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Abstract

In this digital era, one thing that still holds the convention is a printed archive. Printed
documents find their use in many critical domains such as contract papers, legal tenders
and proof of identity documents. As more advanced printing, scanning and image editing
techniques are becoming available, forgeries on these legal tenders pose a serious threat.
Ability to easily and reliably identify source printer of a printed document can help a lot
in reducing this menace. During printing procedure, printer hardware introduces certain
distortions in printed characters’ locations and shapes which are invisible to naked eyes.
These distortions are referred as geometric distortions, their profile (or signature) is
generally unique for each printer and can be used for printer classification purpose. This
paper proposes a set of features for characterizing text-line-level geometric distortions,
referred as geometric distortion signatures and presents a novel system to use them for
identification of the origin of a printed document. Detailed experiments performed on a
set of thirteen printers demonstrate that the proposed system achieves state of the art
performance and gives much higher accuracy under small training size constraint. For
four training and six test pages of three different fonts, the proposed method gives 99%
classification accuracy.

Keywords: Image Analysis, Document Authentication, Printer Forensics, Document
Forgery, Security, Pattern Recognition.

1. Introduction

With the rapid rise in advanced and sophisticated technologies, the printing industry
has also witnessed much progress in the past decade. It has also coincided with the
digitization of printed materials, but printed documents are still extensively used for
many critical applications. The Confederation of European Paper Industries (CEPI), in
its preliminary statistics report [1], estimates 410 million tons of paper production for the
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year 2016 which has risen almost steadily over the past 15 years. Moreover, a research
based on a global bottom-up model predicts that the global annual paper consumption is
expected to rise to more than 600 million tons by the year 2030 [2]. Nonetheless, paper
still serves an important purpose in various domains such as banks and legal tenders
where it is hard to replace due to security concerns, time constraints, cost, and ease of
use.

The total number of cheques that were cleared by the cheque clearing company of
England and Wales in the year 2016 stood at more than 40 billion [3]. Also, the judicial
system still runs on printed documents, and it would take a long time to replace the use
of paper in developing countries. On the other hand, with new and refined technologies it
is easier to forge documents, and hence there is a rising need to ascertain the authenticity
of a printed document.

Researchers have shown a keen interest in developing automated systems to authenticate
the genuineness of a printed document in question [4] (Section 2). While trying to make
sure that a printed document is authentic, source identification of that document plays
an important role [5, 6, 7, 8, 9, 10]. Source identification is also required in providing
clues and leads in several criminal cases and in pinpointing the source of leakage of secure
documents, counterfeiting, and forgery.

While printing a document, characters undergo some translational distortions about
their initial locations [4]. Along with it, the character orientation is also affected by
rotation distortion or skew up to ±3% and character size may also be compressed or
expanded by around 2% [11]. This combination of character translation and rotation
distortions is referred as geometric distortions (Section 3). These distortions are printer
specific i.e. they vary across printers and depend on its make and model [6]. It is worth
noting that translational and rotational distortions may also be introduced due to manual
errors while printing and scanning. These distortions are usually uniform across the page
and are not peculiar to a printer. The system proposed in this paper compensates such
distortions during the pre-processing and pattern recognition stages. On the other hand,
geometric distortions that can serve as printer’s intrinsic signatures are location specific,
but their change can be assumed to be fairly gradual across the page along with the
printing direction.

This paper presents a novel system for printer classification using intrinsic signatures
from character-level geometric distortions. Initially, an input scanned image undergoes
a well-designed preprocessing which helps in minimizing distortions produced due to
manual errors or errors from other sources which are not part of printer specific signature.
In addition to the feature extraction stage, the proposed pre-processing stage is a major
contribution of this paper. Character locations are then identified using optical character
recognition followed by estimation of translational and scaling distortions of each printed
character about its reference digital copy. These distortion values are used to estimate
feature vectors corresponding to each printed line which are used for classification using
support vector machine (SVM) classifier (Section 4). We have created a custom database
of 13 printers for evaluation of the proposed method (Section 5.1). The database consists
of English text documents printed from both laser and inkjet printers. Various experimental
results show that the proposed method outperforms state-of-art techniques for printer
classification (Section 5).
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2. Related Works

Traditionally, source printer identification from hard copy documents is done using
chemical analysis of ink [12, 13]. Over the past decade, digital image processing based
systems are also evolving for source printer identification/classification using printed
documents. Printer classification is carried out using unique print signatures namely
extrinsic and intrinsic [14]. Extrinsic signature involves embedding an external signature
in every printed document. Source printer classification and forgery detection can be done
using this hidden information. In contrast to extrinsic signatures, intrinsic signatures are
inherent to a printer due to different hardware and software involved in producing its
output, are content independent and are unique for a printer [9]. These are invisible
to naked eyes and are detected by scanning a printed document at high resolution and
applying image analysis to extract features. Features proposed in this paper are based
on intrinsic signatures, and previous works related to same are discussed in this section.

