
ar
X

iv
:2

00
7.

05
76

4v
1 

 [
ee

ss
.A

S]
  1

1 
Ju

l 2
02

0

Noname manuscript No.

(will be inserted by the editor)

Fast Griffin Lim based Waveform Generation Strategy for

Text-to-Speech Synthesis

Ankit Sharma a
· Puneet Kumar a

· Vikas

Maddukuri b*
· Nagasai Madamshettib ·

Kishore KGb
· Sahit Sai Sriram Kavurub

·

Balasubramanian Raman a
· Partha Pratim

Roy a

Received: date / Accepted: date

Abstract The performance of text-to-speech (TTS) systems heavily depends on
spectrogram to waveform generation, also known as the speech reconstruction
phase. The time required for the same is known as synthesis delay. In this paper,
an approach to reduce speech synthesis delay has been proposed. It aims to en-
hance the TTS systems for real-time applications such as digital assistants, mobile
phones, embedded devices, etc. The proposed approach applies Fast Griffin Lim
Algorithm (FGLA) instead Griffin Lim algorithm (GLA) as vocoder in the speech
synthesis phase. GLA and FGLA are both iterative, but the convergence rate of
FGLA is faster than GLA. The proposed approach is tested on LJSpeech, Blizzard
and Tatoeba datasets and the results for FGLA are compared against GLA and
neural Generative Adversarial Network (GAN) based vocoder. The performance
is evaluated based on synthesis delay and speech quality. A 36.58% reduction in
speech synthesis delay has been observed. The quality of the output speech has
improved, which is advocated by higher Mean opinion scores (MOS) and faster
convergence with FGLA as opposed to GLA.

Keywords Tacotron · Vocoder · Text to Speech Synthesis Delay · Dilated
Convolutional Neural Network

1 Introduction

The conclusive step in a text-to-speech (TTS) system is the generation of speech
from the spectrogram representation of the signal. This process is known as the
waveform reconstruction while the generation of intermediate signal from input
text is called the construction process. The waveform generated in the reconstruc-
tion process is the time-domain signal obtained from its intermediate spectrogram.
The overall performance of a TTS system depends on the waveform processing in-
volved in the reconstruction phase [1]. The main challenge in the TTS systems
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is to optimize the waveform processing time while maintaining or improving the
quality of the generated speech [2].

The TTS systems have emerged as valuable tools for day-to-day applications
such as digital assistants, mobile phones, embedded devices, etc. Most of these
devices have limited computational capacity and they are sometimes used in of-
fline mode. Reducing the speech synthesis delay for them could be very useful
in real-life applications such as - human computer interface, navigation systems,
telecommunication and multimedia, aid to physically challenged people, daily ap-
pliances like TVs, washing machines, etc. [3]. For such applications, TTS systems
are expected to have quick response time and generate speech with good quality.
Hence, it becomes even more important to fasten up spectrogram to speech re-
construction for real-time applications. With the aim to make TTS systems more
suitable for real-time applications, it is important to improve their response time
while retaining the quality of the synthesized speech.

Many software and hardware-based techniques have been suggested in the past
for waveform optimization during speech synthesis [4, 5]. Most of the tradition-
ally used techniques were based on software components such as concatenative
speech synthesis, parametric speech synthesis, etc. The current computing trend
has shifted towards deep learning due to the availability of hardware resources
and training data. The state-of-the-art of TTS systems have also started lever-
aging deep neural network (DNN) based techniques for speech synthesis [6]. The
performance of text-to-speech systems has significantly improved especially after
the introduction of end-to-end neural waveform generation methods [7, 8]. Inspite
of significant performance boost, even end-to-end neural waveform generation ap-
proaches suffer from sluggish speech reconstruction process. Therefore, there is a
need to look for more efficient waveform optimization approaches to enhance the
speed and quality of machine synthesized speech.

There are three stages in text-to-speech process: text analysis, linguistic analy-
sis and waveform generation. Traditional TTS systems are based on complex multi-
stage hand-engineered pipelines. The present state-of-the-art is end-to-end neural
speech synthesis which puts together these stages of TTS process into a single lay-
ered pipeline through the use of DNNs. All three phases of TTS take place without
human intervention for acoustic feature crafting. However, the hyper-parameters
and configuration settings to cater a specific stage of the TTS can be set up-front.
In that context, the implementation settings for waveform generation can be set in
the form of appropriate choice of the reconstruction algorithm. Griffin-Lim algo-
rithm (GLA) is the most predominantly used reconstruction algorithm for speech
synthesis [9].

GLA is an iterative algorithm that tries to produce a signal from the spectro-
gram and does not have any information about phase. However, GLA needs many
iterations and the perceptual quality of the output speech is not always very good
[10]. An optimized version of GLA is available in the literature which is known as
Fast Griffin Lim Algorithm (FGLA) [11]. FGLA naturally requires lesser iterations
to construct the phase from spectrogram representation for general signal process-
ing applications. However, it has not been applied and tested for speech synthesis.
In this paper, we have applied FGLA for speech synthesis process of neural TTS
systems. We’ve formulated an experiment to optimize the waveform processing of
linear spectrograms in Tacotron TTS system. FGLA based reconstruction strat-
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egy has been applied to reduce the speech synthesis delay. And, observations have
been made in context of the quality of the synthesized speech and the number of
iterations required for the convergence of the reconstruction algorithm.

The proposed speech synthesis systems generate the speech from the magnitude
spectral envelope. We have conducted a Mean opinion scores (MOS) study to test
the quality of audio produced by FGLAwith a lesser number of iterations and GLA
with a greater number of iterations with an optimal number of training steps. The
experiments have been conducted for LJSpeech, Blizzard and Tatoeba datasets. It
resulted into 36.58% reduction in speech synthesis time. The results have reflected
higher quality of the output speech in terms of improved MOS. The number of
training steps and iterations were determined by experimental observations. The
convergence patterns of fourier transform plots of the resultant waveforms are
found to be in-line with the choice of number of training iterations.

