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Abstract Over the last decades, hand-crafted feature extractors have been used
to encode image visual properties into feature vectors. Recently, data-driven fea-
ture learning approaches have been successfully explored as alternatives for pro-
ducing more representative visual features. In this work, we combine both re-
search venues, focusing on the color quantization problem. We propose two data-
driven approaches to learn image representations through the search for opti-
mized quantization schemes, which lead to more effective feature extraction al-
gorithms and compact representations. Our strategy employs Genetic Algorithm,
a soft-computing apparatus successfully utilized in Information-retrieval-related
optimization problems. We hypothesize that changing the quantization affects the
quality of image description approaches, leading to effective and efficient represen-
tations. We evaluate our approaches in content-based image retrieval tasks, consid-
ering eight well-known datasets with different visual properties. Results indicate
that the approach focused on representation effectiveness outperformed baselines
in all tested scenarios. The other approach, which also considers the size of cre-
ated representations, produced competitive results keeping or even reducing the
dimensionality of feature vectors up to 25%.
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1 Introduction

It is known that the form in which multimedia data, especially images, are repre-
sented can highly impact the performance of machine learning methods typically
used in visual pattern recognition tasks, such as content-based image retrieval
(CBIR) [54], object detection [64], remote sensing image analysis [11], and image
classification [28]. In the last years, representation learning [2], which consists in
the process of using pattern recognition algorithms to find representations opti-
mized for a given data domain and/or task at focus, has become a tendency. In
fact, the current state-of-the-art methods for representation learning, which are
based on deep learning [22] techniques, in many cases present considerable gains
in terms of the image content description quality.

However, the use of these methods presents serious drawbacks, such as the
broad range of hyper-parameters and possible architectures, the huge computa-
tional workload spent to train existing models, the big amount of labeled data
required to produce effective models, and the need of specific expertise or training
for properly designing, optimizing, and evaluating promising solutions.

Representation learning methods usually employ one of two main approaches:
those that learn representations from a feature set provided by a hand-crafted
extractor and those that completely compose new ones without any prior feature
extraction (from scratch). The latter approach often leads to the usage of more
complex and consequently costly methodologies, such as deep learning. Such com-
plexity, however, used to be avoided in the generation of representative features.
A few years ago, before the arising of deep neural networks, hand-crafted feature
extractors were used to encode image visual properties (e.g., color, texture, or
shape) into effective representations [39, 40, 51]. In general, those solutions rely
on less costly algorithms and do not depend on previously annotated datasets or
time-consuming learning steps. On the other hand, these feature extractors are
application-dependent, being less generalizable.

In this paper, we propose a hybrid scheme, focused on color quantization,
which aims to take advantage of both research venues. We propose data-driven
color quantization schemes, which improve the effectiveness of hand-crafted fea-
ture extractors, as it allows for the identification of discriminative visual features.
Our representation learning scheme exploits a particular characteristic of the cur-
rent image context, its color distribution, a simple but yet suitable visual cue in
several applications [17, 25, 32]. Our hypothesis is that data-driven quantization
optimizations are able to positively impact the quality of image content descrip-
tion approaches, leading to effective and efficient representations. In this paper,
we investigate how these optimizations can be performed effectively and efficiently
and to what extent.

Our color quantization optimization relies on a soft computing framework, im-
plemented using genetic algorithms (GA). GA is an evolutionary algorithm widely
used to solve optimization problems. According to its formulation, a population of
individuals, representing possible solutions of a problem, evolves over generations,
subjected to genetic operations. The goal is to find the best individuals, i.e., the
best solutions for the problem. In our color quantization problem, a GA individual
encodes how color channels should be divided in order to improve the effectiveness
of feature extractors. To the best of our knowledge, this is the first work to use
GA to model the representation learning problem.
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In summary, the main contributions of this work are:

1. We show that different color quantizations impact the effectiveness perfor-
mance of feature extractors;

2. We model the search of suitable color quantization using a soft computing
apparatus based on the genetic algorithm;

3. We introduce two approaches for supervised representation learning capable of
providing compact and more effective representations through color quantiza-
tion optimization.

In summary, the main novelty of our work relies on the presentation of an in-
tegrative framework for the implementation of effective image search systems that
combines several concepts, approaches and techniques, such as, Genetic Algorithm
optimization, Color Quantization, Representation Learning, Feature Extraction,
and Content-Based Image Retrieval.

We conducted a series of experiments in order to evaluate the robustness of the
proposed approaches in content-based image retrieval tasks, considering eight well-
known datasets containing images with different visual properties. Experimental
results indicate that the approach focused on the representation effectiveness out-
performed the baselines in all tested scenarios. The other approach, which focuses
not only on the effectiveness, but also on the size of the generated feature vec-
tors, was able to produce competitive results by keeping or even reducing the final
feature vector dimensionality up to 25%.

The remainder of this paper is organized as follows. Section 2 presents re-
lated work. Section 3 provides a background upon base methods used in our
work. Section 4 describes the proposed color quantization schemes and its use
in CBIR tasks. Section 5 details the experiments performed to assess the effec-
tiveness and efficiency of the proposed methods. Section 6, in turn, presents and
discusses achieved results. Finally, Section 7 presents our main conclusions and
outlines possible future research directions.

2 Related Work

Image representation learning (a.k.a. feature learning) consists in automatically
discovering the representations needed for object detection or classification from
raw images. It is a set of approaches that aim at making it easier to extract useful
information when building classifiers or other predictors [3]. In other words, feature
learning allows to find the most suitable or discriminative representation from the
raw data according to some constraint imposed by the target application. Thus,
it is also commonly known as data-driven features because of its contraposition to
engineered or hand-crafted features.

Although feature learning has been an active research area for a long time,
the development of effective techniques (mainly based on deep learning) has been
boosted in the last decade mainly due to the spread use of powerful computa-
tional resources, which were motivated by the development of graphical process-
ing units (GPUs). Many successful recent feature representation approaches are
based on deep belief nets [16], denoising auto-encoders [58], deep Boltzmann ma-
chines [50], K-Means-based feature learning [8], hierarchical matching pursuit [6],
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and sparse coding [65]. Regarding image representation learning, the most suc-
cessful approaches are based on the Convolutional Neural Networks (CNNs) [21].

