
1 

Analyzing Periodicity and Saliency for Adult 

Video Detection 

 

Yizhi Liu1, Xiaoyan Gu2,*, Lei Huang3, Junlin Ouyang1, Miao Liao1, Liangran Wu1 

1College of Computer Science and Engineering, Hunan University of Science and 

Technology, Xiangtan, China, 411201 

2Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China, 100093 

3College of Information Science and Engineering, Ocean University of China, Shandong, 

China, 266100 

*corresponding author: guxiaoyan@iie.ac.cn 

 

Abstract: Content-based adult video detection plays an important role in preventing pornography. 

However, existing methods usually rely on single modality and seldom focus on multi-modality 

semantics representation. Addressing at this problem, we put forward an approach of analyzing 

periodicity and saliency for adult video detection. At first, periodic patterns and salient regions are 

respectively analyzed in audio-frames and visual-frames. Next, the multi-modal co-occurrence 

semantics is described by combining audio periodicity with visual saliency. Moreover, the 

performance of our approach is evaluated step by step. Experimental results show that our approach 

obviously outperforms some state-of-the-art methods. 
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1 Introduction 

With the explosive growth of online videos, filtering pornography has growing crucial. The 

precise definition of pornography is subjective, but here we will consider “any sexually explicit 

material with the aim of sexual arousal or fantasy” [28]. Content-based adult video detection is 

one of the most powerful approaches. 

The traditional methods are based on visual features of keyframes (namely images). In terms 

of the areas from which visual features are extracted, it can be classified into three kinds: global-

features based methods [33-36], bag-of-words based methods [37-40], and region-of-interest 

(ROI) based methods [41-44]. However, it is difficult for the keyframe-based approach to detect 
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adult videos accurately owing to the challenges of detecting salient regions [1-12], extracting 

spatial-temporal features [13-19], and representing multimodal co-occurrence semantics. 

Salient object detection models usually aim to detect only the most salient objects in a scene 

and segment the whole extent of those objects [1-10]. In computer vision, it is usually 

interpreted as a process that includes two stages [1]: 1) detecting the most salient object and 2) 

segmenting the accurate region of that object. Ali Borji et al. [1] proposed that a good saliency 

detection model should cover “good detection” and “high resolution” at least. In the field of 

adult image detection, salient object means pornographic parts with skin-color. However, skin-

color regions are always reckoned as region-of-interest (ROI) which is actually larger than sub-

areas containing pornographic parts. 

Audio signal is a conspicuous modality of adult videos. The obvious temporal information 

in adult videos is the characteristic of periodic patterns, such as periodic moaning and screaming 

[20]. Zuo et al. [21] proposes a method in which audio waveforms are transformed into a 

sequence of feature vectors and classified by a Gaussian mixture model. Nevertheless, low-

level audio features are too similar to be distinguished accurately. 

Adult video detection is intrinsically a multimodal problem since both audio and visual 

signals can provide important clues. These clues appeared simultaneously and are hidden in the 

audio periodicity and the visual saliency. Therefore, we are motivated by three aspects: audio 

periodicity analysis, visual saliency analysis, and multimodal co-occurrence semantic 

representation. 

In this paper, we propose a novel approach of analyzing periodicity and saliency for adult 

video detection. Its technical contribution lies in: 

⚫ The multi-modal co-occurrence semantics is described by combining audio periodicity 

with visual saliency. 

⚫ We successively propose two periodic algorithms echoing with each other. One is the 

periodic audio codebook algorithm, and the other is the periodic video decision 

algorithm. 

⚫ Saliency based visual codebook algorithm is presented after discovering a hybrid ROI 

detection model on the basis of saliency and skin-color models. 

⚫ Experimental results show that our approach is able to accurately detect adult videos 

and obviously outperforms some state-of-the-art methods. 

The rest of this paper is organized as follows. Section 2 includes related work. In section 3 

we introduce the framework and the details of our approach. The experiments described in 

section 4, and the conclusions are finally given in the last section. 

