Skip to main content
Log in

FPGA realization of an efficient image scalar with modified area generation technique

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Image scaling is extensively utilized in numerous image processing implementations, like digital camera, tablet, mobile phone, and display devices. Image scaling is a technique of enlarge or diminish the image by provided scale factor. Image scaling can also be discussed as image interpolation, image re-sampling, image resizing, and image zooming. This paper introduces VLSI (Very Large Scale Integration) architecture of an accurate and area effectual image scalar. This architecture is applied in HDL language, synthesize and simulation by Xilinx ISE simulation tool. Lastly observe quality and performance measure, in quality measure associate the PSNR value of scaled image to source image. In presentation measure numerous VLSI parameters like type of device, area, computation time, and power. From the solution in quality measure to upsurge the PSNR value by 15% and 9% Image enlargement and reduction correspondingly and diminish 18% combinational logic blocks (CLBs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Acharjya PP, Das R, Ghoshal D (2012) Study and comparison of different edge detectors for image segmentation. Global Journal of Computer Science and Technology

  2. Andreadis I, Amanatiadis A (2005) Digital image scaling. Instrument Measure Technol Conf IMTC 2005. Proc IEEE 3:2028–2032

    Article  Google Scholar 

  3. Bao P, Zhang L, Wu X (2005) Canny edge detection enhancement by scale multiplication. IEEE Trans Pattern Anal Mach Intell 27(9):1485–1490

    Article  Google Scholar 

  4. Chang X, Yang Y (2017) Semisupervised feature analysis by mining correlations among multiple tasks. IEEE Trans Neural Netw Learn Syst 28(10):2294–2305

    Article  MathSciNet  Google Scholar 

  5. Chang X, Ma Z, Lin M, Yang Y, Hauptmann AG (2017) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE Trans Image Process 26(8):3911–3920

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann AG (2017) Bi-level semantic representation analysis for multimedia event detection. IEEE Trans Cybernet 47(5):1180–1197

    Article  Google Scholar 

  7. Chen SL (2013) VLSI implementation of a low-cost high-quality image scaling processor. IEEE Trans Circ Syst II: Express Briefs 60(1):31–35

    Google Scholar 

  8. Chen SL (2013) VLSI implementation of an adaptive edge-enhanced image scalar for real-time multimedia applications. IEEE Trans Circ Syst Video Technol 23(9):1510–1522

    Article  Google Scholar 

  9. Chen PY, Lien CY, Lu CP (2009) VLSI implementation of an edge-oriented image scaling processor. IEEE Trans Very Large Scale Integrat (VLSI) Syst 17(9):1275–1284

    Article  Google Scholar 

  10. Chen SL, Huang HY, Luo CH (2011) A low-cost high-quality adaptive scalar for real-time multimedia applications. IEEE Trans Circ Syst Video Technol 21(11):1600–1611

    Article  Google Scholar 

  11. Chen Y, Li Y, Zhao Y (2016) Sub-pixel detection algorithm based on cubic B-spline curve and multi-scale adaptive wavelet transform. Optik-Int J Light Electron Optics 127(1):11–14

    Article  MathSciNet  Google Scholar 

  12. Han JW, Kim JH, Cheon SH, Kim JO & Ko SJ (2010) A novel image interpolation method using the bilateral filter. IEEE Trans Consum Electron 56(1)

  13. Hou H, Andrews H (1978) Cubic splines for image interpolation and digital filtering. IEEE Trans Acoust Speech Signal Process 26(6):508–517

    Article  MATH  Google Scholar 

  14. Jain S, Pancholi M, Garg H, Saini S (2014) Binary division algorithm and high speed deconvolution algorithm (based on ancient Indian Vedic mathematics). In Electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), 2014 11th international conference on IEEE: 1–5

  15. Jensen K, Anastassiou D (1995) Subpixel edge localization and the interpolation of still images. IEEE Trans Image Process 4(3):285–295