Although, by definition, a large number of techniques perform feature learning,
the term is most commonly employed by the community that develops methods
based on deep learning or probabilistic graphical models. These methods are the
basis for most of the state-of-the-art approaches for pattern recognition and com-
puter vision. Despite the recent great success of these approaches, they still have
several limitations, such as a large number of parameters for optimization and the
difficulty in designing network architectures.

Evolutionary algorithms are meta-heuristic optimization techniques that use
mechanisms inspired by biological evolution (e.g., reproduction, mutation, recom-
bination, and selection). They have been widely employed in a myriad of frame-
works developed for image analysis and retrieval usually for feature fusion [49] or
selection [33, 37]. In the last few years, evolutionary algorithms have also been suc-
cessfully employed for neural networks architecture search [56, 62]. Nonetheless,
we did not find other works that directly model feature learning as an evolutionary
algorithm-based problem from the raw data.

In this work, we propose to learn image features from images via genetic al-
gorithms by color quantization optimization. Some works developed quantization
learning using evolutive heuristics for image segmentation [29]. Scheunders [52]
handles the quantization problem as global image segmentation and proposes an
optimal mean squared quantizer and a hybrid technique combining optimal quan-
tization with a Genetic Algorithm modelling [14]. Further, the same author [52]
presents a genetic c-means clustering algorithm (GCMA), which is a hybrid tech-
nique combining the c-means clustering algorithm (CMA) with Genetic Algorithm.
Lastly, Omran et al. [38] developed colour image quantization algorithm based on
a combination of Particle Swarm Optimization (PSO) and K-means clustering.

Regarding the effects of colour quantization on image representations, Ponti
et al. [42] approached the colour quantization procedure as a pre-processing step
of feature extraction. They applied four fixed quantization methods – Gleam,
Intensity, Luminance, and a concatenation of the Most Significant Bits (MSB) –
over the images of three datasets and then used four feature extractors – ACC, BIC,
CCV, and Haralick-6 – to compute representations intended to solve the tasks of
Image Classification and Image Retrieval. Their conclusions show that it is possible
to obtain compact and effective feature vectors by extracting features from images
with a reduced pixel depth and how the feature extraction and dimensionality
reduction are affected by different quantization methods.

New approaches based on deep learning developed in the last ten years have
revolutionized the learning of representations from data. Regarding the learning
of representations for images, convolutional networks have established themselves
as the most effective solution. However, its use still has some limitations, such as:
(1) they require a large amount of data for training from scratch; (2) traditional
networks have a large number of parameters. Therefore, some works have been
proposed in order to mitigate these limitations and produce more compact net-
works [31, 68]. In this context, approaches based on nature-inspired/evolutionary
algorithms have emerged as an alternative to optimize network architectures in
various ways [4, 46]. Although color quantization approaches are less used nowa-
days than in the past for image representation, they are still an alternative to
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obtain compact and effective representation for some applications, such as color-
based image retrieval [5, 41, 53, 66].

To the best of our knowledge, our work is the unique that provides an application-
driven way to learn compact representation from color quantization. Note that it
is not comparable to modern neural network-based compact approaches because
it does not take advantage of transfer learning strategies.

3 Background

This section presents background concepts on feature extraction algorithms (Sec-
tion 3.1) and genetic algorithms (Section 3.2). The feature extraction algorithms
described here refer to methods that are combined with the quantization scheme
defined by GA in the performed experiments.

3.1 Color Quantization-based Feature Extraction Algorithms

Border/Interior Classification (BIC). Stehling et al. [55] proposed BIC, a
simple and fast approach for feature extraction which presented prominent results
in web image retrieval [39] and remote sensing image classification [36, 51]. This
approach relies on an RGB color-space uniformly quantized in 4×4×4 = 64 colors.
After the quantization, the authors propose to apply a segmentation procedure,
which classifies the image pixels according to a neighborhood criterion: a pixel is
classified as interior if its 4-neighbours (right, left, top, and bottom) have the same
quantized color; otherwise, it is classified as border. Then, two color histograms,
one for border pixels and other for interior pixels, are computed and concatenated
composing a 128-bin representation. In the end, the histograms undergo two nor-
malizations: division by the maximum value, for image dimension invariance, and
a transformation according to a discrete logarithmic function (dLog), aiming to
smooth major discrepancies. When comparing BIC via L1 distance, it was ob-
served that the dLog function is able to increase substantially the effectiveness of
histogram-based CBIR approaches and also reduces by 50% the space required to
represent a histogram.

Global Color Histogram (GCH). GCH [57] is a widely used feature extrac-
tor that presents one of the simplest forms of encoding image information in a
representation, a color histogram, which is basically the computation of the pixel
frequencies of each color. It relies on the same uniformly quantized RGB color-
space such as BIC and, consequently, produces a feature vector of 64 bins. After
the histogram computation, it undergoes a normalization by the max value in
order to avoid scaling bias. Additionally, for the same reasons as for BIC, dLog
normalization is also applied to the final histogram.

3.2 Genetic Algorithm

GA is a bio-inspired optimization heuristic that mimics natural genetic evolution
to search the optimal in a solution space [14]. It models potential solutions for
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the problem as individuals of a population and subjects them to an iterative pro-
cess of combinations and transformations towards an improved population, i.e., a
population with better solutions for the target problem.

At each step, GA randomly selects individuals from the current population,
called parents, in an operation called tournament, in which individuals are grouped
and only the best ones are selected. From this selection, GA exchanges genetic ma-
terial of the individuals in order to produce new individuals of the next generation.
This operation is known as cross-over. Some individuals are also selected to un-
dergo a mutation operation, which consists in randomly changing small pieces
of the individual representation. This new individual is also integrated into the
new generation [10]. Typically a few of the best individuals of the population also
compose the new one, a practice known as elitism. When a new generation is
formed, its individuals are evaluated by means of a fitness function, which assesses
the individual (solution) performance on the target problem. According to this
function score, the algorithm selects the parent individuals that will generate the
next population, simulating a natural selection process. At the end of the process,
when the stopping condition is satisfied, the expected result is the best-performing
individual, i.e., the one that best solves the target problem.