1.1 Contribution

The major contributions of the current research work are:

– An FGLA based method has been proposed to reconstruct .wav speech files
from linear spectrograms. In TTS applications, reconstruction of a waveform
from spectrogram plays an important role because synthesis time is equiva-
lent to the waiting time for application users. Users expect the speech output
promptly. The proposed method has reflected into reduced synthesis time which
is likely to enhance the experience of TTS application users.

– The quality of the synthesis speech has been maintained while reducing the syn-
thesis time. A market-based application cannot compromise about the quality
of the synthesized speech. Speech quality also depends on the trained model.
Hence, the model is trained upto optimal number of steps and the speech
quality checking process has been carried out on three datasets. On all three
datasets, FGLA based speech reconstruction produced better quality speech
than GLA based construction.

– TTS models have been trained on LJSpeech, Tatoeba and Blizzard datasets
and the waveform reconstruction has been carried out for GLA, FGLA and
the GAN based vocoder. Optimal number of training steps and iterations have
determined experimentally. The .wav files generated by the TTS models have
been evaluated based on the quality of the output speech and the synthesis
time. The speech quality has been analyzed by evaluating in terms of Mean
Opinion Score (MOS) and the synthesis delay has been analyzed by measuring
the time needed for the TTS model to synthesize the output speech.

1.2 Organization

The rest of the paper is organized as follows. Existing work on waveform pro-
cessing for TTS systems has been surveyed in Section 2. Section 3 formulates the
problem statement. The details of the proposed methodology have been outlined
in Section 4. Section 5.1 presents the experimental setup. Analysis of the observed
results has been presented in Section 5.2. Finally, Section 6 concludes the paper
and highlights the scope for future research.
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2 Literature Review

In recent years, text-to-speech processing has witnessed significant improvements.
Traditionally, concatenative and parametric speech synthesis methods have been
used for the task of text-to-speech conversion. In last couple of years, neural TTS
systems have provided substantial performance boost in the quality of machine
synthesized speech. A review of various research attempts in context of aforemen-
tioned methods alongwith the waveform optimization strategies followed by them
have been provided in the following sections and their summary is presented in
Table 1.

2.1 Various Speech Synthesis Methods

2.1.1 Concatenative Speech Synthesis

Concatenative models have dominated speech synthesis process since 1970’s. They
are based on searching and collecting small samples of speech components from
the voice database [12]. The voice quality of the speech synthesized by them is
more natural, however, they require a huge amount of voice database. There are
two types of costs associated with them - a) searching cost and b) concatenative
cost. Searching cost deals with searching specific voice segments corresponding to
required broken portion and concatenative cost is related to joining these segments.
As pointed by G. Coormanne et al. [13] , one of the problems with these models is
that they do not produce a good quality speech if a suitable match in the database
corresponding to the required segment is not obtained. Another challenge with
concatenative models is that they require complete dataset for generating a new
set of voice. It is difficult to select the target unit from the voice database in order
to minimize the difference between the required and selected samples [14].

2.1.2 Parametric Speech Synthesis

Parametric speech synthesis is another widely used process to generate speech
from text. TTS models use the same statistical models derived from the data [15].
They follow a parameter generation approach unlike fetching the speech samples
from the database. Hidden Markov Model (HMM) based TTS architectures are
among the most famous parametric models. The primary step involved in them is
to find a parametric form of speech including spectral and excitation parameters
from the voice corpus and then model them by using a set of generative models
[16]. In context of using HMM-based TTS systems, Y. Junichi et al. [17] predicted
the parameters then synthesized the speech for a given text. The benefit of this
approach is that it does not require the complete dataset at synthesis time. T.
Masuko et al. [18] were success to change the speaker’s voice easily using the
parametric speech synthesis while L. Soojeong et al. [19] tried statistical parametric
method for enhancement of the speech. However, a disadvantage associated with
parametric methods is that the voice quality of the synthesized speech is not as
natural as in case of concatenative speech synthesis.
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2.1.3 Neural Speech Synthesis

Concatenative and parametric TTS systems have practical difficulties, for exam-
ple, their different components need to be modeled and processed separately [20].
Deep learning-based end-to-end neural TTS systems, which are the current state-
of-the-art solve this problem. They put together the intermediate stages of TTS
process into a single, layered pipeline through the use of DNN which is carried
out without human intervention for acoustic feature engineering. The recent neu-
ral TTS systems include Wavenet [21], Char2Wav [20], Tacotron [22], Tacotron 2
[23], DeepVoice [24], DeepVoice 2 [25], DeepVoice 3 [26], VoiceLoop [27]. Wavenet
is based on a generative model that predicts samples based on probability dis-
tribution. Tacotron [22] produces spectrograms from the text and then produces
corresponding waveform using a vocoder. However, waveform generation has been
a time-consuming process for the initial TTS systems and the speech output was
not human-like. Use of improved spectrogram methods such as mel-spectrogram
and better vocoders such as WORLD, GLA, etc. have helped solving these prob-
lems [28].

Char2Wav predicts the parameters of the WORLD vocoder and uses a Sam-
pleRNN conditioned upon WORLD parameters for waveform generation. WORLD
[29] on the other hand consists of three analysis algorithms for determining the
fundamental frequency (F0), spectral envelope and aperiodic parameters. Tacotron
is another end-to-end model that uses seq-to-seq learning to map the text to spec-
trogram as intermediate data and then audio is generated by using vocoder. It
uses Griffin Lim as the vocoder that generates audio waveforms from the linear
spectrogram. It takes linear scale magnitude spectrogram and number of iterations
as input and produces the corresponding waveform. It was observed that GLA in
Tacotron converges in about 60 iterations [22]. Tacotron incorporates the GLA for
phase estimation, followed by an inverse Short-Time Fourier transform (STFT) for
waveform reconstruction. Tacotron 2 is an entirely neural network-based approach
for speech synthesis which combines the seq-to-seq model feature used in Tacotron
and generates the mel-spectrogram and performs speech synthesis using modified
Wavenet vocoder.

