

sub-sampling values Yi from the measurement matrix 
21 nn   of each sub-image block. In this case, 

the signal Y is as follow:  
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When applying BCS to two adjacent sub-images, in total 2m measurements 𝑌𝑘
𝑖  are produced, 

where k=1,2,3 or 4, 1 ≤ 𝑖 ≤ 𝑚. As proved in [14], ~96% of the image energy of X can be preserved in 

the first 1000 transform coefficients, or ~1.5% of 65536. Here, we choose K1 coefficients from the 

transform domain and K2 coefficients from the sparse domain, provided that K1+K2=M. We divide 

measurements 𝑌𝑘
𝑖  into a pair of groups 𝑌𝑘1

𝑖  and 𝑌𝑘2

𝑖 , k1,k2 = 1,2,3, or 4 and denoted as (𝑌𝑘1

𝑖 , 𝑌𝑘2

𝑖 ). 

2.2. Designing of the Measurement Matrix 

   The measurement matrix Φ is a key factor to obtain the CS-feature signal. Cands et al have proved 

that the Gaussian random matrix statistically satisfies the RIP requirement [14][17]. The main criteria 

for design the CS matrix Φ is to enable the unique identification of some featured signal of image X 

from its measurements 𝒀 = 𝚽𝑿. When considering K-sparse signals ∑ 𝑿K , we should have M > K  

for the number of measurements. Here, the sparsity level K is given by the coherence K = O(√𝑀), and 

the matrix Φ should have its columns corresponding to the indices in signal support Ʌ = supp(𝑋).  

As suggested in [26], we first check the properties of Φ to ensure that different measurement 

vectors Φn1×n2
Xi ≠ Φn1×n2

Xi−1 are produced by distinct sub-image signals Xi, Xi−1ϵ𝐾. This means 

that each vector 𝑌𝑘1

𝑖 ϵR𝐾1 and  𝑌𝑘2

𝑖 ϵR𝐾2  is to be matched to no more than one vector 𝑋𝑖𝜖 ∑ 𝑋𝐾  

when we have 𝒀 = 𝚽𝑿. These prior properties for the CS matrix actually help to guarantee the 

uniqueness of the obtained error-free measurement vector Y. This is quite important for secure 

communications [27]. 

2.3. Extraction of the Hidden Signal 

After subsampling the test image X into four sub-images 𝑋1, 𝑋2, 𝑋3, 𝑋4 and applying the DCT or 

DWT onto the selected two sub-images, we can obtain the transformation coefficients matrix 

]2/[,...,2,1,;4,3,2,1),,( 2121 NINTkkinnX i  . The hidden signal can be extracted as follows. 

1) Turn iX  into a sparse representation X̅i by using a sparse base Ψi, i.e. X̅i = Ψ𝑖X𝑖; 

2) Sort the sparse vector 𝑋̅𝑖   in descending order according to its signal support Ʌ = 𝑠𝑢𝑝𝑝(𝑋), 

where the first 1500 coefficients are selected for compressive sensing; 

3) Let the extracted bit from the secret message be 𝑤, which can be determined in Eq. (5) below.                
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where 𝑤 has a value of 0 or 1, and 𝑇𝐷1
 and 𝑇𝐷2

  are two thresholds for data extraction. In our 

framework, the two thresholds are calculated using the SSIM algorithm [17] between two successive 

residual reconstructed sub-images.    

2.4. Recovery of the Secret Signal in the CS Domain 

Assume the size of the hidden message W is s, i.e. 𝑊 = [𝑤1, 𝑤2, … , 𝑤𝑠], 𝑤𝑠𝜖𝑤. By repeating the 

aforementioned detection process in Eq. (5), the embedded security message W can be extracted bit by 

bit. Herein a L2 penalty is applied on the norm of 𝑤 for predicting the hidden message of a stego- 

image, where the secret bit 𝑤 is estimated by: 

𝑤𝑠 = arg min
𝑤

||𝑌𝑖̅ − Φ𝑛1×𝑛2
𝐻𝑖𝑤||2

2 + λ||Г𝑤||2
2                    (6) 

where 𝐻𝑖  is the hypothesis matrix from an initial reconstruction 𝑋̅𝑖 of the cover image iX  using 

BCS-SPL in [14], 𝑤 is the extracted secret data bit from Eq. (5), and Г is known as the Tikhonov 

matrix for prediction as initially proposed in [18]. The term Г allows the imposition of prior 

knowledge to our approach, and the parameter  λ controls the regularization.  

In the proposed approach, less weight is assigned to the hypotheses which are most dissimilar 

from the sub-image blocks than those from similar ones. Specifically, we propose a diagonal Г by  

Гj,j = ||𝑌𝑖̅ − Φ𝑛1×𝑛2
𝐻𝑗,𝑖||2

2                                  (7) 

where 𝐻𝑗,𝑖 is the columns of 𝐻𝑖  , j=1, 2, …, k.  