3.3 Winner-Take-All (WTA) Autoencoders

An autoencoder [15] is a framework that employs representation learning by opti-
mizing an encoding that reconstructs as well as possible the entry data. It is spec-
ified by a explicitly defined feature-extraction function fθ, called encoder, which
allows the computation of a representation z = fθ(x) from a given input x, and
a parametrised function gθ, that maps the representation from feature space back
to input space producing a reconstruction r = gθ(x). The set of parameters θ of
the encoder and decoder are learned simultaneously by reconstructing the original
input x with the lowest possible discrepancy L(x, r) between x and r, employing
a optimization process that minimizes:

ΓAE(θ) =
∑
t

L(x(t), gθ(fθ(x
(t)))) (1)

where x(t) is a training sample.
It is crucial that an autoencoder presents good generalization, i.e., that the pro-

duced representations yield low reconstruction error for both train and test sam-
ples. For this purpose, it is important that the training criterion or the parametri-
sation prevents the auto-encoder from learning the identity function to the training
samples, which presents zero reconstruction error. This is achieved by imposing
different forms of regularisation in different versions of autoencoders. Regularized
Autoencoders limit the representational capacity of z provoking a bottleneck effect
that does not allow the autoencoder to reconstruct the whole input and forces it to
learn more meaningful features. As a consequence, it is trained to reconstruct well
the training samples and also present small reconstruction error on test samples,
implying generalization.

The most common types of regularised autoencoders include: Sparse autoen-
coders [30, 35, 43], which limit capacity by imposing a sparsity constraint on the
learnt representation of the data; Denoising autoencoders [58, 59], which has the
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objective of removing noise of an artificially corrupted input, i.e. learning to re-
construct the clean version from a corrupted data; Contractive Autoencoders [44],
which penalize the sensitivity of learned features to input variations producing
more robust features; and Variational Autoencoders [19], which learn probabilistic
latent spaces in order to generate artificial samples.

Winner-takes-all Autoencoders (WTA-AE) [31] are sparse autoencoders that
employ two types of sparsity constraints:

– A spatial sparsity constraint, which, rather than reconstructing the input from
all of the representational hidden units, selects the single largest value within
each feature map, and set the rest to zero. This results in a sparse representa-
tion whose sparsity level is the number of feature maps and in a reconstruction
which uses only the active hidden units in the feature maps;

– A winner-take-all lifetime sparsity constraint, which maintains only the k%
largest values of each feature map, and set others to zero, considering the
values selected spatial sparsity within an entire mini-batch.

We choose WTA as baseline because it is one of the most robust and efficient
Sparse Enconders – the most effective class of (non-generative) methods based on
deep learning that are dedicated for feature extraction/representation learning.
WTA autoencoders were capable of aiming at any target sparsity rate, training
very fast compared to other sparse autoencoders, and efficiently training all hid-
den units even under very aggressive sparsity rates (e.g., 1%). Furthermore, the
usage of its sparsity properties allows the train of non-symmetrical architectures
(different sizes for encoder and decoder) reducing computation and data resource
consumption.

4 GA-based Color Quantization

In this paper, we introduce the use of Genetic Algorithm to learn an optimized
color quantization for a given image domain. Figure 1 provides an overview of the
entire process, which is composed of two main steps: (A) quantization search, and
(B) feature extraction. These steps are described next.

4.1 Quantization Search

We propose the use of Genetic Algorithm [14] to learn the best color quantization
for a given collection. GA has been a widely used approach for finding near-optimal
solutions for optimization problems. One remarkable property of this optimization
apparatus relies on its ability in performing parallel searches starting from multi-
ple random initial search points and considering several candidate solutions simul-
taneously. Consequently, it represents a fair alternative to an exhaustive search
strategy, which would be unfeasible given the number of possible solutions.

According to this optimization algorithm, an individual corresponds to a rep-
resentation of a potential solution to the problem that is being analyzed. In our
modeling, each individual represents a possible color quantization, as detailed in
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Fig. 1: Overview of the proposed approach. First, (A) we use Genetic Algorithm to
search for an optimized color quantization. Later, (B) the resulting quantization
is incorporated into the feature extractor to generate improved image representa-
tions. The GA-based quantization search proceeds as follows: first, (1) a population
of encoded color quantizations is randomly produced; second, (2) sets of image rep-
resentations of the whole collection are produced being each one according to one
quantization color space; third, (3) similarity rankings for all to all images are com-
puted within each representation set; and fourth, (4) a fitness score is computed
to measure each retrieval effectiveness. Finally, if the stopping condition is met or
the total number of iterations is achieved, (5.1) the quantization of the highest
fitness of the last population is selected as the optimized colour space, otherwise,
(5.2) a new population is created, via crossover and mutation operations over the
current population, initiating the next iteration.

Section 4.1.1. During the evolution process, described in Section 4.1.2, these in-
dividuals are gradually evolved. At the end of the evolutionary process, the best-
performing individual, which encodes a quantization that leads to an improved
representation, is selected.

4.1.1 Quantization Encoding

In our modeling, a quantization is represented in a GA individual as follows: Let
M be a color model composed of three channels. Without loss of generality, we will
assume the RGB color model from now on. Assume that each channel is divided
into 256 discrete levels, i.e., eight bits can be used to define the number of colors
in each channel. In the case of the traditional 24-bit RGB model, there are almost
17 million (256× 256× 256) different colors.

In our formulation, a 24-bit long GA individual encodes the number of par-
titions of the different channels. Figure 2 (top) presents the typical 24-bit RGB
channel partitioning. Figure 2 (middle) illustrates a possible GA individual encod-
ing how each channel should be divided. Figure 2 (bottom), in turn, illustrates the
resulting color quantization after using the GA individual encoding.



Title Suppressed Due to Excessive Length 9

Fig. 2: Our modeling takes reference from a base quantization (a) representing each
interval of color tonalities as a bit in individuals implemented as binary arrays (b).
These bits dictate the union of intervals producing a new quantization (c): if a bit
is set, its respective interval has its own position, otherwise, it is aggregated to the
immediate previous interval. The first bit of each color axis is forced to always be
set.

Figure 3 presents the RGB color space before (a-b) and after (c-d) using the
GA-based encoding defined in Figure 2(middle). Figures 3(b) and 3(d) present
different views of the same color space presented in Figures 3(a) and 3(c), respec-
tively.
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Fig. 3: (a) RGB color space using the traditional 8-bit quantization per channel.
(b) The same color space presented in (a), but rotated in 180º over the Z axis. (c)
Color space after applying the GA individual illustrated in Figure 2 (middle). (d)
The same color space presented in (c), but rotated in 180◦over the Z axis.

