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Abstract Events around the world are increasingly documented on social
media, specially by the people experiencing them, as these platforms become
more popular over time. As a consequence, social media turns into a valuable
source of data for understanding those events. Due to their destructive po-
tential, natural disasters are among events of particular interest to response
operations and environmental monitoring agencies. However, this amount of
information also makes it challenging to identify relevant content pertaining
to those events. In this paper, we use a relational neural network model for
identifying this type of content. The model is particularly suitable for un-
structured text, that is, text with no particular arrangement of words, such
as tags, which is commonplace in social media data. In addition, our method
can be combined with a CNN for handling multimodal data where text and
visual data are available. We perform experiments in three different scenar-
ios, where different modalities are evaluated: visual, textual, and both. Our
method achieves competitive performance in both modalities by themselves,
while significantly outperforms the baseline on the multimodal scenario. We
also demonstrate the behavior of the proposed method in different applica-
tions by performing additional experiments in the CUB-200-2011 multimodal
dataset.
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Fig. 1 Some examples of multimedia items from the Disaster Image Retrieval from Social
Media sub-task of the Multimedia Satellite Task. Items consist of an image either depicting
a flooding event or not, alongside user-provided tags. Notice that tags might have words
from multiple languages.

1 Introduction

The pervasiveness of social media has led many to use them as means of com-
munication and a source of information and news. Using social media, events
around the world are documented not only by news outlets, but also by the
people experiencing them. As a consequence, social media streams are becom-
ing a valuable source of data for understanding, detailing, and assessing such
events. Among those events are natural disasters, which are of particular in-
terest for emergency response operations and environmental monitoring, given
their destructive potential. However, automatically identifying posts, pictures,
and videos related to natural disasters has become both a necessity and a chal-
lenge due to the sheer amount of information on social media platforms.

The Multimedia Satellite Task [5], which was part of the Multimedia Eval-
uation Benchmark (MediaEval) 2017, proposed a retrieval task of flooding
evidence from social media. The task consists of ranking a collection of mul-
timedia items comprised of either images, their associated metadata, or both,
such that those depicting flooding events should be ranked higher than oth-
ers. Examples of such multimedia items are shown in Figure 1. Our particular
interest in this task lies in handling text data where words are not arranged
in any particular order, as it is commonplace with tags in social media posts.



Neural relational inference for disaster multimedia retrieval 3

In this paper, we introduce a solution to this problem that addresses learn-
ing from unstructured text data, that is, instead of regular sentences, we use
words that are not arranged in any particular order. Specifically, it consists of
a relational inference model based on neural networks that can infer relational
structure from a set of objects. We consider scenarios using only text data and
using both text and visual data.

In summary, our contributions are twofold: (i) proposal of a relational
inference model to support multimodal representation of multimedia objects;
(ii) demonstration of its effectiveness in the retrieval task related to natural
disasters introduced by the Multimedia Satellite Task. We also demonstrate
the behavior of the proposed method to different applications by performing
additional experiments in the CUB-200-2011 multimodal dataset.

2 Related work

This section provides an overview of related work focusing on multimodal
analysis in the context of the Multimedia Satellite Task.

Bischke et al. [5] proposed a solution to the Multimedia Satellite Task us-
ing a Support Vector Machine (SVM) with a radial basis function kernel. The
SVM was trained using visual features extracted via a pre-trained Convolu-
tional Neural Network (CNN) based on the X-ResNet architecture [13] and
the metadata was represented using word2vec [21] embeddings, trained on the
metadata itself. For handling both modalities at the same time, they used a
concatenation of both visual and textual feature vectors.

More recently, Dourado et al. [7] proposed the use of multiple descrip-
tors instead of relying on a single representation for objects, producing one
similarity-based ranking per object. Then, those rankings are aggregated us-
ing graphs capturing the relationships to other objects based on the different
rankings, resulting in one graph for each object. This naturally allows their
approach to handle multiple modalities. The produced graphs are embedded
into a vector representation, which is used as the object representation. Graph-
based formulations were also exploited in [23]. In such formulations, graphs
are used as an early-fusion approach, which exploits embedding procedures
based on bags of graphs, to generate multimodal vector representations.