2 Related Works 

Adult video detection [20-29] can be reckoned as a particular kind of video event detection 

[13-19]. It is closely related to adult image detection [33-44], salient object detection [1-12], 

and audio content analysis [30-32]. 
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Content-based adult video detection is traditionally based on visual features of keyframes. 

Forsyth et al. [33] construct a human figure grouper after detecting skin regions, but consuming 

a lot of time and low detection accuracy are the two shortcomings. Zeng et al. [34] implement 

the image guarder system to detect adult images by different kinds of global features. Rowley 

et al. [35] adopt 27 visual features for Google to filter adult images, including color, shape, 

texture, face and etc. Tang et al. [36] employ latent Dirichlet allocation to cluster images into 

some subsets and then combine supported vector machines (SVM) classifiers on one subset to 

rate adult images. Jones and Rehg [41] developed a statistical color model for detecting skin 

regions. AIRS [42] employs the MPEG-7 visual descriptors to identify and rate adult images. 

Kuan and Hsieh [43] used image retrieval technique and visual features are extracted from skin 

regions. Zheng et al. [44] used an edge-based Zernike moment method to detect harmful symbol 

objects. However, it is difficult to detect accurately the images whose background colors are 

similar to skin-color. And it is challenging to identify images in the presence of occlusion, 

background clutter, pose and lighting changes. 

ROI-based methods are more accurate in describing the image content than global-feature 

based methods for the scenes involving a clutter of prominent and/or specific objects against 

background and/or foreground [1]. ROI plays an important role in adult image detection. 

Traditionally, skin-color regions are always extracted as ROI. Lee et al. [22] used a linear-

discriminative classifier to combine two frame-based methods, one using on a skin probability 

map, the other color histograms. Kim et al. [23] used a shape description of skin areas in video 

frames. A manually defined color range is used for deciding whether a pixel belongs to a skin 

area. The area's shape is then described by normalized central moments and matched to samples 

in a database. However, skin-color regions are always larger than the sub-areas containing 

pornographic parts, and the approach is difficult to differentiate between human skins and other 

objects with the skin-colors. 

Visual attention is a mechanism which filters out redundant visual information and detects 

the most relevant parts of our visual field [9]. Attention is a general concept covering all factors 

that influence selection mechanisms, whether they be scene-driven bottom-up or expectation-

driven top-down [10, 11]. Therefore, we are motivated to integrate visual attention models with 

skin-color models [52] and face detection models [53], and to further devise a hybrid approach 

of ROI detection. 

Adult image detection based on codebooks (or bag-of-words) has been a promising approach 

[37-40]. Deselaers et al. [37] combine it with color histogram to classify images into different 

categories of pornography. Wang et al. explored an algorithm to reduce the size of visual 

codebook and to integrate it with spatial distribution [38]. SURF [54] and ROI based visual 

codebook are respectively applied for adult image detection [40]. Some other approaches [45-

53] are worthy to be noticed. 

Other modalities have been employed for adult video content classification. The periodicity 

in the motion information of adult videos is firstly aroused the attention [24, 25]. Audio 
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information is another discriminative clue for adult video detection. Rea et al. [20] combined 

skin color estimation with the detection of periodic patterns in a video's audio signal. The 

literatures [30-32] divide audio signals into audio segments to improve the distinguishable 

power by increasing granularity. 

3 The Framework and Details of Our Approach 

  As Figure 1 shown, the framework of our approach includes six main modules: audio 

segmentation, visual keyframe selection, periodicity analysis based feature extraction, saliency 

analysis based feature extraction, multi-modal co-occurrence semantic feature representation, 

and periodicity based classification. 

  In our framework, audio frames are segmented into units of energy envelope (EE) on the 

basis of periodicity analysis, and visual keyframes are detected based on saliency analysis. The 

EE’s lengths are not the same but variable. Subsequently, audio signals are depicted via the EE 

sequences with audio codebook based representation. Visual codebook is generated in light of 

our ROI model, which combines saliency analysis with a skin-color model. Results show that 

our framework achieves more excellent performance than some state-of-the-art methods. 