In DeepVoice [24], Wavenet architecture is modified and a fast synthesis system
is developed during the audio synthesis stage. DeepVoice 2 [25] is a multi-speaker
model that has taken Tacotron architecture as a base and performed modification
in Griffin Lim algorithm with Wavenet based vocoder. Deepvoice 3[26] is a fully
convolutional attention-based neural end-to-end TTS system. Its architecture is
capable of transforming several textual features into vocoder parameters such as
mel-spectrograms, linear scale log spectrograms, spectral envelope, fundamental
frequency (F0), aperiodicity parameters, etc. These vocoder features are given as
input to the waveform synthesis models. It uses three different vocoders - WORLD,
Griffin-Lim and Wavenet. Both WORLD and Griffin Lim use linear spectrogram
whereas the modified Wavenet in Tacotron2 uses mel-spectrogram for waveform
synthesis. VoiceLoop [27] is an attention-based neural text to speech system ref-
erenced by a working memory model called phonological loop. It is capable of
producing voices that are sampled in the wild. VoiceLoop replaces convolutional
RNNs with memory buffer.
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In context of using neural vocodders, K. Oyamada et al. [30] focused on DNN
based architecture to recover the phase information from magnitude spectrogram.
K. Kumar et al. [31] proposed the MelGAN which is a fully convolutional, non-
autoregressive vocoder. It generalized well for unseen speakers and showed signif-
icant speed up in speech construction from mel-spectrograms. In a similar work,
WaveGlow [32] was proposed by replacing the vocoder part of Wavenet by deep
neural architecture. It performed efficiently on large utterances but its perfor-
mance degraded while converting small text samples into speech. TTS with neural
vocoders such as WaveGlow have to repetitively go through serial steps of wave-
form construction which causes them to take more time while constructing small
sentences. As observed by K. Oyamada et al. [30], on CPU, some of the neural
vocoders took three times longer than GLA for the speech synthesis. Their training
time is as high as a few weeks and however their inference is fast on the GPU, the
large size of the trained model makes their application very difficult with real-time
devices having CPU with constrained memory. [32, 31, 33].

2.2 Waveform Processing in TTS systems

The final speech generated by the TTS systems is in the form of waveform while
the intermediate representation is called spectrogram. The raw text input is con-
verted into sampled embedding vector in the pre-processing phase, from which
the intermediate frequency-time representation, that is, spectrogram is generated
[34]. It is called the ‘Construction Phase’. Then, waveform is generated in the ‘Re-
construction Phase’ using the vocoders. The efficiency of reconstruction algorithm
majorly determines the overall performance of the TTS system. GLA has been
the most predominantly used reconstruction algorithm for speech synthesis [10].
A time-domain signal can be reconstructed from its amplitude spectrogram using
the information about its phase. When no information is available about the phase
and only the amplitude spectrogram is available, GLA is particularly suited for
phase reconstruction. However, GLA needs many iterations and the perceptual
quality of the output speech is not always very good [35].

There have been a number of attempts to optimize the waveform processing for
speech reconstruction. For instance, Sercan et al. [10] implemented transposed con-
volution layers alongwith non-linear interpolation which resulted into better uti-
lization of modern multi-core processors than simple iterative strategy. In another
work, Y. Fisher [36] used multi-scale context aggregation by dilated convolutions
that resulted in simplified network alongwith increased state-of-the-art accuracy.
In the context of waveform processing based applications, Z. Cheng and J. Shen
et al. [37] used the properties of the audio waveforms to recommend music based
on the venue and surrounding of the user. As an attempt to enhance the vocoder
module, M. Morise et al. [29] proposed a new vocoder, WORLD for feature ex-
traction and waveform synthesis. Y. Masuyama [38] proposed an enhanced phase
reconstruction technique by combining DNN with GLA to build GLA-inspired
neural network layers for waveform generation.

Some of the distinctly related work in the area of signal processing maps to the
utilization of fourier transformation techniques such as Gabor Transform [39, 40].
It is a special form of fourier transform that is used to determine the frequency
and phase content of the signals represented in the form of spectrograms. In this
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direction, a real-time fast fourier transform algorithmwas proposed by H. Sorensen
et al. [41]. Successful research has also been carried out to achieve phase recovery
with lesser number of iterations as compared to GLA [10]. It gives a hint to
look out for alternative reconstruction algorithms requiring lesser iterations while
maintaining the quality of the synthesized speech.

Though there have been various attempts to optimize the waveform processing
in context of GLA. However, better alternatives for waveform reconstruction have
not been explored to their best potential. An optimized version of GLA known as
Fast Griffin Lim Algorithm (FGLA) is available in the literature [11]. It requires
lesser iterations to construct the phase from spectrogram representation for general
signal processing applications. However, it has not been applied and tested for
speech synthesis application. In this paper, FGLA based waveform generation
method has been proposed with the aim to reduce synthesis delay. It aims to
overcome the challenges faced by concatenative and parametric TTS systems by
getting rid of the need of human intervention for acoustic feature engineering.
Some of the challenges of using nerual vocoders for real-time TTS applications
such as - slow speech synthesis with CPU, larger model size, complex architecture,
etc. have also been considered and addressed.