    Article  Google Scholar 

  16. Kim CH, Seong SM, Lee JA, Kim LS (2003) Winscale: an image-scaling algorithm using an area pixel model. IEEE Trans Circ Syst Video Technol 13(6):549–553

    Article  Google Scholar 

  17. Kim H, Cha Y, Kim S (2011) Curvature interpolation method for image zooming. IEEE Trans Image Process 20(7):1895–1903

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumar GG, Charishma V (2012) Design of high speed vedic multiplier using vedic mathematics techniques. Int J Sci Res Publ 2(3):1

    Google Scholar 

  19. Law MW, Chung AC (2007) Weighted local variance-based edge detection and its application to vascular segmentation in magnetic resonance angiography. IEEE Trans Med Imaging 26(9):1224–1241

    Article  Google Scholar 

  20. Lin CC, Sheu MH, Liaw C, Chiang HK (2010) Fast first-order polynomials convolution interpolation for real-time digital image reconstruction. IEEE Trans Circ Syst Video Technol 20(9):1260–1264

    Article  Google Scholar 

  21. Öztürk Ş, Akdemir B (2015) Comparison of edge detection algorithms for texture analysis on glass production. Procedia Soc Behav Sci 195:2675–2682

    Article  Google Scholar 

  22. Parker JA, Kenyon RV, Troxel DE (1983) Comparison of interpolating methods for image resampling. IEEE Trans Med Imaging 2(1):31–39

    Article  Google Scholar 

  23. Pathak B, Bhuyan A, Barooah D (2014) Gray-level co-occurrence matrix implementation based on edge detection information for surface texture analysis

  24. Rakesh RR, Chaudhuri P, Murthy CA (2004) Thresholding in edge detection: a statistical approach. IEEE Trans Image Process 13(7):927–936

    Article  Google Scholar 

  25. Wu WC, Wang TH, Chiu CT (2015) Edge curve scaling and smoothing with cubic spline interpolation for image upscaling. Signal processing systems (SiPS), 2013 IEEE workshop on IEEE: 65–70

  26. Xie X, Livermore C (2016) A pivot-hinged, multilayer SU-8 micro motion amplifier assembled by a self-aligned approach. Micro Electro Mechanical Systems (MEMS), 2016 IEEE 29th International Conference on IEEE: 75–78

  27. Xie X, Livermore C (2017) Passively self-aligned assembly of compact barrel hinges for high-performance, out-of-plane mems actuators. Micro Electro Mechanical Systems (MEMS), 2017 IEEE 30th International Conference on IEEE: 813–816

  28. Xie X, Zaitsev Y, Velásquez-García LF, Teller SJ, Livermore C (2014) Scalable, MEMS-enabled, vibrational tactile actuators for high resolution tactile displays. J Micromech Microeng 24(12):125014

    Article  Google Scholar 

  29. Xie X, Liu S, Yang C, Yang Z, Xu J, Zhai X (2017) The application of smart materials in tactile actuators for tactile information delivery. arXiv preprint arXiv:1708.07077

  30. Yitzhaky Y, Peli E (2003) A method for objective edge detection evaluation and detector parameter selection. IEEE Trans Pattern Anal Mach Intell 25(8):1027–1033

    Article  Google Scholar 

  31. Zhang X, Wu X (2008) Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Trans Image Process 17(6):887–896

    Article  MathSciNet  Google Scholar 

  32. Zhi-Yong PANG, TAN HZ, Di-Hu CHEN (2013) An improved low-cost adaptive bicubic interpolation arithmetic and VLSI implementation. Acta Automat Sin 39(4):407–417

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ramadevi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadevi, V., Manjunatha Chari, K. FPGA realization of an efficient image scalar with modified area generation technique. Multimed Tools Appl 78, 23707–23732 (2019). https://doi.org/10.1007/s11042-019-7592-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7592-6

Keywords

Navigation