 

 

Fig.1. The framework of our approach 

 

3.1 Periodicity analysis based feature extraction 

Some parameters of audio data are set as follows: mono-channel, 16 bits resolution, and the 

sample rate is 44100 Hz. We extract 36-dimentional feature vectors as an audio frame with 20 

milliseconds intervals and no overlapping: 13-dimentional mel-frequency cepstral coefficients 

(MFCC), 13-dimentional MFCC differential coefficients, 1-dimentional zero crossing rate, 1-
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dimentional short time energy, 4-dimentional sub-band short time energy, and 4-dimentional 

sub-band short time energy ratio. 

In order to generate audio codebook more accurately, we select some the conspicuous adult 

videos and segment the noticeable parts as the training dataset. Audio signals are segmented 

into some EE sequences. Visual keyframe is chosen in the time window of each EE. Figure 2 

shows the alignment method of the two signals. 

 

 

Fig.2. The alignment method of visual and audio signals 

 

Periodicity based audio codebook algorithm is consisted of two phases: audio segmentation 

based on the audio periodicity, codebook generation and middle-level feature representation. 

Audio features are extracted from audio files. And they are smoothed by the following detection 

function (1). 
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After dividing the EE sequences into some manually-selected adult videos, audio codebook 

is generated via the K-means clustering algorithm. The low-level features of audio frames are 

respectively compared with each element of audio codebook, and then vote to that with the least 

Euclidean distance. The votes to the audio codebook are divided by the length of each EE so as 
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to lessen the negative effect of different lengths. Thus, these quotients reflect the occurrence 

times of audio codebook, which imply some certain middle-level semantics. 

3.2 Saliency analysis based feature extraction 

There are two typical visual attention models, the saliency-based model [10] and the contrast-

based model [11]. However, the previous model is time-consuming due to massive 

computations and the latter one is limited to highlight human-beings in the images. Therefore, 

we propose the algorithm to fuse the two preceding models. Also, the hybrid ROI detection 

method consists of three models: saliency analysis model, skin-color model and face detection 

model, as shown in Figure 3. A visual keyframe is provided as an input image and its ROI S  

is distilled via the hybrid ROI detection algorithm. 

 

 

Fig.3. The hybrid approach of ROI detection algorithm. 

 

The first step is image preprocessing. The input keyframe is resized to a uniform image 

without changing its appearance ratio. To reduce efficiently the computational complexity, it is 

quantized to m n  image blocks. Besides, we arbitrarily set 640m=  and 480n=  here. 

Secondly, multi-scales and contrasts are devised to analyze each image block. The image 

block ( , )i j  is reckoned as the perceivable unit 
,i jp  ( (0, )i m  and (0, )j n ). According to 

the formula（3）， we can calculate the contrast value of its neighborhood 
,i jC , where   

denotes the neighborhood of
,i jp ; q  is one of the signals in  ; d  represents the distance 

between 
,i jp  and q . 
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Next, An intensity image I  is obtained by ( ) / 3= + +I r g b , where r, g, and b represent 

the red, green, and blue channels of the input image. Then I  is used to create a Gaussian 

pyramid ( )I σ , where [0,8]σ  is the scale. After that, four Gaussian pyramids ( )R σ , ( )G σ , 

( )B σ , and ( )Y σ  are built from the broadly-tuned color channels, that is, ( ) / 2= − +R r g b  

represents red, ( ) / 2= − +G g r b  stands for green, ( ) / 2= − +B b r g  is blue, and  

( ) / 2 / 2= + − − −Y r g r g b  for yellow (negative values are set to zero). 