4.1.2 GA-based Quantization Search

Algorithm 1 illustrates the proposed GA-based quantization. The population starts
with individuals created randomly (line 3). The population evolves generation
by generation through genetic operations (line 4). A function (described in Sec-
tion 4.3) is used to assign the fitness value for each individual (lines 5-7), i.e., to
assess how well an individual solves the target problem. According to the elitism
operation, the top k best individuals of the current generation are recorded (line
8). Then, individuals from P are selected according to a tournament operation
of nt-sized groupings (line 9). After that, the next generation is formed from the
union of the resulting individuals from the operations of mutation and cross-over
over the tournament selection and those selected in elitism (line 10). If the stopping
condition (discussed on Section 5.3) were met, the iterations stop (lines 11-13). The
last step is concerned with the selection of the best individual q∗ of all generations
(line 15). The individual q∗ is used later to define the quantization used in the
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feature representation process. For details regarding genetic operators (cross-over,
mutation, tournament and elitism), refer to Section 5.3.

Algorithm 1 GA-based quantization

1 Let T be a training set
2 Let P , Se e St be sets of pairs (q, fitnessq), where q and fitnessq are an individual and

its fitness, respectively
3 P ← Initial random population of individuals
4 For each generation g of Ng generations do
5 For each individual q ∈ P do
6 fitnessq ← fitness(q, T )
7 End For
8 Se ← elitism(k, P )
9 St ← tournament(nt, P )

10 P ← Se ∪mutation(St) ∪ crossover(St)
11 If stopping condition is met
12 Break outer loop
13 End If
14 End For
15 Select the best individual q∗ = arg max

q∈P
(fitnessq)

4.2 Feature Extraction

In the second phase, the best individual, i.e., the one which leads to the best
quantization q∗ is used with the feature extractor algorithm to produce a color
image representation. In order to do that, it was necessary to implement a slightly
modified version of the feature extractor, that incorporates the capacity of gener-
ating representations according to a specified color quantization. Equations 1, 2,
and 3, where Mc is the maximum color axis size and q∗ is the quantization indi-
vidual, define how to calculate the new R, G, and B (referred to as Rnew, Gnew,
and Bnew, respectively) values for each pixel. In this work, according to empirical
observations, Mc was chosen as 8.

Rnew =

(
r∑
i=0

q∗[i]

)
× |Raxis|

256
, (2)

where r = R× Mc

256
; |Raxis| =

Mc∑
l=0

q∗[l]

Gnew =

g+Mc∑
j=N

q∗[i]

× |Gaxis|
256

, (3)

where g = G× Mc

256
; |Gaxis| =

2Mc∑
m=Mc

q∗[m]
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Fig. 4: This figure1 shows the visual effect of different color quantizations on
different sample images. The first column shows the RGB color spaces defined
according to the specified quantizations: the original space in which the image is
captured, a widely-used hand-crafted quantization scheme using 64 colors, and an
example of optimized quantization defined by our method. The remaining columns
show sample images after using each quantization scheme.

Bnew =

b+2Mc∑
k=2Mc

q∗[i]

× |Baxis|
256

, (4)

where b = B × Mc

256
; |Baxis| =

3Mc∑
n=2Mc

q∗[n]

Figure 4 shows the visual effect of different color quantizations on different
sample images. The first column shows the RGB color spaces defined according
to the specified quantizations: the original space in which the image is captured,
a widely-used hand-crafted quantization scheme using 64 colors, and an example
of optimized quantization defined by our method. The remaining columns show
sample images after using each quantization scheme. Original images are shown in
the top line. Above each quantized image, we present the color spectrum and its
respective histogram.

4.3 Individual Fitness Computation

The use of the proposed GA-based quantization leads to discriminative features,
which may be useful in different applications, such as Image Classification [51], Im-
age Retrieval [39], and Object Recognition. In this paper, we opted for evaluating
the method in the context of Content-Based Image Retrieval (CBIR) [54] tasks.

1 We recommend colourful printing for adequate visualization.
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The goal of this task is to retrieve the most relevant images from a collection,
given their similarity to a given query image. The similarity computation relies
on the use of a distance (or similarity) function applied to feature vectors, which
encode their content (in our case, their color properties).

We first extract feature vectors from all images within a collection, by taking
into account feature extractors that benefit from the learned color quantization.
Collection images are later ranked according to the distance of their feature vectors
to the feature vector of a query using the Manhattan Distance (L1). Two images
belonging to the same class are assumed to be relevant to each other. Given a query
image, our goal is to produce a ranked list with collection images of the same class
of the query on top positions. The more relevant images on top positions, the more
effective is the ranked list, i.e., the more effective is the description approach.

More formally, an image img is firstly encoded through a feature extrac-
tion procedure, which allows quantifying the similarity between images. Let C =
{img1, img2, . . . , imgn} be a collection with n images. Let D be a descriptor, which
can be defined as a tuple (ε, δ) [47], where:

– ε: imgi → Rd is a function, which extracts a feature vector vî from an image
imgi;

– δ: Rd×Rd → R+ is a function that computes the distance between two images
according to the distance between their corresponding feature vectors.

The distance between two images imgi, imgj is computed as δ(ε(oi), ε(oj)). The
Euclidean distance is commonly used to compute δ, although the proposed ranking
method is independent of distance measures. A similarity measure ρ(imgi, imgj)
can be computed based on distance function δ and used for ranking tasks. We will
use ρ(i, j) from now on to simplify the notation.

The target task refers to retrieving multimedia objects (e.g., images, videos)
from C based on their content. Let imgq be a query image. A ranked list τq can
be computed in response to imgq based on the similarity function ρ. The ranked
list τq=(img1, img2, . . . , imgn) can be defined as a permutation of the collection
C. A permutation τq is a bijection from the set C onto the set [N ] = {1, 2, . . . , n}.
For a permutation τq, we interpret τq(i) as the position (or rank) of the image
imgi in the ranked list τq. If imgi is ranked before imgj in the ranked list of imgq,
i.e., τq(i) < τq(j), then ρ(q, i) ≥ ρ(q, j).

Given a training set composed of a set of queries and their respective list
of relevant objects, the fitness of an individual is measured as a function of the
quality (effectiveness) of ranked lists produced for each query, considering the use
of a feature extractor implemented using the GA-based quantization. The more
relevant images found at top positions, the better the GA individual is.