For each block, 𝑤𝑠 can be calculated directly by the closed form solution, 

𝑤𝑠 = ((Φ𝑛1×𝑛2
𝐻𝑗,𝑖)

𝑇(Φ𝑛1×𝑛2
𝐻𝑗,𝑖) + 𝜆2Г𝑇Г)−1(Φ

𝑛1×𝑛2
𝐻𝑗,𝑖)

𝑇𝑌𝑖̅           (8) 

The calculated residual after the projection will become:  

𝑅 = ||𝑌̅𝑘2

𝑖 − 𝑌̅𝑘1

𝑖 ||2                                       (9) 

which means that R should be a condition of iteration end in formula (8) when recovering the secure 

signal of hidden images. 

 

3. Experiment Results and Analysis 

3.1 Datasets 

In our experiments, image sources are BOSS 2, UCID, DI101 and HYBRID image databases 

respectively, where the HYBRID database contains images from all three databases above. We have 

prepared these image databases with varying image patterns of 2000 jpeg images with resolution 

ranging from 800×600 and 1024×768. All the images were resized to 640×480 and converted to grey 

scale. Each cover image is embedded with varying message capacities to generate 2000 stego images 

using five popular embedding algorithms F5 [19], PQ [20], Outguess [21], JPHS [21], and HUGO [22]. 

The embedding rates are 0.15 bpp-0.25 bpp (bit per pixel) respectively. 

Feature vector of 274 DCT features and 72 wavelet coefficient features are extracted from all 

covers and stego images by measurement samples of B×B dense Gaussian matrix in [14], and with 

B=32, 16 respectively. Total generated 32000(4000×4×2) images. 

For experiment I, we have selected 1200 original cover images and 1200 equivalent stego images 

for training dataset, creating a dataset of 2400 images for 4 embedding algorithms and 2 sets of feature 

vectors (2400×4×2=19200). The remaining 800 images are used to generate a test dataset of total 



1600×4×2=12800 images with different embedding capacities that used to evaluate the performance of 

the generalized model which generated by training dataset. 

In the next three sub-sections, we design separate experiments to evaluate the performance of the 

proposed approach in terms of the detection accuracy of the hidden signal, the effectiveness of the 

extracted features and the quality of the recovered secret signals, respectively. Both qualitative and 

quantitative criteria are used for subjective and objective assessment. Relevant results are summarized 

in detail as follows. 

3.2. Comparison of the Detection Accuracy 

    We compare our proposed method with the following three steganalytic algorithms: 

(1) Optimized feature extraction for steganalysis (OCF). In [23], Wang et al. extracted both PDF 

and moment features from wavelet and prediction error subbands. Also demonstrated this algorithm 

was superior to the previous detectors. Contrary to the original features, we extracted 104-dimensional 

(104D) features in experiment I. 

(2) Textural features based universal steganalysis [local linear transform probability density 

function (LLTPDF)]. In [24], Li et al. extracted a 110-dimensional (110D) textural feature set from the 

PDFs of the LLT coefficients for universal steganalysis. Compared with the state-of-the-art 

steganalytic feature sets, it has proved that the LLTPDF performed best in most situations. 

(3) Steganalysis by subtractive pixel adjacency matrix (SPAM). In [1], Penvy et al. extracted a 

686-dimensional (686D) feature set from the second-order subtractive pixel adjacency model with a 

different threshold T =3, and demonstrated that it outperformed the previous detectors. 

     Furthermore, the area under the receiver operating characteristic curve (ROC) is used to evaluate 

the steganalyzer performance. A ROC curve displays the true positive probability 

PTP (the fraction of the stego images that are classified correctly) in terms of the false positive 

probability PFP (the fraction of the cover images that are misclassified as stegoimages). 

We apply the area under the ROC curve (AUC) to measure the overall goodness of the ROC 

curve, which is calculated by the formula: 

AUC = ∫ 𝑃𝑇𝑃(𝑃𝐹𝑃)d𝑃𝐹𝑃

1

0
                                   (10) 

The value of AUC equals to 1 [PTP(PFP) =1] for any PTP ∈[0,1] represents perfect detection; AUC = 

0.5[PTP(PFP) = PFP] corresponding to random guessing has the worst ROC curve. 

Figure 3 shows all AUCs of the steganalyzers using our proposed CS algorithm, OCF, LLTPDF, 

SPAM features calculated on four databases with five steganographys. In all cases, the steganalyzers 

employing our proposed CS features (subrate of BCS S=2) performed the best, which demonstrates that 

our proposed CS steganalyzers improve the detection accuracy among the low embedding rate scenario, 

such as the 0.25 bpp. In addition, the image data of DI101 and BOWS2 come from the natural images 

showed better detection performance than UCID, which validates again that our presented CS features 

satisfy with the characteristic of the real images. 