To create three sets of feature maps, each is computed by a set of linear “center-surround” 

operations, denoted as  . The feature maps are computed followed the below equations (4) to 

(6), which include the intensity contrast ( , )I c s , red/green and green/red double opponency 

( , )RG c s and blue/yellow and yellow/blue opponency ( , )BY c s (where c {2,3,4} , = +s c δ , 

=δ {3,4} ). 
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( , ) ( ( ) ( )) ( ( ) ( ))= −  −BY c s B c Y c Y s B s   （6） 

At last, the saliency map is obtained by the final input S , which consists of two normalized 

and summed conspicuity maps. To obtain the two “conspicuity maps”, we used the set ( , )I c s  

for “intensity conspicuity maps I ” via equation (7). Then the latter two sets of ( , )RG c s  and 

( , )BY c s  are applied for “color conspicuity maps C ” via equation (8). The normalization 

operation is denoted as ( )N g
 

in equation (9), and 
,i jC  is normalized into [0，255] in each 

image block. 
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Then we adopt the skin-color model proposed by Garcia et al. [55] and the face detection 

model proposed by Viola [56]. We take the intersecting part of salient regions, skin-color 

regions, and no-face regions as ROI. To reduce background noises, visual codebook is created 

from the patches in ROI. Moreover, SURF is adopted because it is more excellent than the state-

of-the-arts both in speed and accuracy [40]. 

3.3 Co-occurrence semantic representation and multi-modal fusion 

Multi-modal co-occurrence semantic is described by combining audio codebook with visual 

codebook, as shown in Figure 1. At first, we select some adult videos and extract audio and 
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visual low-level features. After audio periodicity analysis and ROI detection, the audio 

codebook and the visual codebook are respectively created by K-means clustering algorithm. 

Next, low-level audio and visual features of the testing video are respectively converted into 

mid-level semantic histograms via the audio or visual codebook. The histograms are 

concatenated to represent the co-occurrence semantics of multi-modal (audio and visual) 

signals. Finally, we adopt periodicity based video decision algorithm to fuse the classification 

results of multi-modal codebooks with that of visual global features. 

Periodicity based video decision algorithm is used to judge that a video is pornographic or 

not. Traditionally, it is determined by the number of pornographic keyframes in a video. When 

the number is greater than certain threshold, the video is considered to be pornographic. 

Otherwise, the video is considered to be innocuous. It is called the video decision algorithm 

using thresholds in the following. In this paper, we divide the audio stream of a video into EE 

sequences based on audio periodicity basis. If pornographic EEs consecutively occur and the 

number of consecutive counter outnumbers the threshold N, the video should be regarded as 

pornography. In the periodic video decision algorithm, we provide the SVM prediction file as 

“InputFile”, and regulate the parameters Thr  and N  as the threshold. At first, some 

variables are initialized:  bool flag false= , 0counter = , 0firstV = ， sec 0ondV = . Then, it 

reads the first value of InputFile s . If s Thr , we set 1firstV = , otherwise, we set 

1firstV = − . 

Then, full of InputFile is obtained to get the next value t  until the end of the file according 

to the concessive occurrence times. Finally, the decision result flag is returned as the output. 

If the value is true, the testing video is regarded as pornographic. 

4 Experiments 

We collect videos from the Internet and respectively set up a training dataset and a testing 

dataset. There are forty eight adult videos and three hundred benign ones in the training dataset. 

And the testing dataset includes fifty adult videos and one hundred and fifty benign ones. We 

evaluate our approach in the visual studio 2003 environment with the machine of 1.86 GHz 

Duo CPU and 2GB memory. On the basis of our previous works [36, 39, 40], we adopt color 

moments as the global features, SURF as the local features, and SVM classifiers. We evaluate 

our method with receiver operating characteristic (ROC) curves. A ROC space is defined by 

false positive rate (FPR) and true positive rate (TPR) as x and y axes respectively. Experimental 

results show that our approach outperforms the traditional one which is based on visual features, 

and achieves satisfactory performance. The true positive rate achieves 96.7% while the false 

positive rate is about 10%. Its performance outperforms many state-of-the-art methods, such as 