3 Problem Formulation

The major objective of the proposed research work is to optimize the waveform
generation process during speech synthesis by TTS systems. The speech synthesis
time should be reduced without changing the quality of the output speech. The
training phase for TTS device is performed once in a given system until there is a
change in algorithm. The synthesis phase is executed on real-time speech synthesis
devices having low computational power. This phase is repeated every time a
text is converted into speech. System resources at training stage are generally of
high computing power. However, most of the real-time speech synthesis systems
have limited computing capabilities. Hence, the synthesis algorithm should take
less amount of memory to make the speech synthesis more suitable for real-time
applications. The problem statement is subjected to the following constraints:

i) The average time taken (T ) to convert the corresponding spectrogram to the
waveform should be minimized. T corresponds to the synthesis delay for n samples.

ii) The number of iterations required (itr) for the output waveform to converge
should be minimized. That is, their plots should reach to an optimal state as soon
as possible.

iii) Quality of the synthesized speech (qual) should be maintained. The reduction
in speech synthesis time should not affect it.

iv) The speech synthesis process should result into optimal resource utilization
(util). It should cater to the limited computational resources of real-time TTS
systems.

The aforementioned constraints can be modeled mathematically as shown in
Eq. 1.
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TTS Model Basic Method Properties Text Pre-

processing
Waveform
Preprocessing

Spectrogram
Type

Construction Reconstruction

Concatenative Searches the audio segment
from speech database that is
most relevant to the text

Simple to implement.
Results into good quality
speech

- - - - -

Parametric Keeps track of parametric form
of speech including spectral pa-
rameters

Speaker voice can be
changed with minimum
efforts

- - - - -

Wavenet [21] Uses dilated regressive CNN
to predict present sample from
past sample

High quality. Can gener-
ate multi-speaker voice.

Yes No Mel-
spectrogram

- -

Char2Wav [20] Uses bidirectional RNN to pro-
duce waveform from textual
content only

Expert linguistic knowl-
edge is not required

No Yes Linear-
spectrogram

- SampleRNN

Tacotron[21] Encoder-decoder architecture
based on RNNs

Fully end-to-end; robust
and fast processing

Yes Approximate Linear-
spectrogram

CBHG GLA

Tacotron2[23] Encoder-decoder architecture
based on RNNs

Better speech quality
and smaller model size
than Tacotron

Yes Approximate Mel-
spectrogram

Convolution
based

Modified
Wavenet

DeepVoice [24] Uses five different DNNs for
TTS; needs less parameters
and faster than Wavenet

Faster processing No No Linear-
spectrogram

CBHG GLA

DeepVoice2 [25] Wavenet based spectrogram to
audio generation

Can generate multi-
speaker voices with less
training

No Approximate Linear-
spectrogram

Attention
based encoder

GLA, Wavenet

VoiceLoop [27] Uses shifting buffer memory in-
stead of RNNs

Robust; produces lesser
errors

Yes Exact Linear-
spectrogram

Buffer shallow
network

WORLD

Here, GLA: Griffin Lim Algorithm; CBHG: (1-D convolution bank + highway network + bidirectional GRU)
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Subject to constraints :
{

minimize (T, itr)
maximize (qual, util)

Where :


























































n : number of inputs.

itr : number of iterations required for the output waveform to converge.

qual : quality of the synthesized speech.

util : utilization of the computing capacity of TTS plateform.

T = {t1, t2, t3, ......tn}, time to convert coefficients into waveforms.

t1, t2, .......tn are the times taken to convert the spectrograms to waveforms.

S : {u1, u2, u3, ......un}, set of spectrograms generated by the TTS system.

u1, u2, .......un are the coefficient matrices of the spectrogram.

W = {v1, v2, v3, .......vn}, set of corresponding waveforms generated by a vocoder.

v1, v2, .......vn are the waveforms produced from u1, u2, .......un .

(1)

4 Methodology

In general, a TTS system contains three phases: a) text analysis (text to words),
b) linguistic analysis (words to phonemes) and c) waveform generation (phonemes
to sound). The first and second phases are carried out during the training phase.
The TTS model is trained on text data and intermediate spectrogram is generated
from the trained model for given input text. The third phase takes place during
the synthesis when phase waveform is synthesized through this spectrogram. The
proposed method aims to optimize the reconstruction of original speech signal
from the intermediate spectrogram. Generally, a magnitude spectrogram doesn’t
contain the complete phase information. A reconstruction algorithm such as GLA
iteratively recovers that information. GLA is an iterative algorithm that takes a
high number of steps to recover the phase information. The proposed approach
applies an optimized alternative FGLA, for phase reconstruction in waveform gen-
eration phase.

The waveform analysis can be performed easily in the frequency domain [39].
Fourier transform is most widely used transformation that converts time domain
signal into frequency domain signal. That is why, the proposed methodology uti-
lizes fourier transform and its variants such as Short-Time Fourier Transform
(STFT), Discrete Fourier Transform (DFT), Gabor Transform, etc. during vari-
ous steps of waveform generation. STFT is a series of fourier transforms of a subset
of the signal. When frequency components of a signal vary with time, STFT is used
to retrieve the time-localized frequency information. Gabor Transform is a special
kind of STFT representation which is used to discover the phase information and
sinusoidal frequency of the subsets of a time varying signal. The time-frequency
analysis is carried out by first multiplying the function by a Gaussian function and
then transforming it with a fourier transform. During the synthesis phase, input is
a spectrogram and output is a waveform. The STFT can be represented as a matrix
of coefficients where column index represents time and row index represents fre-
quency of the respective DFT coefficient. The magnitude of each coefficient in the
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respective index is computed and this matrix can be treated as a image known as
spectrogram of the signal. The choice of base implementation has been explained
in Section 4.1. The proposed methodology is described in the following sections.
It is visually represented in Fig. 1 and mathematically depicted in Algorithm 1.