4.4 Computational Complexity of GA-based Quantization Search

The GA training procedure takes O(Ng × Ni × F ), where Ng is the number of
generations considered in the evolution process, Ni is the number of individuals
in the population, and F is the cost for evaluating the fitness function.

The costs for computing F depends on the number of training samples Ns
and the size of pre-computed histograms Sh. The later, in the worst case, is k3,
where k is the number of bins in a color axis. As overlying detailed base color
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Table 1: Image datasets and statistics

Dataset # of samples # of classes Images content

Coil-100 [34] 7,200 100 objects
Corel-1566 [60] 1,566 43 mixed (objects, landscapes etc)
Corel-3906 [60] 3,906 85 mixed (objects, landscapes etc)
ETH-80 [23] 3,280 80 objects
MSRCORID [9] 4,320 20 mixed (scenes and objects)
Groundtruth [26, 27] 1,285 21 landscapes
Supermarket Produce [45] 2,633 15 fruits
UC Merced Land-use [63] 2,100 21 aerial scenes

spaces does not improve the results, k is typically small, making Sh also small
(k = 8 and Sh = k3 = 512 in our experiments). As a consequence, F takes
O(Ns × Sh) for feature extraction and O(Ns

2 × logNs) for computing rankings,
then O(F ) = O(Ns

2 × logNs).
Finally, the whole procedure takes O(Ng ×Ni×Ns2× logNs) to find the final

quantization. Recall that the training process is performed offline.

4.5 Quantization Approaches

In this paper, we propose two formulations of the GA-based quantization method.
The first, named Unconstrained Approach (UA), is intended to provide a quantiza-
tion focused on generating representations that have the best possible effectiveness
performance. The second, named Size-Constrained Approach (SCA), focuses not
only on effectiveness aspects, but also on the size of the representation. The goal
is to find the best-performing individual, which leads to feature vectors with a
pre-defined size, i.e., the target feature vector size is defined a priori. From the
implementation point of view, the GA-based quantization approach assigns a neg-
ative fitness score for the individuals that present dimensions higher than the
pre-defined feature vector size. As a consequence, this latter formulation tends to
produce more compact representations.

5 Experimental Setup

In this section, we present the adopted experimental setup, which concerns the
image datasets considered (Section 5.1), the configuration of parameters of the
method (Section 5.3), the baselines used for comparative analysis (Section 5.2), the
metrics used to evaluate the effectiveness and compactness of the produced feature
vectors (Section 5.4), and the employed experimental protocol (Section 5.5).

5.1 Datasets

In order to assess the effectiveness of the employed quantization approach, we
conducted experiments using eight different image datasets, which are described
next. For convenience, Table 1 summarizes some important information about
them.
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– Coil-100 : This dataset [34] comprises images of 100 everyday objects, being
each one used to define a different class. Pictures of each object were taken in
72 different poses composing a total set of 7,200 images. Some samples of this
dataset are shown in Figure 6.

– Corel-1566 and Corel-3906 : These datasets [60] correspond to two sets from
a collection with 200,000 images from the Corel Gallery Magic–Stock Photo Li-
brary 2. The first (Fig. 7) contains 1,566 samples distributed among 43 classes,
while the second (Fig. 8) contains 3,906 samples among 85 classes. Besides the
images quantity, the main difference between them is that the latter presents
more intra-class variability.

– ETH-80 : This dataset [23] was originally tailored to the task of object cate-
gorization. It includes images of 80 objects from 8 basic-level categories. Each
object is represented by 41 views over the upper viewing hemisphere, perform-
ing a total of 2,384 images. Some samples of this dataset are shown in Figure 9.

– Groundtruth : This dataset [26, 27] contains a variety of 1,285 scenes and ob-
jects grouped among 21 high-level concepts, such as: Arbor Greens, Australia,
Barcelona, Cambridge, Campus In Fall, Cannon Beach, Cherries, Columbia
George, Football, Geneva, Green Lake, Greenland, Indonesia, Iran, Italy, Japan,
Leafless Trees, San Juans, Spring Flowers, Swiss Mountains, Yellow Stone. Fig-
ure 12 depicts some of its classes.

– Microsoft Research Cambridge Object Recognition Image Database
(MSRCORID): This collection [9] contains a set of 4,320 images of scenes,
objects and landscapes. Its images are grouped into 20 categories: Aeroplanes,
Cows, Sheep, Benches and Chairs, Bicycles, Birds, Buildings, Cars, Chimneys,
Clouds, Doors, Flowers, Kitchen Utensils, Leaves, Scenes Countryside, Scenes
Office, Scenes Urban, Signs, Trees, Windows. Some samples of this dataset are
shown in Figure 10.

– Supermarket Produce: This dataset [45] contains images of fruits and veg-
etables collected from a local distribution center. It comprises 2,633 images
distributed into 15 different categories: Plum, Agata Potato, Asterix Potato,
Cashew, Onion, Orange, Tahiti Lime, Kiwi, Fuji Apple, Granny-Smith Apple,
Watermelon, Honeydew Melon, Nectarine, Williams Pear, and Diamond Peach.
Figure 11 depicts some samples of its categories.

– UC Merced Land-use: This dataset [63] is composed of 2,100 aerial scene
images divided into 21 classes selected from the United States Geological Sur-
vey (USGS) National Map. Its 21 categories are Agricultural, Airplane, Base-
ball Diamond, Beach, Buildings, Chaparral, Dense Residential, Forest, Free-
way, Golf Course, Harbor, Intersection, Medium Density Residential, Mobile
Home Park, Overpass, Parking Lot, River, Runway, Sparse Residential, Storage
Tanks, and Tennis Courts. Some samples of this dataset are shown in Figure 5.
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(a) Forest (b) Beach (c) Tennis Court

(d) Dense Residential (e) Medium Residential (f) Sparse Residential

Fig. 5: Examples of the UC Merced Land-use dataset.

(a) Object 13 (b) Object 14

(c) Object 87 (d) Object 81

Fig. 6: Examples of the COIL-100 dataset.

(a) A6140 (b) A14935 (c) A2231

(d) A0908 (e) A7840 (f) A0004 (g) A12147

Fig. 7: Examples of the COREL-1566 dataset.