Some of the early works were based on analyzing the quality of printed documents to
discriminate printing technologies [15]. Authors introduced several print quality metrics
such as line width/raggedness, over spray, dot roundness/perimeter and number of
satellite drops. Using these metrics, printing technologies were quantitatively analyzed
in terms of statistically meaningful number of lines, halftone dots, and text features’
parameters. These parameters were used to differentiate between digital and impact
printing technologies. It is intuitively clear that for evaluation of these metrics, high-resolution
document scanning is inescapable. Another approach involving high-resolution scan
(2400 dots per inch (dpi)) was proposed in [16], [17], [18], [19] and [20]. This system
explored banding artifacts as printer specific feature. The artifacts appear as alternating
light-dark bands perpendicular to the printing direction and are due to quasi-periodic
fluctuations in printing process direction. Banding frequencies for different printers were
measured by printing mid-tone gray level patches created with line fill pattern. Banding
was then modeled from actual document, to extract intrinsic parameters. However, the
technique was suitable only for electrophotographic printers.

Identifying document source is an integral part of forgery detection, which was utilized
in [21]. A feature vector for each character was formed by using four qualities: line edge
roughness, area difference, correlation coefficient and texture. A character-wise decision
was taken and used to detect forgeries in the test document.

Printed document degradation and noise was utilized by [22, 23, 24] for content
independent character based printer identification. Document image degradation while
printing was utilized as the main source of evidence by [22], from which four discriminative
characteristics were identified: image noise and artifacts, character edge roughness,
character edge contrast, and uniformity of printed character area. These characteristics
were captured by statistical features related to noise, gradient, DCT, and multi-resolution
wavelet analysis. A system using the difference in edge roughness for distinguishing laser
and inkjet printed documents was proposed by [23]. Printed character edge roughness
was estimated along the vertical edge by taking the standard deviation of pixel gray
values. Distinctive noise introduced due to manufacturing imperfection was utilized
by [24] for printer identification. These content independent techniques are sensitive to
toner density and noise [9] and their performance also degrades if the document has
partial content. With the development in technology, the noise spread of inkjet printers
has reduced thereby reducing the applicability of these techniques in the modern scenario.
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Geometric distortion features are more robust compared to content independent
character level features, as they are independent of toner density. These intrinsic features
are not affected by partial content [9]. Various techniques are available which had utilized
geometric distortion but the scope of each method is restricted by various constraints.
[25] analyzed geometric distortion in documents to classify different electro-photographic
printers. A 2-D (dimensional) distortion displacement vector for each halftone dot
position before and after printing is obtained and a collection of these vectors was used
to form distortion signature for the printer. Correlation measure was used for signature
similarity assessment. However, the technique primarily focuses on halftone images
and has no mention of printed documents with text/characters only. Page distortion
was modeled by [6] using projective transformation, based on the fact that geometric
distortion can turn ideal parallel lines into intersecting ones. Character location from
reference and printed document was used to find eight coefficients of projective transformation.
Out of these eight coefficients, four coefficients which denote intrinsic features of a
printer were used for laser printer classification. The technique lacks skew and/or offset
compensation for manual mishandling while printing and scanning and is also limited to
printed pages in specific languages with equispaced characters printed on them.

Geometric distortion features were further utilized by [4, 9] for forgery detection.
Distortion mutation of geometric parameters was used in [4] for detection of forged
characters in a printed document. After creation of reference document using OCR and
rotation correction using Hough transform, translational distortion was estimated for
the printed characters. Page-level geometric distortion features based on text lines were
used by [9]. These included page text line slope (PTLS) and page text line interval
(PTLI) as the horizontal and vertical features respectively. Concatenating slope of each
best fitting text line in the document gives PTLS and concatenating vertical distance
between adjacent lines gives PLTI. Based on these features, Euclidean distance was used
as the similarity measure for classification. However, PTLS is sensitive to the presence
of smaller lines, and PTLI requires the document to have a single paragraph.

Our proposed method caters to the shortcomings of above geometric distortion based
techniques by introducing a novel set of features based on character-level distortions,
preprocessing involving correction of manual mishandling, and creating a large dataset
of English alphabets with multiple paragraphs in a page including small text lines as
well. Proposed method performs row-level (classifying each printed line separately)
classification, which is more versatile compared to existing page level accuracies reported
on various datasets as this row-level (or line-level) classification scheme can also be
extended to forgery identification in a printed document if one or more rows are forged.
Amongst the existing geometric distortion based methods, projective transformation
model based method presented in [6] is closest to the proposed system and hence it
is used for comparison with the proposed system.