Those approaches then rank the objects by using the score produced by
an SVM trained on the vector representations of the objects. While their
performance is reasonable, the metadata is handled by simply averaging their
vector representations into a single vector representing all words. Moreover,
compared to using modalities by themselves, both approaches result in a small
improvement over the scores obtained by using only a single data modality.

In contrast, Zaheer et al. [29] proposed a neural network architecture, called
DeepSets, that can process sets of objects. Their formulation, however, does
not explicitly model the relationship between items in the input set. Thus,
items are only taken into account with respect to each other when aggregating
all of them, making it more difficult to express pairwise relationships.
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In summary, existing approaches can be roughly categorized into early-
fusion methods – some of them based on the concatenation of visual and
textual feature vectors [5,6,8,10,19,27] or graph formulations [23] – and late-
fusion approaches [1,2].

3 Neural relational inference in social media data

Neural networks currently attain state-of-the-art performance in a number
of applications, prompting us to consider them for this task. Since we use
both with visual data (images depicting flooding events) and their associated
textual metadata, we consider both data modalities in our approach to this
task. For visual data, Convolutional Neural Networks (CNNs) are the essential
building block of current state-of-the-art models. Moreover, ResNets [11] are
competitive in transfer learning scenarios [17] while being straightforward to
train due to a significantly smoother loss surface, encouraging their use.

For the textual metadata, we resort to a relational approach. Neural net-
works designed for natural language data exploit the sequential nature of sen-
tences, relying on the order in which words are presented on input. As a
consequence, most of them are based on either RNNs [14,20] or CNNs [9,15].
However, here we focus on applications where text data are available as tags,
where a document is simply a collection of words related to its subject, in
no particular order. Consequently, we refrained from looking at the metadata
from a sentence understanding perspective. We instead use a model that can
produce decisions from collections of objects given as input.

Relation Networks (RNs) [25] provide an elegant framework for our task.
Put simply, a RN combines two neural networks, fφ and gθ, whose parameters
φ and θ are learned together. Given a collection of objects O = {x1, x2, . . . , xn}
as input, gθ takes each pair of objects as input and encodes them. These
encoded values are then added up to represent the whole collection and given
as input to fφ, which produces the output of the RN. These operations can be
expressed as

RN(O) = fφ

 ∑
xi,xj∈O

gθ(xi, xj)

 . (1)

This way of handling the input is advantageous for this task, since RNs can
take a variable number of objects as input. With this, we are not restricted to
a fixed number of words in each document. Moreover, these models can infer
which word relations are important without explicit supervision over them.

3.1 Architecture

The first step is to map each one of the input words into t-dimensional vectors,
which the RN uses as object representations. We adopted two different strate-
gies for this, namely a word lookup table and distributed word representation.
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Fig. 2 The neural network modules and architectures used in our experiments. The RN
causes the models to look into the word relationships, not only presence, then summarizing
those relationships into a single vector used for downstream tasks.

Our intent with this is to evaluate the RN under different conditions of input
representation and whether these can significantly affect its performance.

Let V be the (totally) ordered set of all words in the training set. Note
that this order is arbitrary and does not affect the learning process. A word
lookup table is a matrix E ∈ R|V |×t, where each row of E represents some
word in V . In this approach, we initially represent each word as a 1-hot |V |-
dimensional vector, where the index of the nonzero value is the index of this
word in V . The final word representation is computed by simply projecting
the 1-hot vector using E, producing the t-dimensional vector. As the vector
representations are learned from scratch, this approach has two main advan-
tages. First, they are constantly improved while training the neural network.
Second, we do not require a large number of parameters dedicated to learning
word representations. This comes with the drawback that our vocabulary is
limited to what is seen in the training data, thus any unseen words are mapped
to vectors of zeros and the network must learn to ignore them. An overview
of the architecture illustrating this strategy is shown in Figure 2.

In the case of distributed word representations, we replace our word lookup
table with fastText [22] word embeddings, a general-purpose distributed con-
tinuous representation model, which was trained on a corpus of 16B tokens.