 



 
 

(a) AUCs of detection on the UCID database    (b) AUCs of detection on the DI101 database 

 
    ( c) AUCs of detection on the BOWS2 database      (d) AUCs of detection on the hybrid database 

 
Figure 3. AUCs of steganalyzers using proposed CS algorithm (subrate S= 2), OCF, LLTPDF, SPAM 

features calculated on four databases and five steganographys with 0.25 bpp embedding, respectively. 

 

3.3. Comparison of the Extracted Features 

    To contrast the impact of features numbers for the steganalyzers conveniently, we extract 2000 

stego images using F5, PQ, Outguess, and JPHS embedding algorithms with 0.15 bpp embedding rate, 

respectively. Meanwhile, we use the support vector machine (SVM) to train all features to derive the 

best fitness function as it has demonstrated good performance in various applications [28][33]. Figure 4 

shows two statistical results of average feature extracted from four image databases in CS-DCT domain 

[38] and CS-SVM domain, respectively. Then we have applied our improved nature inspired CS 

algorithm and compared with optimized DPSO algorithm. The number of iterations for each algorithm 

is 35 and population size is 30. In this case, the thresholds are 𝑇𝐷1
= 1, and 𝑇𝐷2

= 3, respectively. 

 3.3.1. DCT Features Description  

In Figure 4(a), a feature set comprising of 193 features derived from DCT coefficients and 81 

features derived from Markov model of DCT plane could achieve good performance independently 

with certain limitations. To overcome the limitation of single feature set method, such as biased 

detection for different embedding algorithms, the DCT and Markov features were merged to produce a 

274- dimensional feature vector. 
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3.3.2. DWT Features Description 

   The proposed scheme extracted 72-dimension feature set from three level quadrature mirror filter 

wavelet coefficients in Figure 4(b). Four statistical moments: mean, variance, kurtosis and skewness 

are extracted from wavelet coefficient of each nine high-frequency subbands, generating 36 features. 

Another set of 36 features are extracted from predicted errors of nine high frequency subbands, and 

finally form 72- dimensional feature vector for steganalysis. In all these algorithms, fitness function is 

obtained by training the selected features with SVM [3] Gaussian kernel and averaging the accuracy by 

10-cross validation. Figure 4 reveals that the proposed CS algorithm reduces the DCT features by 

almost 67% and DWT by 38% in Figure 4 (a) and Figure 4(b), respectively. The reason a higher 

percentage of DCT features is reduced is due to the fact that DCT features contain more redundancy 

than DWT features.  

 

      

(a) DCT features                                  (b) DWT features 

Figure 4. CS-based features for different steganography algorithms with 0.15 bpp embedding rate. 

3.4 Quality of the Recovered Secret Signal  

   In our approach, we tried to find a CS-based criterion for secret signal recovery with extracted 

features from stego images. A final experiment is performed by combining four steganographic 

algorithms and applying the most effective features sensed by BCS measurement matrix, and 

recovering hidden signals by multi-hypothesis predictions with a Tikhonov regularization in the CS 

domain [18] [29]. The original signals that are hidden in cover images are 2-D grey fingerprint images 

with a size of 128×128 from the FVC2004 database (DB3) [25]. Figure 5 shows the reconstructed 

fingerprint images with 40 features using different algorithms. We can observe that reconstructed 

fingerprint images from nsF5 can achieve the best, closest to the original signal with 40 features were 

detected by BCS as compared to other embedding algorithms, and JPHS is the weakest among 

embedding algorithms. 

 

               

(a) Original image  (b) Recovery image from nsF5 (c) Recovery image from PQ (d) Recovery image from JPHS 

    Figure 5. CS-based reconstructed fingerprint images with 40 features.  

 

All above experiment results demonstrate that the following three goals are achieved: a) proposed 

CS-based algorithm increases detection accuracy; b) the algorithm reduces the number of features to be 

trained by SVM classifier; c) the algorithm can efficiently recover the secret signal with fewer features 
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extracted from stego image.   

 

4. Conclusion 

We have addressed an efficient recovery method of secret signal for image steganalysis in this 

paper. Various statistical features from DCT, DWT, and CS domain have been developed from the 

stego image and used to investigate secret signal recovery algorithms combining multi-hypothesis 

prediction with Tikhonov regularization. The experiments are performed in five advanced embedding 

algorithms nsF5, Outguess, PQ, JPHS and HUGO. Extensive experiments show that proposed 

CS-based algorithm improves the detection accuracy by 5-10% and reduces the features set 

dimensionality by almost 67% for DCT features and 37.5% for DWT features, and efficiently recover 

the secret signal with fewer features extracted from stego image.  

For future work, efficient processing can be applied including gradient-based subspace feature 

extraction [31] and saliency detection [34]. Image enhancement to ensure the quality of the recovered 

signal can also be applied [32][36]. In addition, more state-of-the-art optimization algorithms will be 

explored to search the best fitness function such as gravitational search algorithm [35] and deep 

learning [37] in this context.  
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