3. Geometric Distortion Features

This section provides a detailed description of geometric distortions in printed documents
with sample illustrations from our database. Most of the commonly used electronic
text documents in various domains such as legal paperwork, do not contain complicated
formatting. These documents mostly contain text lines which are parallel to each other
and have uniform spacing between them. Printing an electronic document involves a
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lot of miniature hardware equipment, and slight variations in different components of a
printer might introduce distortions in a printed document. Most of the modern printers
have inbuilt quality control mechanisms, and these variations in a printed document
compared to its electronic version are small enough to be observed by naked eyes. As
the primary objective of these printouts is to convey information to a human reader,
printer manufacturers do not build mechanisms for correcting those printing defects
which are not noticeable to naked eyes. However, when a printed document is scanned
at high resolution, distortion in locations of printed characters as compared to their
corresponding locations in the electronic version could be observed. The printed text
lines undergo distortions and thus remain no more parallel and have non-uniform spacing
between them. This distortion in printed documents relative to their electronic versions
may be in the form of translation and rotation and is referred to as geometric distortion
caused by the printer.

Figure 1: Overlaid characters of electronic document (in cyan) and printed document (in red), the
overlapping region is shown in black color. Zoomed version of a character is shown on the right.

Figure 1 shows an example of character location distortions in a printed document
with respect to its electronic version. Printed characters are shown in red color, its
electronic version is denoted in cyan color, and the overlapping region is shown in black
color. These two versions of a document are registered with respect to the location of the
left-top corner of the bounding box corresponding to their first alphabet (for example
‘f’ in Figure 1). As we move along a document in either direction, slight deviations in
printed character locations can be observed in the overlapped document. Such slight
variation is not noticeable by naked eyes even if a printed document and its electronic
version are kept next to each other. Figure 1 also shows a zoomed version of a single
character ‘e’ to notice the geometric distortions that can be captured by a high-resolution
scan of a printed document. The proposed system is based on utilizing such small
geometric distortions in printed document which are unnoticeable by naked eyes but can
be captured by automated digital image processing methods on a high-resolution scan of
the printed document.

These geometric distortions are due to mechanical defects in printer hardware and
vary along a page in both directions. During printing in an electrophotographic/laser
printer, mechanical movements occur in polygon mirror and optical photoconductor
drum. These components are responsible for reflecting the laser beam and transferring
toner onto the paper, respectively. Any variation in their operation might introduce
geometric distortions in printed documents [26]. Operating principle of inkjet printers
significantly differs from those of laser printers. Inkjet printers involve mechanical back
and forth movement of the printhead. Nozzle mounted on this printhead dispenses liquid
ink onto a moving paper. Any misalignment in this mechanical movement would result
in distortion in printed character’s location and size [27].

Every printer uniquely affects the position and size of characters while printing [28].
Moreover, different brands of printers produce various types of geometric distortion
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signatures which are consistently retained for a long time [28]. These distortions in
a printed document are quantized by estimating offsets in location and size of characters
with respect to their electronic version. A shift in character location is referred to as
translation distortion and change in the size of character as scaling distortion. These
distortions form the backbone of our proposed features, and the efficacy of these features
for printer classification has been illustrated in Section 5.

Geometric distortion is printer specific, but there might be some manual distortion
introduced due to page mishandling such as manual mishandling resulting in incorrect
paper feeding while printing and placing a paper in tilted position while scanning.
Document pre-processing for translation and rotation correction is performed to eliminate
these types of errors that do not characterize a printer (Section 4).

4. Proposed Method

Figure 2 shows an overview of the feature extraction step involved in the proposed
system. Standard steps of training and testing a suitable classifier follow this feature
extraction step. First of all, a printed document, as well as its corresponding electronic
text (henceforth referred as reference document), undergo a strategic document preprocessing
workflow. String matching between these two documents follows the preprocessing step.
Finally, the locations of matched characters are used for estimating suitable features.
Following subsections explain this procedure in detail.

Document

Reference
Document

Printed 
Document

String 
Matching

Feature 
Extraction

Document 
Preprocessing

Document 
Features

Figure 2: An overview of the proposed feature extraction scheme based on geometric distortions.

4.1. Document Preprocessing

Figure 3 shows different operations involved in the preprocessing of scanned and
reference documents. For printed hard-copy document, it involves acquisition using
scanner, followed by character identification and finally applying corrections. For the
reference document, only translation correction is performed (highlighted in gray color
in Figure 3). Reference document is a binary TIFF image denoted by Ir(x, y). If the
reference document is not readily available; it can be generated by either manually typing
or by performing adjustments to the output of optical character recognition on a scanned
version of the corresponding printed document.
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Printed/
Reference
Document

Binarisation

Noise removal

First horizontal 
line 

First vertical line

Frame corner 
point

Cross 
product

Scan

Top horizontal line 

Skew angle

Preprocessed 
Document

Character identification

Figure 3: Block diagram of document preprocessing involved in the proposed system (reference document
undergoes only the steps highlighted in gray color).