In both architectures, fφ and gθ are comprised of fully-connected layers of
SELUs units, followed by an additional layer with a sigmoid unit for producing
the classification output. We chose this architecture based on two main results
from previous work. First, Klambauer et al. [16] have recently shown on a
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large number of datasets that SELUs, when used in architectures consisting
of fully-connected layers, outperform other widely used activation functions,
such as ReLUs, while not requiring techniques such as batch normalization [12].
Additionally, Santoro et al. [25] successfully used 4- and 3-layer fully-connected
ReLU networks, for fφ and gφ respectively, in a scenario involving 25 objects
per data sample, while in our case there are 10 objects (tags) on average.

For the multimodal scenario, where we have both images and their meta-
data, we use a larger architecture that incorporates a CNN for image data and
the same RN-based architecture previously described for the metadata. The
CNN we employ is a ResNet-18 [11] pre-trained on ImageNet, but with its
classification layer replaced by a fully-connected layer of 512 units. Then, the
CNN and RN outputs are fully-connected by a layer with one sigmoid unit for
classification.

4 Experimental setup

4.1 Datasets

We evaluate our proposed architecture on two datasets. In both, samples from
the validation set are not used in the test set.

DIRSM: The “Disaster Image Retrieval from Social Media” was subtask of the
Multimedia Satellite Task from MediaEval 2017. Its dataset is comprised of
6,600 images from the YFCC100M dataset [26] alongside their metadata, such
as description, tags, and title. Each set of words is the union of all individual
words found in all tags, that is, we break tags into individual words if there
are more than one per tag. Individual words are obtained by employing the
NLTK [3] word tokenizer. Since the dataset is not large, this was done to ease
the difficulty of learning better representations for tags, as their occurrence
rates should be higher. We then remove multiple occurrences of the same words
in the same document. The dataset has a predefined test set corresponding to
20% (or 1,320) samples. We set aside 1,054 samples from the training set for
validation purposes.

CUB-200-2011: The Caltech-UCSD Birds-200 [28] dataset consists of 11,788
images of birds, labeled into 200 classes. Each image contains 312 binary at-
tributes describing characteristics of the bird therein. As they include a cer-
tainty level between 1 and 4, we filter out all attributes associated with each
bird whenever it has a certainty below 3. We transform those remaining into
a set of tags, making this similar to the previous scenario. The dataset has
predefined train and test sets with 5,994 and 5,794 samples, respectively. We
used 25% (or 1,158) of test samples for validation purposes.
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Table 1 Hyperparameters and search domains used by Hyperband (R = 243 and η = 3).
In the DIRSM dataset, we select as optimal the hyperparameters from the model that
achieved the lowest validation loss among 10 complete Hyperband runs.

Hyperparameter Search domain

Batch size 32, 64, 128
Learning rate 2.5× 10−3, 2.5× 10−4, 2.5× 10−5

Weight decay 10−2, 10−3, 10−4

# layers (fφ) 2, 3, 4, 5
# layers (gθ) 2, 3, 4, 5

# units/layer (fφ) 128, 256, 384, 512
# units/layer (gθ) 128, 256, 384, 512

Dropout Uniform in [0.1, 0.3]
t 50, 100, 200, 300

4.2 Evaluation

In the DIRSM dataset, we adopt the same evaluation protocol as the Multi-
media Satellite Task competition [5]. It consists of three different scenarios,
each of them evaluating one modality: in run 1, only images are provided as
input; in run 2, only the metadata are provided; finally, in run 3, both images
and metadata are used.

In the test phase, we evaluate the test set items ranked by the confidence
that they depict a flooding event, from most to least confident. They are
evaluated using the Average Precision (AP) at cut-off 480 and the mean AP
at cut-offs 50, 100, 250, and 480.

In the CUB-200-2011 dataset, we evaluate the F1 score of the models in
classifying samples of birds into one of the 200 classes, averaged over all classes.
We consider two scenarios: only tags, and both images and tags.