4.1 Rationale Behind Selecting Fast Griffin Lim Algorithm with Tacotron

The research work presented in this paper primarily aims to reduce the speech
synthesis delay in text-to-speech systems. A fundamental experiment to apply
FGLA based waveform generation from linear-spectrogram has been formulated.
The most commonly used waveform reconstruction algorithm for speech synthesis
is GLA. The most acclaimed TTS system that uses linear-spectrogram for inter-
mediate representation is Tacotron, developed by Google [22]. GLA was used as
vocoder in Tacotron that produces approximate waveform corresponding to the in-
put spectrogram, not the exact waveform. FGLA has been chosen instead of GLA
because FGLA is known to take lesser iterations to recover the phase from spec-
trogram [11]. However, other vocoders such as Wavenet [21], WORLD [29], etc. are
available in the literature as potential choices for vocoders but they process mel-
spectrograms while current research targeted to work with linear-spectrograms
during the intermediate step of the speech synthesis process. Thus, FGLA with
Tacotron emerged out as the most suitable choice for the experiment in consider-
ation.

4.2 Strategy for Waveform Optimization

STFT is used for the observable comparative analysis in the frequency domain [9].
FGLA attempts to reconstruct the speech signal from the intermediate spectro-
gram of the signal. For that purpose, it finds the real signal X∗ ∈ RL from a given
set of spectral magnitude coefficients s, such that the magnitude of STFT of X∗

is as close as possible to the input signal. It helps in more accurate reconstruction
of the signal. Any arbitrary set of complex numbers cannot be chosen as STFT
coefficients, i.e., only a certain set of complex numbers correspond to STFT of a
waveform. In the same way the input that we get may not be a valid spectogram.
A valid spectrogram S would have the magnitude of the coefficients as close as
possible to the input.

The relevant terms have been defined in Section 3. Two important concepts
that are utilized by the proposed method are Gabor Transform and Projection.
G∗x is the inverse Gabor Transform of x. It is a special case of STFT that is
helpful in extracting the feature patterns from the spectrogram representation
[42]. It helps in finding the time needed to convert the spectrogram into waveform
[43]. Three phases of the proposed method have been described as follows.

4.2.1 Stage 1: Initialisation

(i) First we initialize the coefficient matrix c, which is of same dimensions of the
input spectrogram and contains the element of set C1, c0.
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START
Intermediate signal
construction by TTS

tn = PC1
(PC2

(c
n-1

)),

cn = tn  + α (tn - tn-1).

Update cn, tn

i = i +1. 

Stop

Input 
Text

Calculate Gabor 

Transform of c

i < n 

Convergence Rate α = 0.2

Iterator i = 0

Coefficient Matrices c, t

Number of Iterations nWaveform

Spectrogram

YesNo

InitializationFinalization Iteration

Fig. 1: Flow diagram depicting the proposed methodology. Here, green colored
boxes show various stages of the methodology; red box shows the loop decision
and yellow box shows the loop iteration. Theoretical analysis of the complexity
and the effect of convergence rate α is discussed in Section 4.2. α is an important
hyper parameter impacting the complexity and causing the speep-up in waveform
processing. Its appropriate value is determined in Section 5.1.1.

(ii) The magnitude of every element is made equal to the element in input matrix
in the corresponding position. That is, projecting on to set C2.

(iii) Then we initialise another matrix t of same dimensions.
(iv) The projection of the modified coefficients of the transform on to set C2 is

defined as follows.

PC2
(c) = s.e

i.∠c (2)

The above matrix is projected on to set C1, followed by projection on to set
C2 to get t0. Here, ti and ci denote the matrices after i iterations.

{

C0 = s.ei.∠(c0)

t0 = PC2
(PC1

(c0))
(3)

(v) Here, C1 is the set of possible coefficients of STFT. C2 is the set of complex
numbers whose magnitude is equal to the magnitude spectrum coefficients. Gx

is the Gabor Transform of x.

{

C1 = {c : ∃x ∈ RL‖c = Gx}

C2 = {c ∈ CMN ‖|c| = s}
(4)
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4.2.2 Stage 2: Iteration

(i) The magnitude of the elements of the coefficient matrix is made equal to the
input matrix, keeping the phase unchanged.

(ii) Inverse Gabor Transform is then applied on the resultant coefficient followed
by Gabor Transform. The projection of the modified coefficient on to the set
C1 is defined as follows. This is the influential step to make the FGLA faster
than GLA [11].

{

PC1
(c) = GG∗c

tn = PC1
(PC2

(cn−1))
(5)

(iii) This projection on to set C1 in current step is subtracted with the projection
in set C1 and multiplied by a factor, convergence rate α. Choosing α close to
one but not exactly one yields better results. This product is added to the
projection in the current step, the initialised coefficient as updated to this
value.

cn = tn + α(tn − tn−1) (6)

(iv) The above steps are repeated iteratively and in each step the coefficients con-
verge close to a real signal whose magnitude spectrum is approximately is equal
to the input spectrum.

4.2.3 Stage 3: Final Waveform Generation

(i) Inverse Gabour Transform is applied on the final coefficient to get the wave-
form.

x
∗ = G

∗

cn (7)

The aforementioned phases of the proposed methodology are depicted in Al-
gorithm 1 and the theoretical analysis of its complexity is discussed below.

Complexity Analysis

As shown in Algorithm 1, FGLA has single iteration loop and as per GLA paper
[9], GLA also involves single loop. Hence, the theoretical time complexities for
both FGLA and GLA are O(n). Experiments revealed that FGLA could produce
the waveform of same quality with 30 iterations as compared to GLA with 60
iterations. Lesser number of iterations for FGLA is a determining factor for the
reduction in the synthesis delay. Convergence rate α is another important hyper-
parameter impacting the complexity and causing the speed-up in the waveform
processing. Its value ranges from 0 to 1. For α = 0, FGLA behaves as GLA. As
its value increases, speed-up also increases till a limit with faster convergence and
then it starts decreasing. As discussed in Section 5.1.1, the appropriate value of α
has been determined as 0.2.
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Algorithm 1: FGLA based Waveform Optimization for text-to-speech

Input n : Number of iterations.
Input k : Number of input variables.
Input C1: Set of possible coefficients of STFT.
Input C2: Set of complex numbers with magnitude same as of spectrum coefficients.
Define s : Spectral magnitude coefficients.
Define c : Coefficient matrix.
Define t : Matrix of same dimensions as c.
Define α: Convergence Rate.
Define x∗: Final waveform.
Define G∗: Inverse Gabor Transform of x∗.
Input S = {u1, u2, u3, .....uk} : set of spectrograms generated by TTS model.
Define u1, u2, .......uk : coefficient matrices of the spectrogram.
Output W = {v1, v2, v3, ......vk} : set of waveforms generated by a vocoder.
Define v1, v2, .......vk : produced waveform.
Define T = {t1, t2, t3, ......tk} : time to convert coefficients into waveform.
Define t1, t2, .......tk : time to convert the spectograms to waveforms.