4.1.1. Acquisition

Printed document is scanned at 1200 dpi resolution and stored as 16− bit grayscale
TIFF image, referred to as Is(x, y). This grayscale image Is(x, y) is converted to corresponding
binary image Ibs(x, y) using Otsu’s threshold [29]. Binary thresholding minimizes the
effect of toner level variations across multiple pages. Because of hardware defects or
print quality variations, printed documents might have ink spread, seen as impulse noise
or satellite droplets. These noise components are selected using connected component
analysis and components with less than γ number of pixels are removed. The threshold
γ is selected based on the expected number of connected pixels in the correctly identified
characters. This connected component based denoising is applied on Ibs(x, y) to obtain a
denoised version IbNs (x, y) of binarized scanned document.

4.1.2. Rotation Correction

Manual mishandling of paper while printing and scanning may incur an additional
rotation apart from printer’s characteristic distortion. This non-characteristic distortion
needs to be removed as it will act as interfering noise for our goal of source printer
identification. This paper proposes to eliminate this non-characteristic distortion by
subjecting IbNs (x, y) to rotation correction about the first text line. A rotation correction
angle (θm) is estimated such that the first text line becomes parallel to scanned document’s
horizontal axis. Although, choosing the first line for mishandling correction would ignore
any geometric distortion occurring in document area above the line. As there is no text
above the first text line, neglecting that region does not affect the quality of final features
used as signatures of the printer.

(a) Skewed page

(b) Corrected image using indicated skew angle

Figure 4: Document skew correction (demonstrated on top two lines of a scanned document).

Figure 4a shows part of a scanned document before rotation correction and Figure 4b
shows corresponding scanned document after rotation correction. The angle used for
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correcting the image is indicated in the top right corner of Figure 4a, as skew angle θm.
This rotation correction is carried out only for the scanned document as the reference
document is free from rotation mishandling error. The skew angle θm is estimated using
alphabet locations of the first text line. The identity of each character and its bounding
box information is obtained from optical character recognition (OCR) using MATLAB’s
implementation of Tesseract OCR Engine [30]. This bounding box information contains
rectangular character bounding box with base parallel to image horizontal axis. It
includes information such as top left corner position, width, and height of the character
(Figure 5a). This bounding box information is used to identify midpoint of the lower (in
the vertical sense) horizontal boundary of a character (as marked in Figure 5b) in the
document.

x
Width

H
e
ig
h
t

(a) Character bounding box
information

x

(b) Character’s lower
midpoint location
(marked with cross)

(c) Bounding box for
skewed character

Figure 5: Character bounding box information

Rotation correction requires finding appropriate θm from text line character information.
The lower boundary’s midpoint of twenty-one English alphabets lie on the baseline, and
only five (‘g’, ‘j’, ‘p’, ‘q’ and ‘y’) run below the baseline. To accurately determine θm,
only alphabets on the baseline are processed, and punctuation marks are also rejected.
Let L1 denote a set of lower boundary’s midpoint locations of these alphabets in the
first text line, L1 = {(xj , yj) | j ∈ {1, . . . , N}}. Here, N is the number of alphabets (on
the baseline) in the first text line. Then, the slope m of fitted baseline can be estimated
using least square fitting on L1 locations (Equation 1) [31].

m =

N
N∑

i=1

yixi −
( N∑

i=1

xi

)( N∑

i=1

yi

)

N

N∑

i=1

x2i −
( N∑

i=1

xi

)2
(1)

Rotation correction angle, θm = arctan(m) is used for rotation correction of IbNs (x, y)
by θm rotation in anticlockwise direction. A similar approach has been utilized in [31],
for skew correction of printed documents to correct distortions before document image
analysis.
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4.1.3. Translation Correction

On rotation corrected version of IbNs (x, y), OCR is reapplied to find the character

locations. From this information, first horizontal line ~H1 and first vertical line ~V1 in the
homogeneous coordinate system are obtained. ~H1 is estimated from the y coordinates
of document’s top text line alphabets, ~H1 = [0 1 − med(y1, y2, . . . , yh)]. Similarly,

x coordinates from the left most alphabets of each text line are used to estimate ~V1 ,
~V1 = [1 0 − med(x1, x2, . . . , xv)]. Here med denotes median, yi ∀ i ∈ {1, . . . , h}
and xj ∀ j ∈ {1, . . . , v} denote y and x coordinates of alphabet’s bounding box lower

midpoint lying on ~H1 and ~V1 respectively. Taking median instead of mean/average makes
the proposed step robust to outliers which might occur because of possible indentation
in starting lines of different paragraphs on the printed page. The number of alphabets
on ~H1 and ~V1 lines is h and v respectively. The intersection of these two lines gives the
frame corner point c, which in homogeneous coordinates is obtained by the cross product,
c = ~H1 × ~V1.

Rotation corrected IbNs (x, y) is translated with respect to c and the resultant, rotation-translation
corrected binary image IbNc

s (x, y) is referred to as I ′s(x, y). For consistency, similar
translation correction step is carried out on Ir(x, y) to give I ′r(x, y) using its corresponding
corner point. Both the preprocessed documents, I ′r(x, y) and I ′s(x, y) are simultaneously
used for string matching.