4.3 Baselines

We compare our method to three baselines. The first two, proposed by Bischke
et al. [4] and Dourado et al. [7], described earlier, use a SVM with the RBF
kernel as a classifier to produce scores for ranking. We also compare to a fully-
connected neural network with multiple layers (MLP), with no relational step,
using the mean vector of all words as input, to highlight the influence of the
relational step in our approach. Furthermore, we use fastText [22] embeddings
pre-trained on a large corpus as an alternative text representation to evaluate
our method and the MLP and SVM baselines. Specifically for the CUB-200-
2011 dataset, we do not perform comparisons using fastText embeddings as
the tags are non-textual.
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4.4 Training details

We train the proposed methods using AMSGrad [24]. Each training session
lasts for at most 50 epochs, evaluating the model against the validation set at
each epoch. If the validation loss does not improve for 10 epochs, we stop the
training procedure earlier.

Hyperparameters were optimized using the Hyperband [18] algorithm on
the validation set, with R = 243 and η = 3. The optimal hyperparameters
are selected individually for each modality, that is, one for each task: run 1
(images), run 2 (text), and run 3 (multimodal). In addition, we individually
optimize hyperparameters for the RN and MLP variants that use fastText.
These hyperparameters are summarized in Table 1. We also optimize hyper-
parameters for the SVM on the validation set, but using a grid search. The
search is over 10−2 ≤ C ≤ 1010 and 10−9 ≤ γ ≤ 103, both spaced evenly on a
logarithmic scale.

5 Results and discussion

The results for each scenario are summarized in Table 2. In order to better
highlight the differences in performance, we also compare the precision at
each cut-off from 1 to 480 of all neural network approaches, both in run 2 and
run 3, shown in Figure 3 and Figure 4, respectively. While we are focused on
the performance of the RN for learning from text data (run 2 ), we still consider
the performance of the CNN on the image-only scenario (run 1 ), thus we can
compare how the CNN performs by itself and when used in the multimodal
scenario (run 3 ). Even though our CNN based on ResNet-18 has almost 4
times fewer parameters than one of the baselines [4], while the other [7] uses
multiple deep neural networks as feature extractors, all approaches have similar
performance, with the baselines being slightly better.

In run 2, we see that the neural network architectures achieved competitive
results with the SVM baseline using fastText, all of those being significantly
better than the baselines in AP@480, but close to the best approach in terms
of MAP. In particular, the RN with embeddings learned from scratch had
very similar performance to the SVM with fastText embeddings. While using
fastText embeddings with the RN led to better AP@480, its MAP had a
larger variance. The MLP baseline, however, was inferior to both of those,
using either learned embeddings or fastText embeddings. Inspecting Figure 3,
however, both the RN and the MLP display a large variance in the results
at the first few positions. On average, the RN-based networks pull ahead at
around k = 50, the RN with fastText approach being the best on average at
around 250, and then they become similar for the rest of the elements. The
MLP with fastText falls behind specially after the first 400 elements, where
the precision drops faster than other approaches.

As already mentioned, the learned lookup table is restricted to the words
seen during training. Since it cannot produce representations for unknown
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Table 2 Average Precision at 480 (AP@480) and Mean Average Precision (MAP) at cut-offs
50, 100, 250 and 480 on the test set of the DIRSM dataset. Values presented for our models
(detailed in Section 3.1) are the mean and standard deviation of 10 distinct training sessions
with randomly initialized weights. Models that use fastText representations are indicated
with fT. In all cases, ResNet-18 was initialized from weights of a pre-trained (ImageNet)
model. We use the best result by Dourado et al. [7] of their proposed variants in each
scenario.

AP@480 (%) MAP (%)

Run 1
ResNet-18 84.8 ± 1.3 95.1 ± 0.8

Bischke et al. [4] 86.64 95.71
Dourado et al. [7] 88.41 96.74

Run 2

RN 82.8 ± 1.0 85.6 ± 1.5
MLP 82.0 ± 0.6 84.4 ± 0.8
RNfT 83.2 ± 1.5 85.5 ± 2.3

MLPfT 81.9 ± 1.1 83.5 ± 1.6
SVM (rbf)fT 84.00 85.97

Bischke et al. [4] 63.41 77.64
Dourado et al. [7] 73.81 88.09

Run 3

ResNet-18 + RN 97.2 ± 0.3 99.1 ± 0.3
ResNet-18 + MLP 95.1 ± 0.7 97.5 ± 1.3
ResNet-18 + RNfT 97.3 ± 0.3 99.2 ± 0.1