Procedure WaveOpti
1: Stage 1: Initialisation

2: //Projection of modified transform coefficients on to set C2

3: PC2
(c) = s.ei.∠c

4: // Projection of above matrix on set C1 and then C2

5: C0 = s.ei.∠(c0)

6: t0 = PC2
(PC1

(c0)).

7: Stage 2: Iteration

8: //Projection of modified transform coefficients on to set C2

9: PC1
(c) = GG∗c

10: //Update t and c for each iteration

11: for i in n do
12: ti = PC1

(PC2
(ci−1))

13: ci = ti + α(ti − ti−1).
14: end for

15: Stage 3: Waveform Generation

16: //Inverse Gabor Transform of final coefficients

17: x∗ = G∗cn

5 Implementation and Results

This section discusses and evaluates the experiments to apply FGLA based wave-
form generation from linear-spectrogram.

5.1 Experimental Set-up

This section demonstrates the experimental implementation and analyses the re-
sults. A fundamental experiment to optimize the waveform processing of linear
spectrograms in Tacotron TTS system has been formulated. The model training
is done on Nvidia Tesla K80 GPU machine with 24GB RAM and 4992 CUDA
cores. Text to speech synthesis is done on Intel(R) Core(TM) i7-7700, 4.2 GHz
CPU with 16GB RAM and 64-bit Windows 10 OS machine. The Machine Learn-
ing libraries used in this implementation are Numpy, Tensorflow and Keras. The
choice of parameters and datasets has been detailed in the following sections.
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Table 2: Hyper-parameter choices.

Parameter Value

Convergence Rate, α 0.2

Sampling Rate 20000

Frame Shift (ms) 12.5

Learning Rate 0.0002

The questions that the experimental set-up tries to answer are - ”What is the
ideal number of training steps for TTS model training?”; ”How to determine the
appropriate number of iterations?”; ”How to evaluate the speech synthesized by
the TTS system in terms of quality, speed and convergence?” Suitable number
of training steps and iterations are experimentally determined in Section 5.1.3
and 5.1.4. Then as per Table 7, use-case sentences are formulated according to
various complexity levels. In Section 5.2, speech-synthesis for these sentences has
been evaluated in terms of speech quality, synthesis delay and convergence.

5.1.1 Hyper-parameter Selection

During the synthesis, the convergence rate α was experimentally chosen as 0.2.
We experimented with the α values starting from 0.1 with learning rate 0.0002
and performed the iterations for spectrogram to waveform construction and anal-
ysed the construction time. The most suitable value of α corresponding to the
optimal construction time emerged out as 0.2. The basic entity for training the
model is .text and .wav file. Wav file signal has to be sampled for the analysis.
Table 2 represents the important parameters for the current analysis and their
selected values. Here, ‘Sampling rate’ denotes the number of samples per second,
‘Frame shift’ specifies amount by which window will slide. ‘Learning rate’ shows
how fast network learns by adjusting weights. The experimentally determined val-
ues for sampling rate, frameshift and learning rate are 20000, 12.5 ms and .0002
respectively. Tacotron has been trained from scratch for the datasets described in
Section 5.1.2 for various number of iterations and speech synthesis time has been
observed for GLA and FGLA both.

5.1.2 Datasets

The original Tacotron paper had used LJSpeech dataset. We have trained and
tested the TTS model with Blizzard and Tatoeba datasets as well. The details of
all the datasets used in the implementation is provided in the following sections.

(i) LJ Speech Dataset [44]: It is a single-speaker, public domain speech-dataset
containing 13100 audio samples ranging from 1 to 10 seconds. The total dura-
tion of the dataset is about 24 hours. Each audio-file is a single-channel 16-bit
PCM WAV with a sample rate of 22050 Hz. The properties of LJSpeech dataset
are detailed in Table 3.

(ii) Tatoeba Dataset [45]: This audio corpus is a crowdsourced dataset of sen-
tences and translations. It contains a subset of the English sentences of Tatoeba.
We have not used the complete dataset. Sentences have been filtered out and
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Table 3: Details of LJSpeech dataset

Parameters Values

Total Clips 13,100

Total Words 225,715

Total Characters 1,308,678

Total Duration 23:55:17

Mean Clip Duration 6.57 sec

Min Clip Duration 1.11 sec

Max Clip Duration 10.10 sec

Mean Words per Clip 17.23

Distinct Words 13,821

Table 4: Details of Blizzard dataset

Audiobook Name Total Audio Length

Tramp Abroad 15:46:01

Life on the Mississippi 14:47:27

The Man That Corrupted

Hadleyburg and Other Stories
13:04:00

299152 sentences have been included in processing. The average length of the
audio clips ranges from 1 to 5 seconds. It is an open dataset. Various contrib-
utors keep on adding new audio clips and sentences.

(iii) Blizzard Dataset [46]: It is available under Creative Commons Attribution
Share-Alike license. It contains the samples of three audiobooks read by a
single American English narrator. The books name and recording time are
given in Table 4. Audio file format of blizzard corpus is 16-bit WAV, mono
and sampling frequency is 44100 Hz.