4.2. String Matching

This paper proposes to estimate geometric distortion in printed documents using
the correspondence between characters and their locations in printed and reference
documents. One to one character matching is performed to calculate distortion across
the document. Due to the limitations of OCR, sometimes all the characters are either not
identified or not correctly classified. An exhaustive line-wise lowest common substring
alphabet matching is performed [32], which ignores alphabets missing in either of the
documents (I ′r(x, y) and I ′s(x, y)). From these matched strings, alphabet box information
Rij corresponding to jth alphabet on ith line (counted from top) of I ′r(x, y) is extracted
according to Equation 2.

R = {(xij , yij , wij , hij)|(i, j) ∈ Ψ}
whereΨ = {(1, 1) . . . , (1, J1),

(2, 1), . . . , (2, J2),

...

(n, 1), . . . , (n, Jn)}

(2)

Here, Rij is a four vector element for each alphabet with (xij , yij) being the coordinates
of top-left corner of a character bounding box and wij , hij being the width and height of
the bounding box in x and y directions respectively (Figure 5a). The number of lines in
a document is denoted by n and the number of matched characters in ith line is denoted
by Ji. In practice, the number of lines n will vary from document to document and the
number of characters in each line Ji will vary from line to line. Total number of matched
characters in a single document will be

∑n
i=1 Ji. Similarly, locations of corresponding

matched characters in I ′s(x, y) are obtained and referred to as S(= {(x′ij , y′ij , w′ij , h′ij)}).
Thus, R and S are cardinal sets as the strings have already been matched.
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4.3. Feature Extraction

Initial feature vector, FR,S is evaluated at reference image matched alphabet locations
{(xij , yij)}. Different values of this feature vector FR,S depend upon the sets R and S
estimated earlier and each value is a four element vector for each matched alphabet pair
(Equation 3). These vectors are translation and scaling distortions measured in x and y
directions (Equation 4).

FR,S(xij , yij) = (tx(xij , yij), ty(xij , yij), sx(xij , yij), sy(xij , yij)) (3)

Translation distortion in x direction : tx(xij , yij) = xij − x′ij
Translation distortion in y direction : ty(xij , yij) = yij − y′ij

Scaling distortion in x direction : sx(xij , yij) =
wij

w′ij

Scaling distortion in y direction : sy(xij , yij) =
hij
h′ij

(4)

The dimension of FR,S depends on the number of matched alphabets in a document,
and it contains

∑n
i=1 Ji, four element members. These four parameters are evaluated at

locations {(xij , yij)} ∀ (i, j) ∈ Ψ (Equation 2). Since English alphabets are of different
shapes and sizes and different lines of a document contain a varying number of alphabets.
Therefore, these set of locations {(xij , yij)} are generally non-uniformly distributed on a
document. An example set of alphabet locations {(xij , yij)} for a document is shown in
Figure 6a, and when tx(xij , yij) values are estimated at these locations, resulting feature
is shown in Figure 6b.

(a) Non-uniformly
distributed alphabet
locations {(xij , yij)}.

8000
7000

6000
5000

--Left to Right-->

4000
3000

2000
1000

010000

8000

6000

--Top to Bottom -->

4000

2000

-10

0

10

20

50

40

30

0

t x

(b) tx(xij , yij)

Figure 6: (a) Matched alphabet locations of a document and (b) tx values evaluated at this locations.

Considering FR,S as the final feature vector would make the feature dimension for
different pages different. This inconsistent feature dimension would make the comparison
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of documents difficult as we will be comparing features evaluated on different sampling
grids. So, FR,S which is a function of non-uniformly distributed locations {(xij , yij)},
is reevaluated at uniformly distributed locations. For this four surfaces are fitted on
2-D scattered data using bilinear interpolation for {(tx, ty, sx, sy)}ij . These surfaces
are evaluated on uniform grid locations {(xrc, yrc)} ∀ r ∈ {1, . . . , nr}, c ∈ {1, . . . , nc}
(Figure 7a), which has nr lines and nc locations in each line. Figure 7b shows corresponding
tx(xrc, yrc).