ResNet-18 + MLPfT 97.3 ± 0.2 99.1 ± 0.1
Bischke et al. [4] 90.45 97.40
Dourado et al. [7] 90.96 97.63

words, they are mapped into vectors of zeros and the model must learn to
ignore them. While the performance attained with both approaches for rep-
resenting text are close with the RN, the simpler learned representations are
more sensitive to the hyperparameters described in Table 1. This suggests
that the RN can perform reasonably well with good object representations,
being more robust to the architecture, but hyperparameter search also plays
a significant role.

Finally, in run 3, the models using only neural network solutions were the
best performing, being above other baselines by a significant margin. Both
previously published results [5,7] improve slightly in the multimodal scenario
compared to the ones where only images or text are available. The MLP showed
the largest improvement in the use of fastText embeddings, while the RN had
very similar performance both with and without fastText, as was the case in
run 2. Upon inspection of precision scores, we see that, with the exception
of the MLP with learned embeddings, the methods were indeed very close in
performance and had relatively small variances. Moreover, the RN with fast-
Text embeddings had the best precision, on average, at the first 200 positions
in the produced rankings, dropping slightly below others after.

These results highlight an advantage of using neural networks when fusing
different modalities: the CNN and RN were trained jointly in an end-to-end
manner, requiring no significant changes to their individual architectures.

We summarize the results on the CUB-200-2011 dataset in Table 3. In this
case, we see the MLP baseline clearly outperforms the RN. This can be at-
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Fig. 3 Precision scores at each cut-off (k) from 1 to 480 attained by the neural network ar-
chitectures in run 2 (detailed in Section 4.2). The scores shown are the average of 10 training
procedures with randomly initialized weights; shaded areas represent standard deviation.

Table 3 F1 scores on the test set of the CUB-200-2011 dataset. Values presented are the
mean and standard deviation of 5 distinct training sessions with randomly initialized weights.
In all cases, ResNet-18 was trained from scratch.

F1 score (%)

Run 2 RN 2.6 ± 0.6
MLP 9.2 ± 1.8

Run 3 ResNet-18 + RN 1.7 ± 1.1
ResNet-18 + MLP 8.0 ± 1.2

tributed to two main factors. First, the dataset contains a much higher number
of objects (tags) per sample, resulting in a high number of pairs to be analyzed
by the RN. Second, as opposed to the previous dataset, the tags represent bi-
nary attributes. Thus, a model that only accounts for their presence, rather
than their relations, can perform the necessary task. This observation goes in
line with the one observed earlier: when the relationships between tags show

6 Conclusions

In this paper, we proposed a relational approach using neural networks, based
on Relation Networks (RN) [25], for scenarios where textual data is available
not as proper sentences, but as a collection of words (tags). We compare its
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Fig. 4 Precision scores at each cut-off (k) from 1 to 480 attained by the neural network ar-
chitectures in run 3 (detailed in Section 4.2). The scores shown are the average of 10 training
procedures with randomly initialized weights; shaded areas represent standard deviation.

performance to more straightforward approaches, one using a feedforward neu-
ral network and one using SVM, in the case of social media data referring to
natural disasters. Additionally, we also compare different types of vector rep-
resentations for words and analyze how they affect the model performance in
each case.

The experiments suggest that RNs are a competitive approach for this
task, performing slightly better than the MLP and SVM baselines. They also
indicate that distributed word representations such as fastText can lead to
improvements, but those are not as significant. However, better object repre-
sentations for the RN makes it more robust to hyperparameters, leading to a
wider range of hyperparameters that can attain competitive results, while the
simpler lookup table representation is more sensitive to them.

As they can be jointly trained with a CNN, we also performed experi-
ments in a multimodal scenario. These show that neural network approaches,
both RN and MLP, have a significant advantage over SVMs, even though the
SVM uses visual features extracted using a CNN with almost four times more
parameters. While MLPs are also competitive in this scenario, we observed
that it is more sensitive than the RN with respect to the word representation
employed.
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