Title Suppressed Due to Excessive Length 17

(a) A0628 (b) A1401 (c) A4604

(d) A4932 (e) A7601 (f) A14208

Fig. 8: Examples of the COREL-3906 dataset.

. (a) Car (b) Cow (c) Cup

Fig. 9: Examples of the ETH-80 dataset.

(a) Windowns (b) Trees (c) Kitchen Utensils

(d) Scenes Office (e) Scenes Countryside (f) Buildings

Fig. 10: Examples of the MSRCORID dataset.
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(a) Agata Potato (b) Honneydew Melon (c) Granny Smith Apple

(d) Fuji Apple (e) Plum (f) Nectarine

Fig. 11: Examples of the Supermarket Produces dataset.

(a) Cambridge (b) Australia (c) Columbia Gorge

(d) Barcelona (e) Indonesia (f) Geneva (g) Japan

Fig. 12: Examples of the Groundtruth dataset.
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5.2 Baselines

5.2.1 Feature Extraction Algorithms

In order to demonstrate the impact of using the learned quantizations in the
generation of more effective image representations, we compare GA-based feature
extractors with similar formulations without any quantization procedure. We use
the BIC and the GCH original formulations (see Section 3.1) as baselines.

5.2.2 Winner-Take-All Autoencoder

We also perform comparisons with autoencoders (see Section 3.3), a class of meth-
ods based on Deep Learning – state-of-the-Art framework for computer vision –
dedicated to perform representation learning and, consequently. They are, there-
fore, suitable recent approaches for comparison purposes.

According to Makhzani et al. [30], Sparse Autoencoders (SAE) yield the best
performance than other types, such as Denoising Autoencoders, for feature ex-
traction in tasks such as image classification. Among SAEs, we selected Winner-
Take-All Autoencoders WTA-AE (see Section 3.3) which hold some advantages in
comparison with other SAEs including the capability of aiming any sparsity rate,
efficient training and resource consumption besides allowing the use of reduced
architectures.

Among the WTA-AE proposed configurations, we selected the CONV-WTA
autoencoder, which is a non-symmetric architecture where the encoder consists of
a stack of three 256-units ReLU convolutional layers (5×5 filters) and the decoder
is a 256-units linear deconvolutional layer of larger size (11×11 filters): 256conv3-
256conv3-256conv3-256deconv7. It also maintains Nu hidden representation units
between the encoder e decoder. This is the same architecture used by Makhzani et
al. [31] in experiments for the CIFAR-10 dataset [20], an image dataset of domain
similar to the ones used in our experiments.

Following the instructions of Makhzani et al., with the purpose of composing
representations adequate to being used on an image classification/retrieval setting,
we employed, after training, max-pooling on the last Nu feature maps of the
encoder, over 6× 6 regions at strides of 4 pixels to obtain the final representation
of Nu×8×8 = Nu×64 total size. In order to allow a fair performance comparison
between the different-sized representations of WTA-AE and SCA, we employed
Principal Components Analysis [61] – a well-known data projection algorithm –
on the WTA-AE representation as dimensionality reduction procedure where the
number of dimensions corresponded to the imposed representation size limits.

5.3 Parameters

Table 2 presents the values adopted for the GA-based quantization learning pro-
cess. The values chosen for population size, cross-over, mutation, elitism, and
tournament parameters were defined empirically, but all of them represent typ-
ical values employed in GA-based optimization solutions. Initially, it was applied
a parameter search according to a 2k Fractional Factorial Design (please refer to
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Table 2: Genetic algorithm parameters. The indicated variables refer to Algo-
rithm 1.

Two-point Cross-over Probability 60%
One-point Mutation Probability 40%
Number of Generations (Ng) 200
Population Size 200
Tournament (nt) 5
Elitism (k) 1%

item 16.3.3 of [7]) over a portion of the dataset. For the parameters which pre-
sented major sensitivities, a binary search was employed for exploration of different
values.

The total number of generations was defined aiming to ensure convergence
of the evolutionary algorithm. However, we empirically observed that typically
the best fitness value is not significantly improved after remaining unchanged for
more than 50 iterations. Thus, one might impose a stopping condition regarding
the fitness value as an option to avoid unnecessary iterations.

We assess the quality of ranked lists defined by image representations obtained
by means of a GA individual through the FFP4 function [12]. This score is defined
for a given query image q as:

FFP4q =

|D|∑
i=1

rq(di)× k8 × ki9 (5)

where D is the image dataset; rq(d) ∈ [0, 1] is the relevance score for the image
di associated to the query, it being 1 if relevant and 0 otherwise; and k8 and k9
are two scaling factors adjusted to 7 e 0.982 respectively. The final fitness score is
computed as the mean FFP4 for all images q ∈ D.

As Fan et al. [12] explain, FFP4 is a utility function based on the idea that the
utility of a relevant document decreases with its ranking order. More formally, we
need a utility function U(x) which satisfies the condition U(x1) > U(x2) for two
ranks x1 and x2 which x1 < x2. Although there are many possible functions U(x),
we decided to use FFP4 as it presents good results in previous works [48] applying
this measure on similar evolutionary approaches that address rank-based tasks.
Fan et al. report that this function and its associated parameters were chosen
after exploratory data analysis.

For the baseline WTA-AE, we set the parameters as: number of hidden repre-
sentation units Nu = 1024 and winner-take-all lifetime sparsity k = 40% empir-
ically selecting them within the ranges {64, 128, 256, 512, 1024} and {5%, 10%,
20%, 30%, 40%, 50%, 80%}, respectively.

5.4 Evaluation Metrics

5.4.1 Precision-Recall Curves

The most traditional measures to evaluate retrieval effectiveness over a set of
queries are Precision and Recall [1]. Precision measures the proportion of relevant
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images regarding the answer set, while Recall measures the proportion of relevant
images retrieved in the answer set regarding all relevant images existing in the
database.

A perfect system would provide a Precision equal to 1 (all the retrieved images
are relevant) and a Recall also equal to 1 (all the relevant images were retrieved).
In practice, there is an inverse relationship between them: the more items the sys-
tem returns, the higher the likelihood that relevant documents will be retrieved
(increasing recall). However, this comes at the cost of also retrieving many irrel-
evant documents (decreasing precision). Therefore, in general, it is necessary to
define a compromise between them.