(a) Uniform distributed
locations/ grid
{(xrc, yrc)}

8000
7000

6000
5000

--Left to Right-->

4000
3000

2000
1000

010000

8000

6000

--Top to Bottom -->

4000

2000

-10

0

10

20

30

40

50

0

t x

(b) tx(xrc, yrc)

Figure 7: (a) Uniformly distributed locations on a document and (b) tx values evaluated at this dot
locations

From a pair of printed and its corresponding reference document, obtained resampled
feature vector, F ′R,S = {(tx, ty, sx, sy)| ∀ r, c}, is referred as the independent feature
vector of the printer. Since, translation distortions tx and ty depend on alphabets’
locations on the document, whereas scaling distortions sx and sy depend on alphabets’
size. Therefore, translation distortions tx and ty are expected to show more invariance
towards variations in alphabets and noise as compared to scaling distortions sx and sy.
Alphabet’s size estimated using bounding box given by OCR is much less robust to
potential sources of noise such as skew in printed document which results in alphabet
rotation. The computed bounding box of this rotated alphabet would be a rectangle
with base parallel to the horizontal axis, which would be of a different size compared to
the unskewed alphabet (Compare Figure 5b and 5c). Change in the dimension of new
rectangular bounding box would largely depend on the alphabet. Hence sx and sy would
have more impact of skew than its position (xij , yij) in the document. Thus, it is expected
that tx(xrc, yrc) and ty(xrc, yrc) will have a more consistent behavior than sx(xrc, yrc)
and sy(xrc, yrc) throughout the document and will have less intra-class variability. The
performance of derived feature vectors resulting from the combinations of independent
features is also evaluated to maximize the overall efficiency. These derived feature vectors
are txy and tall obtained by concatenating tx, ty and tx, ty, sx, sy, respectively.
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4.4. Classification

This paper uses one of the most widely used supervised classification technique in
multimedia forensics, support vector machine (SVM) for printer classification. C -SVM
implementation from LIBSVM library [33] with Gaussian kernel is used. The model
trained using samples belonging to known classes when fed with unlabeled samples of
same feature dimension, returns estimated probability of feature vector falling into the
trained classes. The unlabeled sample is assigned to a class whose estimated probability
is the highest. For each classification experiment, confusion matrix with true positive
(TP ) and true negative (TN) rates is evaluated from predicted and true class labels.
Quantitatively the efficiency of features are compared in terms of average accuracy
(AUC), AUC = (TP + TN)/2.

Instead of taking all the features from a complete document simultaneously, each row
is separately considered. So a document would result in nr samples, each of dimension
nc. For the experiments reported in this paper, nr and nc are fixed as 50 and 150
respectively because all the pages in the dataset contain printed text of similar font size.
These parameters are selected depending on the font size, their values can be chosen
lower for a larger font size and larger for a smaller font size. Each independent feature
vector fed to the classifier corresponds to a single text line of the uniform grid, lies in a
nc dimensional feature space and is normalized to have zero mean. This way a document
is classified into a particular printer based on the majority votes of nr labels. Section 5.3
shows the effectiveness of the proposed system when classified using row-wise features.
Finally, for a printed document, accuracies of six classifiers (corresponding to tx, ty, sx,
sy, txy, tall) are evaluated.

5. Experimental Results

5.1. Printer Database

Earlier works in this field have used various printer databases consisting of 5 [6], 6 [25],
8 [9] and 10 [5, 8] different printers. The database used in [8] is the only publicly available
database and has printed documents from 10 laser printers, all of them scanned at 600
dpi. Since the proposed system relies on high resolution scanned images to characterize
minute geometric distortions and 1200 dpi resolution is available in most of the general
purpose flatbed desktop scanners. Thus, we have created our own printer database
owing to the lack of publicly available dataset meeting the requirements for our designed
experiments. The printer database utilized in this paper consists of 13 printers of various
types, brands, and models as listed in Table 1. In this table, first letter of a label
denotes Printer type: Inkjet (I) or Laser (L) printer while the second letter denotes the
brand: Epson (E), Brother (B), Canon (C), Hewlett-Packard (H), Konica Minolta (K),
or Ricoh (R). It includes 12 Laser and an Inkjet printer. The size of the database is
chosen to be bigger than those used in similar works in this research area, and printed
documents are scanned at 1200 dpi resolution to better capture the geometric distortion
features. We have printed 25 pages of three distinct fonts to demonstrate the efficiency
of our features in different scenarios. Sets PCa15, PA, and PCo denote fifteen pages of
Cambria, five pages of Arial, and five pages of Comic Sans font from all the 13 printers.
Different training and testing sets from these are formed and denoted by Ptrain and Ptest

respectively. A subset of randomly selected 5 pages from PCa15 is denoted by PCa5.
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Label Model
Resolution

(in dpi)

IE1 L360 5760 × 1440
LB1 DCP7065DN 2400 × 600
LC1 D520 1200 × 600
LC2 IR5000 2400 × 600
LC3 I6570 2400 × 600
LC4 LBP2900B 2400 × 600
LC5 LBP5050 9600 × 600
LC6 MF4320D 600 × 600
LC7 MF4820D 600 × 600
LH1 Laserjet 1020 600 × 600
LH2 Laserjet M1005 600 × 600
LK1 Bizhub215 600 × 600
LR1 Aficio MP5002SP 600 × 600

Table 1: List of printers used in this paper; first letter of label denotes printer type: Inkjet (I) or Laser
(L) while the second letter denotes the brand: Epson (E), Brother (B), Canon (C), Hewlett Packard
(H), Konica Minolta (K), or Ricoh (R).