5.1.3 Determination of Appropriate Number of Training Steps

The quality of synthesized speech also depends on the number of training steps.
However, training the model for more steps requires more computation and time.
Hence, it is important to determine the optimal number of steps. We have trained
the Tacotron model till 400K steps and observed the MOS values of the speech
synthesized with it. MOS is a subjective evalution score to denote the quality of a
speech utterance [47]. The MOS scores corresponding to various checkpoints are
shown in Table 5. It has been observed that the MOS values improves rapidly till
250k steps but their convergnce slows down significantly after that. Hence, the
TTS model have been trained for at least 250k steps for the final training of each
use-case. This analysis is performed with configuration same as original Tacotron
paper, i.e., using GLA algorithm with 60 iterations.

5.1.4 Determination of Appropriate Number of Iterations

FGLA is supposed to converge faster than GLA. However, the suitable value for
FGLA’s number of iterations needs to be determined effectively. With that aim,
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Table 5: Determination of appropriate no. of steps.

Steps
MOS

LJSpeech Tatoeba Blizzard

40k 7.0 7.1 5

80K 7.5 7.3 5.2

120K 7.6 7.5 5.4

160K 7.6 7.6 6.0

200K 7.65 7.8 6.3

240K 7.9 8 6.5

280K 8 8.1 6.7

320K 8.2 8.25 7

Table 6: Determination of appropriate no. of iterations.

Dataset Iterations GLA FGLA

LJSpeech

20 6.0 6.8

30 7.3 8.2

60 7.6 8.2

Tatoeba

20 7.6 7.1

30 7.6 8.25

60 8.1 8.25

Blizzard

20 6.0 6.2

30 6.4 7.1

60 6.9 7.3

we trained Tacotron with GLA and FGLA both for 20, 30 and 60 iterations re-
spectively. Then we checked the MOS values for the audio samples synthesized
with the model thus trained. These values have been illustrated in Table 6. The
speech quality for FGLA in terms of MOS scores is observed to be better than
that for GLA. Moreover, FGLA is also observed to take lesser number of iterations
to reach same to same MOS score as compared to GLA. FGLA with 30 iterations
converged to equivalent MOS values for GLA with 60 iterations. Hence, 30 was se-
lected as the appropriate number of iterations for FGLA to be used for Tacotron’s
training. The correctness of this choice has been justified in Section 5.2.2.

5.1.5 Use-case Formulation

During speech synthesis, the test sentences are chosen according to various com-
plexity levels. Various verbal and lingual combinations in terms of punctuation
marks, abbreviations, special characters, exclamation and question mark, etc. have
been included to form five use-case sentences of varying lengths. As mentioned
earlier, the main objective of the work presented in this paper is to reduce the
synthesis delay without affecting the quality. The trained models are tested to
synthesize these sentences and their synthesis delay speech quality has been ob-
served. The time taken in the synthesis process is proportional to the length of the
text. So, checked sentences have variable-sized length. Every sentence has been
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Table 7: List of use-case sentences.

S.No. Sentences

1. He said to him, “Is not your name Ahmed?”

2.
All of a sudden, there was a loud screaming, Please

help me!

3.
I think I lost my wallet! I can’t find it anywhere!

Oh, I could just kick myself!

4.
”Sunshine on my shoulders makes me happy, sun-

shine in my eyes can make me cry.”

5.

As the stranger entered the town, he was met by a

police, man who asked, “Are you a traveler?” “So

it would appear”, He replied carelessly.

synthesized 10 times and then the average synthesis time has been considered.
To make periodic observations, model checkpoint has been saved after every 1000
training steps. The size of the trained model has been observed to be of the order
of 80 MB. The aforementioned use cases have been depicted in Table 7 and the
detailed analysis has been presented in Table 6.

5.2 Result Analysis

The implementation has been carried out considering the number of training steps
and iterations determined in the above section. This section presents and verifies
the results in terms of speech synthesis using the TTS model thus trained. The
results have been evaluated for five use-case sentences described in Table 7. During
the result evaluation, we have parallelly checked the quality of audio generated for
all three corpora at different intervals of the model trained given in Table 5. Mean
opinion score (MOS) is calculated based on wave file generated by synthesis on
the trained model. The optimal number of training steps for different datasets for
various training steps are shown in the Table 5. The results have been analysed
based on the quality of the output speech and synthesis delay. The choice of
number of iterations made in Section 5.1 has also been verified by observing the
convergence of the waveform plots for GLA and FGLA.

5.2.1 Quality Analysis

Quality analysis results have been shown in Table 5 and 6. It was observed that,
after 250k steps of model training, the output speech included prosody features.
That made the voice more feasible for real-time speech synthesis. Speech quality
also depends on the corpus used for training. Model is trained up to 400K steps for
all datasets and results have been generated. The quality of the synthesized speech
is expected to be clear to understand and non-robotic in nature. The more human-
like the voice is, have a higher value of MOS and results easy to understand. X
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axis shows duration of model trained and Y axis represents MOS of speech taken
by 10 evaluators. The output speech has been evaluated at regular training step
intervals for different data sets. The speech quality was observed to depend mainly
on the number of iterations used in the algorithm. The graph shows that in the
initial stage learning rate is very high but after 250k training steps learning rate
is very slow. The observed results in context of the quality of the output speech
are visually illustrated in Fig. 2, 3 and 4.

Accuracy of MOS Determination

To further evaluate the quality of the proposed methodology’s results, 100 text
samples with known MOS scores are considered. Corresponding speech is synthe-
sized for them using GLA, FGLA and GAN based vocoders. MOS of the synthe-
sized speech have been evaluated. If the variation in the MOS of the synthesized
speech i.e. MOSs and the known MOS i.e. MOSg is less than the error margin e,
then the sample is assumed to be accurately determined. The error margin is taken
as 0.45 which is 5% of the MOS of natural human voice [48]. The calculations are
done as per Eq. 8 and the results for the considered samples are summaried in
Table 8.

{

|MOSg–MOSs| < e => Accurately determined.
}

Where :










e : error margin.

MOSg : ground truth MOS.