In our case, we chose a measurement that considers Precision and Recall as
functions of each other, generating interpolated Precision-Recall curves (11 points)
whose the precision points P given by

P (ri) = max
∀j|ri≤rj

P (rj) (6)

where i, j ∈ 0, 1, ..., 10 represent recall levels.

In order to evaluate the retrieval effectiveness over a set of query images Q, an
averaged Precision-Recall curve is computed according to

P (ri) =

|Q|∑
q=1

1

|Q|Pq(ri) (7)

where Pq corresponds to the precision of the q-th query image.

5.4.2 MAP: Mean Average Precision

In some cases, the Precision-Recall curves appear occluded or inter-crossed, re-
straining a proper visual comparison. Because of the compromise between Preci-
sion and Recall, it is possible to employ a combination of the two measures as a
single metric. This is the case of Mean Average Precision [1] which provides a con-
venient measure to quantitatively compare Precision-Recall curves and is defined
as

MAP =
1

|Q|

|Q|∑
q=1

APq (8)

APq =
1

|Rq|

|Rq|∑
k=1

P (Rq[k]) (9)

where Rq is the set of relevant images in the dataset Q for each image q.
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5.4.3 P@10

As observed on real-world applications of CBIR, the user gives prior attention
for a small group of the top answers, corresponding to the first page of results,
usually preferring to reformulate the query instead of checking the next pages.
The Precision-Recall curves and MAP do not provide an adequate measurement
for the effectiveness of these top results as they generally consider longer portions
of the ranking. In order to address this issue, we also measured the precision at
the top-10 results (P@10) [1].

Due to the proximity of some measures and aiming to provide accurate com-
parisons between the methods and its baselines, we used the Student’s Paired
t-Test [18] (p-value < 0.05) to statistically verify the results of Precision-Recall,
MAP, and P@10.

5.4.4 Representation Size

In order to evaluate the descriptions dimensionality and possibly detect occurrence
compactness regarding the previous methods, we measured the representation size,
defined as the total number of bins that compose the histogram representations.

5.5 Experimental Protocol

In order to evaluate the proposed method, we conducted a k-fold cross-validation.
According to this protocol, the dataset is randomly split into k mutually exclusive
samples subset (folds) of approximated size. Then, the k − 1 subsets are chosen
as training set, and the remaining one as test set. The execution is repeated k
times, and for each time, a different subset (without replacement) is chosen as the
current test set and the remaining compose the training set.

We carried out all experiments considering k = 5 folds. As a consequence, for
each experiment, the method was executed 5 times using 80% of the dataset as
training set and 20% as test set.

6 Results and Discussion

This section compares the results of the proposed methods and baselines according
to the evaluation measures.

First, we present the results of the UA methods with regard to Precision-
Recall (Figs. 13 and 15), P@10 (Figs. 14a and 16a), MAP (Figs. 14b and 16b),
and representation size (Fig. 17) for all datasets and feature extractors. Next,
we present charts comparing the SCA results for Precision-Recall (Figs. 19-22),
P@10 (Figs. 23 and 24), MAP (Figs. 25 and 26), and representation size (Fig. 18).
In the figures, the symbols above each pair of measures indicate whether the
proposed method yields statistically better , worse , or similar results to
those observed for the baselines (the minimum between BIC/GCH and WTA-AE),
considering rejection of the null hypothesis when p-value < 0.05.

The following sections present and discuss the experimental results and pro-
vides comparisons between these two proposed approaches and baselines.
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6.1 Unconstrained Approach

Observing the Precision-Recall curves for the BIC feature extractor (Fig. 13),
the UA outperforms its baselines for all datasets. According to the P@10 mea-
surements (Fig. 14a), the method also presents, on average, more relevant results
in the first positions of the ranking for all datasets. The superior MAP results
(Fig. 14b) confirm the superiority of UA, as this measure takes into account the
performance of the evaluated methods for the whole Precision-Recall curve.

Similar results were observed when the GCH feature extractor is considered.
Figs. 15, 16a, and 16b provide the effectiveness results in terms of Precision-Recall,
MAP, and P@10, respectively. For all datasets, but for the Supermarket Produce,
the proposed UA approach yielded better results than those of the baseline. For
the Supermarket Produce dataset, no statistical difference was observed.

With regard to the representation sizes (Fig. 17), the differences between the
proposed methods and the baselines are very high. Comparing to the feature ex-
tractors, the representations produced by our method approach were, on average,
around 521% larger for BIC (Fig. 17a) and around 328% larger for GCH (Fig. 17b).
A possible reason relies on the fact that the fitness function used for evaluating
the genetic algorithm individuals prioritizes the representation effectiveness per-
formance on the retrieval task, i.e., the optimization process is not guided to guar-
antee compact representations. In this scenario, the proposed method quantized
more regions in the color space, leading to representation with higher dimensions.
The Size-Constrained Approach (SCA), whose results are discussed next, addresses
this issue.

6.2 Size-Constrained Approach

In the evaluation of the SCA approach, we varied the number of bins in the ranges
{16, 32, 64, 96, 128, 256, 384} and {8, 16, 32, 48, 64, 128, 192} for BIC and GCH ap-
proaches, respectively. These ranges were defined based on a logarithmic sequence
of proportions (12,5%, 25%, 50%, 100%, 200%) of the baselines vector sizes and
some additional points among them (75% and 300%) to provide a clearer view of
the performances behaviour. Figs. 19 and 20 present the Precision-Recall curves
for the BIC-based approaches and WTA-AE for all datasets, considering these
different feature vector sizes. We can observe that the proposed method yielded
comparable or better results than those observed for the baselines for feature
vectors whose size is higher than 96 for the majority of the datasets. In fact, the
smaller the feature vector size, the worse the results of SCA when compared to the
baselines. Similar results were observed for the GCH-based approaches at Figs. 21
and 22.

Figs. 23 and 24 provide the P@10 results for the SCA method when compared
with baselines for both BIC and GCH description approaches, respectively. Figs. 25
and 26, in turn, provide the MAP results for both BIC and GCH description
approaches, respectively. Results related to MAP and P@10 demonstrated that,
regardless the feature extraction method considered, the use of the SCA approach



24 Erico M. Pereira1 et al.

is able to create quite effective description approaches, without a high cost in terms
of storage requirements, i.e., in terms of the feature vector size.