5.2. Preliminary Analysis

In the proposed system, after uniform sampling each printed line/row is classified
independently, henceforth referred as “row-level” classification (Section 4.4). “Page-level”
accuracy (for classifying the whole printed page, considering all the printed lines/rows of
the page together) is obtained by taking majority voting over all the decisions corresponding
to different rows of the printed page. The first set of experiments are performed to
compare the relative performance of the six parameters discussed in Section 4 and to
obtain the optimal number of training pages for further classification tasks. Effect of
training size on final classification accuracy is analyzed by choosing seven out of fifteen
pages of PCa15 for testing. Then, six different classifiers are trained by randomly choosing
i (i ∈ {1, . . . , 8}) pages out of remaining eight pages for training. All these classifiers are
tested on the same testing set (randomly chosen seven pages of PCa15). Figure 8 shows
row-level classification accuracy for different number of training pages of PCa15, while
corresponding page-level accuracies are shown in Figure 9.

It is evident from Figure 8 and 9 that tx consistently gives the best performance out of
the four independent features tx, ty, sx, and sy. Further, the combined features txy and
tall give very small improvement over tx and using tx requires much lesser computational
resources then txy and tall. The performance of tx is very good even for a small number
of training samples (3 or 4 pages per printer). This indicates that tx is the most suitable
feature and also computationally faster than txy and tall and the same is used for further
classifications. Also, these figures indicate that there is not much increase in classification
accuracy when the number of training pages is increased beyond 3. Therefore, for source
printer identification from documents of the same font, three pages will be sufficient for
training the model. This also indicates that our database size of five pages for other
fonts will be sufficient to capture the variations in geometric distortion signatures across
documents of the same font. Remaining same font experiments are performed by using
three pages for training.
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Figure 8: Row level classification accuracies for pages of PCa15
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Figure 9: Page level classification accuracies for pages of PCa15.

Figure 9 also shows accuracy for printer classification using modified projective transformation
model’s parameter (PTMP) features proposed in [6]. Originally PTMP features were
implemented on Chinese font only where all the printed characters across all the pages
are of the same size, and each page contains an exactly same number of lines and number
of characters per line. So, this paper uses a modified version of the method proposed in [6]
because even for a fixed font type and size, the size of different English alphabets varies

14



and a printed page will generally contain different paragraphs with some indentation (our
database has these characteristics). Modifications include creating a similar uniform
surface as that of proposed features and then calculating the PTMP features. As
mentioned by authors, projective transformation model’s parameter (PTMP) features
yields 100% accuracy for classifying ten printers by using six pages from each printer
for training and another six pages for testing. Our proposed modification to PTMP
(henceforth referred as “Modified PTMP”) also achieves close to 100% accuracy for
six training pages from each of the thirteen printers and another seven pages for testing.
However, the proposed features give close to 100% accuracy (both row-level and page-level)
using only four pages per printer for training. This makes the proposed system more
practical than the system based on modified PTMP features because printing and scanning
more pages, especially when the number of printers is large, will be a very resource-consuming
task and might not always be feasible.

5.3. Classification Results

Similar to the classification results for PCa15, two different classifiers are separately
trained for tx features obtained from printed documents containing text in two other
fonts PA and PCo . Training-testing pairs have been created according to Equation 5,
where PA

i and PCo
i denote i pages from PA and PCo respectively for training. PA

2t

and PA
2t denote the two testing pages of PA and PCo respectively. These two test

pages are first randomly selected out of the five pages and kept fixed across all training
sizes; then the training pages are chosen from the remaining non-overlapping set of three
pages. Row-level and page-level accuracies corresponding to the training-testing sets are
mentioned in Table 2.

{(Ptrain, Ptest)} = {(PA
i , P

A
2t), (P

Co
i , PCo

2t )| i ∈ {1, 2, 3}}
for PA

i ∩ PA
2t = Ø, PCo

i ∩ PCo
2t = Ø

(5)

Ptrain/Ptest ↓
Row Page Row Page Row Page

level level level level level level

No. of training pages → 1 2 3

Proposed Features
PA 93.33 94.87 95.23 96.15 95.38 96.15

PCo 90.72 92.31 94.62 97.44 98.08 100

Modified
PTMP Features

PA - 7.69 - 0 - 76.92

PCo - 7.69 - 0 - 69.23

Table 2: Classification accuracies (in %, tx parameter) for training-testing on different number of pages
of PA and PCo for proposed and modified PTMP features. Same training-testing pages were used for
each instance of proposed as well as modified PTMP features.

From results of Figure 8, 9 and Table 2, it can be concluded that for large training
size (at least six pages from each printer) the proposed features perform as good as the
modified PTMP features for printer classification on same font. While for small training
data (such as three pages from each printer), the proposed features give much better
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classification accuracies than the modified PTMP features. The proposed features give
good classification accuracies even with a single training page.