[33, 34, 36, 39-44]. 
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4.1 Evaluation of our hybrid ROI detection model 

  We collected adult images from the Internet and divided them into three groups, each of 

which includes 350 images. Our experiments were comprised of four parts to capture salient 

regions, skin-color regions, no-face regions, and final results of ROI respectively. Due to the 

subjectivity of human attention perception, there is not a standardized objective correctness 

measure for image attention analysis evaluation. Therefore, we adopted the evaluation method 

proposed in Ma’s paper [11]. Twenty non-professional persons were invited to assign one of 

assessments, GOOD, ACCEPT, or FAILED, to our experimental results. 

Table 1. Correctness assessments of our hybrid ROI detection model 

Image group Good Accept Failed 

Group 1 41.71% 49.43% 8.86% 

Group 2 41.43% 51.14% 7.43% 

Group 3 46.29% 44.00% 9.71% 

Average 91.33% 8.67% 

 

  Table 1 lists the evaluation results of all the ROI. According to the evaluation results, we can 

conclude that our hybrid ROI detection model achieves good performance and the precision 

reaches 91.33% in average. Furthermore, we compare the salient regions’ area among Itti’s 

model, Ma’s model, and our ROI model, as shown in Figure 4. Consequently, we can conclude 

that our ROI model is better than Itti’s model [10] and Ma’s model [11] from the point of the 

views of “good detection” and “high resolution”. 

 

 

Fig.4. Comparisons of salient regions’ area among Itti’s model, Ma’s model, and our ROI model 

 

4.2 Evaluating saliency based visual codebook algorithm 

  In Figure 5, SIFT-Whole, SIFT-Skin, and SURF-ROI are ROC curves respectively on behalf 

of the traditional codebook algorithm (SIFT-Whole) [37-38], the codebook algorithm based on 

SIFT and skin-region (SIFT-Skin) [40], and saliency based visual codebook algorithm (SURF-

ROI). Results show that saliency based visual codebook algorithm can remarkably improve the 

performance. 



10 

 

 

Fig.5. Performance comparisons of visual codebook representation 

 

4.3 Evaluating periodicity based audio codebook algorithm 

  Audio signals are distilled from videos and shown in the format of “.wav”. The training and 

testing videos are respectively segmented into 60941 and 69211 EEs on the basis periodicity 

analysis. Some parameters, for instance the consecutive counter number N, are respectively 

regulated. And their ROC curves are given in Figure 6. 

 

 

Fig.6. Regulating parameters in periodicity based audio codebook algorithm 

 

4.4 Evaluating the performance of our approach 

  Experimental results show that our approach outperforms the traditional one which is based 

on visual features, and achieves satisfactory performance. As shown in Figure 7, the true 

positive rate (TPR) achieves 96.7% while the false positive rate (FPR) is about 10%. Its 

performance outperforms many existing methods, such as the literatures [33, 34, 36, 39-44]. 
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Fig.7. Performance comparisons among some state-of-the-art methods 

 

5 Conclusions  

Multi-modality is an effective approach of filtering pornography in adult video detection. 

But the performance of existing methods is not good enough due to the lack of accurate multi-

modality semantics representation. Therefore, we present a novel approach of analyzing 

periodicity and saliency for adult video detection. We successively illustrate audio codebook 

algorithm and visual codebook algorithm which is respectively based on periodicity and 

saliency. Then they are combined to represent multi-modal co-occurrence semantics. Moreover, 

the performance of our approach is evaluated step by step. Experimental results show that our 

approach achieves satisfactory performance and outperforms the traditional one which is based 

on visual features. The true positive rate achieves 96.7% while the false positive rate is about 

10%. Its performance outperforms many state-of-the-art methods. In this paper, we focus on 

multimodal semantic representation of videos. The main defect of the proposed method is its 

computational performance. We intend to address this issue in our future work. 
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