MOSs : MOS of synthesized speech.

(8)

Table 8: Accuracy of MOS determination

Vocoder Avg. MOS Min. MOS Max. MOS Accuracy

GLA 7.5 5.2 7.6 72%

FGLA 7.8 5.4 8.2 81%

GAN Vocoder 7.6 4.8 8.0 79%

The accuracy for FGLA came out to be much better than GLA and comparable

to GAN based neural vocoder. It should be noted that GAN vocoder has been evalu-

ated on CPU, in-line with the goal of optimizing the waveform processing from linear

spectrograms for real-time devices with limited processing capabilities.

5.2.2 Synthesis Delay Analysis

‘Synthesis Delay’ is the time required for the output speech to start getting pro-
duced by the TTS system. The same has been computed and compared for all the
use-case sentences described in Table 7 and datasets mentioned in Section 5.1.2.
The observations have been drawn for GLA with 30 iterations, FGLA with 60
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Fig. 2: Quality analysis of synthesized speech for LJSpeech dataset
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Fig. 3: Quality analysis of synthesized speech for Tatoeba dataset

iterations and GAN based neural vocoder [30]. Every sentence is synthesised 10
times and then average synthesis delay has been calculated. Same computational
configuration has been maintained on the testing machines while doing so. As
our aim is to optimize the waveform processing keeping CPU based low memory
devices for real-time usage, the waveform reconstruction has been carried out on
CPU for GLA, FGLA and the GAN based vocoder.
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Fig. 4: Quality analysis of synthesized speech for Blizzard dataset

The observed synthesis time for the aforementioned cases have been depicted
numerically in Table 9 and visually in Fig. 5. FGLA came out to be 49.12%, 33.57%
and 26.52% faster than GLA in terms of Synthesis Delay for LJSpeech, Tatoeba
and Blizzard datasets. The overall reduction in the Synthesis Delay has been ob-
served to be 36.58%. While the average speech synthesis time for GAN based
vocoder on CPU came out to be 3.65, 2.88 and 2.76 times more than FGLA.
It should also be noted that FGLA produced better quality speech with lesser
training iterations as compared to GLA. With the proposed waveform generation
strategy, LJ Speech dataset has shown more reduction in the synthesis delay than
other datasets. In context of MOS scores, Tatoeba dataset showed faster progress
while Blizzard dataset showed lower values as compared to LJSpeech.

5.2.3 Convergence Plots

As discussed in Section 5.1.4, appropriate number of iterations for FGLA were
determined as 30. Here, we have verified that choice by observing the convergence
in the plots of the resulting waveforms. The comparative analysis in the frequency
domain is easier to observe. That’s why, fourier transformations of the waveforms
are considered. The transforms of the speech produced from FLGA with 30 iter-
ations and FLGA with 60 iterations are plotted and compared. It is found that
the two plots overlap with each other. Similarly, fourier transforms of waveforms
produced by GLA 60 iterations and GLA 30 iterations are plotted and compared.
It is found that the plots do not overlap. This means that the waveform produced
by FLGA 30 iterations and FGLA 60 iterations are same, thus a good quality of
speech is produced using FLGA 30 itself, whereas, using GLA requires 60 itera-
tions give a better quality of speech that GLA 60 iterations. The convergence plots
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LJSpeech Tatoeba Blizzard
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(30)
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GLA

(60)
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(30)

GAN

vocoder

GLA

(60)

FGLA

(30)

GAN

vocoder

1. He said to him, “Is not your name Ahmed?” 10026 5173 18900 9684 6456 17950 9800 6725 16850

2. All of a sudden, there was a loud screaming,

Please help me!
9698 4940 18190 10416 6880 19950 8997 6726 18870

3. I think I lost my wallet! I can’t find it anywhere!

Oh, I could just kick myself!
9702 4920 17000 10180 6799 20010 8957 6702 19010

4. “Sunshine on my shoulders makes me happy,

sunshine in my eyes can make me cry.”
9849 4959 18700 10550 7010 19880 8940 6757 18550

5. As the stranger entered the town, he was met by

a police, man who asked, “Are you a traveler?”

“So it would appear”, He replied carelessly.

9828 4992 18560 10300 6821 20150 9129 6763 19950
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Fig. 5: Synthesis Delay for the use-cases formulated in Table 7

for the fourth sentence from Table. 7 are shown in Fig. 6 and Fig. 7 for GLA and
FGLA respectively. The fourth sentence captures sufficient variations in terms of
sentence length, special characters, punctuation marks, etc. The plots for the rest
of the sentences are included in the supplementary material.

6 Conclusion

In this paper, a FGLA based method is proposed to optimize the waveform gen-
eration process to reduce speech synthesis delay. The final speech, i.e., waveform,
is reconstructed from intermediate spectrogram. GLA has mostly been used, es-
pecially when phase information about the waveform is missing. But GLA is slow,
which causes delay in the speech synthesis. A faster alternative of GLA, i.e., FGLA
has been used in the proposed method that resulted in 36.58% reduction in speech
synthesis time. In the presented work, experiments were performed to optimize
waveform generation from linear spectrogram in single-speaker TTS systems. The
proposed approach is compared against GLA and GAN based neural vocoder in
terms of speech quality and synthesis delay. The quality of the synthesized speech
has been checked using MOS based evaluation. The quality is observed to be re-
tained in spite of the reduction in the synthesis time. The number of training
steps and iterations were determined by experimental observation. This choice
was verified through the convergence of fourier transform plots of the resultant
waveforms.
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Fig. 6: GLA Convergence Plots

In future, we will work to optimize the waveform processing for the TTS sys-
tems trained with multi-speaker datasets using mel-spectrograms as intermediate
representation. We will also explore more neural vocoders for speech synthesis in
real-time applications. It is planned to work on the challenges involved with them
such as reducing the model size and reducing the computational requirements
especially for synthesizing small sentences.
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