In practice, a large training set of a particular font might not always be available, and
classification has to be carried out with limited training data. In order to evaluate the
performance of proposed features for such scenario, training-testing pairs from PALL =
{PA∪PCa5∪PCo} are created. Training-testing pairs are formed according to Equation 6.
The testing set PALL

6t contains an equal number of randomly chosen pages of each
font (two from each font). This training set is fixed for testing all the classifiers in
this experiment while the training set PALL

i is created by randomly choosing i out of
remaining nine pages and repeating this random selection over 9Ci iterations. Row-level
classification accuracies over 9Ci iterations for i number of pages is illustrated by error
plot in Figure 10. Corresponding page-level accuracy statistics are depicted in Table 3,
along with their comparison with modified PTMP features.

{Ptrain, Ptest} = {(PALL
i , PALL

6t )| i ∈ {1, . . . , 9}}
for PALL

i ∩ PALL
6t = Ø

(6)
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Figure 10: Error plot for row-level accuracy of proposed features for different number of training pages
of PALL and PCa.

Figure 10 indicates that classification accuracies for the proposed features increases
with increase in the number of training pages and features give good performance even at
a very small number of training pages. Results further improve for page level classification
(Table 3). Table 3 shows that classification accuracies corresponding to the modified
PTMP features also increases with increase in the number of training pages, but they are
unable to give good performance for small training size. For example, for three training
pages, the classification accuracy of the proposed features is more than 4% higher than
the corresponding accuracy of the modified PTMP features, and the standard deviation
is also less for the proposed features.
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No. of Training Pages → 1 2 3 4 5 6 7 8 9

Proposed Features
Mean (µ) 92.45 96.69 98.13 99.05 99.73 99.91 99.96 100 100

Standard Deviation (σ) 3.04 2.38 2.03 1.52 0.72 0.40 0.21 0 0

Modified
PTMP Features

Mean (µ) 7.69 0 93.97 97.23 99.03 99.56 99.79 100 100

Standard Deviation (σ) 0 0 5.43 3.87 1.72 0.87 0.48 0 0

Table 3: Page level accuracy statistics (in %) for different number of training pages of PALL for proposed
and modified PTMP features.

Printer-wise classification accuracy for a particular scenario is illustrated in Figure 11.
Classification accuracy bar graphs at four training pages for all 13 printers are shown.
In each case, first two bars corresponds to row-level and page-level accuracies of the
proposed method respectively, and the third bar shows the page-level identification
accuracy of modified PTMP features. Except for printers LC1 and LC2, for all other
eleven printers, proposed features perform better than modified PTMP features and
their ability to perform row-level classification makes them much more useful as they
can also be extended for forgery detection in printed document when few rows of a
printed document are forged. Hence, the experimental results presented in this paper
show that the novel step of converting non-uniform grid to uniform grid extends existing
PTMP features, removes their restriction to a single language and makes them applicable
to all other languages as well. Over a large database, the proposed system outperforms
existing systems for geometric distortion based printer classification and has potential to
be extended for text-line level forgery detection as well.

Printer Label
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Figure 11: Average printer classification accuracy with error bars for four training pages of PALL. Same
training-testing pages were used for each instance of proposed as well as modified PTMP features.
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6. Conclusion

Geometric distortions in different characters of printed documents intrinsically exist
on every page printed by a printer. Although the quality control mechanisms of modern
printers make them unnoticeable by naked eyes, they can still be detected on high-resolution
scans, such as 1200 dpi scans of documents printed at 300 dpi (commonly used printing
resolution for printing text documents). Thus, if precisely modeled these geometric
distortions can be used to classify printed documents and even detect forgeries in them.
This paper proposed a system for estimating geometric distortions at row-level and
using them for source printer classification from printed documents, needing only small
amount of training data. Manual error/mishandling, if any, while printing or scanning, is
addressed in the pre-processing stage. In addition to the pre-processing stage, the novelty
of this work lies in projecting the geometric distortion parameters of a printed document
from a non-uniformly spaced grid of characters to a uniform grid. This projection makes
the algorithm content independent and will enable an easy extension of this technique
to any language. Proposed method builds a printer model from a novel set of features
estimated from its printed documents using SVM. Features of printed test document
are compared with all these models using SVM and classification is performed based
on prediction probability. An extensive experimental analysis shows that a printer
model can be built and trained using any font from any language. Classification results
show improved page-wise printer identification compared to existing techniques. From
the experimental results on 13 printers, it is observed that the proposed method with
four training pages gives 99.05% classification accuracy on six test pages, this accuracy
increases further as the number of training pages increases.

Unlike existing literature, this paper proposes a row-wise detection. So, a document
with text lines printed from different printers can be identified as forged. Hence, future
work will include extending the proposed method for printed document forgery detection,
at a computationally lower cost. Estimation of geometric distortion requires reference
document, which if not available, can be generated from printed document either by
typing or using OCR.
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