Figure 18 shows the sizes of the produced representations given the respective
size upper-bounds. For the BIC approach (Fig. 18a) representations whose size
reached or were very close to the imposed upper-bound were produced, showing a
tendency for generating quantizations with strong tonality detailing. In contrast,
the results for the GCH approach (Fig. 18b) are quite different. For example,
for the upper limits 128 and 192, the produced representations were considerably
smaller than the maximum size. In these cases, the more effective representations
are not necessarily the ones with the highest possible dimensionality. This finding
means that increasing the number of tonalities does not necessarily lead to perfor-
mance improvements. In other words, the proposed methods are able to generate
representations that are significantly smaller than the predefined upper-bound but
with high effectiveness.

7 Conclusions

We proposed two approaches of a representation learning method, which intends to
provide more effective and compact image representations by optimizing the colour
quantization for the image domain. We performed experiments on eight different
image datasets comparing the results with a pre-defined quantization approach
and a Sparse Autoencoder in terms of effectiveness performance on content-based
image retrieval tasks. Methods are also evaluated in terms of the representation
dimensionality.

The first approach, named Unconstrained approach, produced representations
that outperformed the hand-crafted baselines in terms of effectiveness but pre-
sented feature vectors with several times higher dimensionality. It also outper-
formed the effectiveness of the autoencoder representation, but presenting inten-
sively lower sizes. The second approach, which imposes a limitation on the rep-
resentation dimension (Size-Constrained approach), presented, in general, better
effectiveness results for the same dimensionality (e.g., 128 bins). In other situations,
this approach reduced the representation size up to 50%, maintaining statistically
comparable performance to the hand-crafted baselines. Finally, the SCA approach
also produced results that imposed a reduction of more than 75% of the storage
requirements, but presented poor effectiveness performance, showing the existence
of a trade-off between compactness and effectiveness.

Since the representations are based on color histograms, the over- and the sub-
sampling of determined color space regions allows for the identification of more
effective representations and, consequently, improvements on the search perfor-
mance. Furthermore, a domain-oriented quantization allows for discarding the less
contributing tonalities resulting in a possible reduction of the representation size.

In the end, the results confirm our hypothesis, for the tested scenarios, that it
was possible to produce more effective and compact fitness by exploring a colour
quantization optimized for the image domain. Moreover, our method is capable of
improving already existent feature extraction methods by providing descriptions
more effective in terms of representation quality and more compact according to
a parametric upper bound. This research, therefore, opens novel opportunities for
future investigation. We plan to assess the effects of the proposed quantization
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approches to other image processing applications such as image classification [24],
image segmentation [13] and image dehazing [67]. We also plan to investigate
the impact of the resulting quantization when combined with deep-learning-based
feature extractors.
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Fig. 13: Comparison between the Precision-Recall Curves of the UA method, WTA
Autoencoder and the BIC feature extractor.
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Fig. 14: Comparison between the (a) P@10 and (b) MAP results of UA, WTA
Autoencoder and the BIC feature extractor.
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Fig. 15: Comparison between the Precision-Recall curves of UA, WTA Autoen-
coder and GCH feature extractor.
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Fig. 16: Comparison between the (a) P@10 and (b) MAP results of UA, WTA
Autoencoder and the GCH feature extractor.

(a) BIC (b) GCH

Fig. 17: Comparison between the representation size results of UA, WTA Autoen-
coder and the feature extractors: (a) BIC and (b) GCH. The upper windows show
a cut of the highest columns while the lower windows show a view of the bottom.
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Fig. 18: Comparison between the representation size results of SCA, WTA Autoen-
coder and the feature extractors: (a) BIC and (b) GCH, for the ETH-80 dataset.
The supplementary material of this article contains the same comparison for the
remaining datasets.
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Fig. 19: Comparison between the Precision-Recall curves of SCA, WTA Autoen-
coder and BIC feature extractor considering all representation size limits for
the datasets Groundtruth, Coil-100, Corel-1566, and Corel-3906. We recommend
colourful printing for adequate visualization.
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Fig. 20: Comparison between the Precision-Recall curves of SCA, WTA Autoen-
coder and BIC feature extractor considering all representation size limits for the
datasets ETH-80, Supermarket Produce, MSRCORID, and UCMerced Landuse.
We recommend colourful printing for adequate visualization.
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Fig. 21: Comparison between the Precision-Recall curves of SCA, WTA Autoen-
coder and GCH feature extractor considering all representation size limits for
the datasets Groundtruth, Coil-100, Corel-1566, and Corel-3906. We recommend
colourful printing for adequate visualization.
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ETH-80 Supermarket P. MSRCORID UCMerced L.
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Fig. 22: Comparison between the Precision-Recall curves of SCA, WTA Autoen-
coder and GCH feature extractor considering all representation size limits for the
datasets ETH-80, Supermarket Produce, MSRCORID, and UCMerced Landuse.
We recommend colourful printing for adequate visualization.
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(a) Groundtruth
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(b) Coil-100
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(c) Corel-1566
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(d) Corel-3906
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(e) ETH-80
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(f) Supermarket Produce
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(g) MSRCORID
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(h) UCMerced Land-use

Fig. 23: Comparison between the P@10 results of SCA, WTA Autoencoder and
BIC feature extractor
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(a) Groundtruth
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(b) Coil-100
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(c) Corel-1566

0 16 32 48 64 80 96 112 128 144 160 176 192
Size Upper Bound

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ov
er

al
l P

@
10

SCA-GCH
WTA-AE+PCA
GCH

(d) Corel-3906
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(e) ETH-80
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(f) Supermarket Produce
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(g) MSRCORID
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(h) UCMerced Land-use

Fig. 24: Comparison between the P@10 results of SCA, WTA Autoencoder and
GCH feature extractor
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(a) Groundtruth
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(b) Coil-100
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(c) Corel-1566
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(d) Corel-3906
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(e) ETH-80
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(f) Supermarket Produce
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(g) MSRCORID
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(h) UCMerced Land-use

Fig. 25: Comparison between the MAP results of SCA, WTA Autoencoder and
BIC feature extractor
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(a) Groundtruth
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(b) Coil-100
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(c) Corel-1566
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(d) Corel-3906
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(e) ETH-80
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(f) Supermarket Produce
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(g) MSRCORID
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(h) UCMerced Land-use

Fig. 26: Comparison between the MAP results of SCA, WTA Autoencoder and
GCH feature extractor
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