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Abstract—While image captioning through machines requires
structured learning and basis for interpretation, improvement
requires multiple context understanding and processing in a
meaningful way. This research will provide a novel concept for
context combination and will impact many applications to deal
visual features as an equivalence of descriptions of objects, activ-
ities and events. There are three components of our architecture:
Feature Distribution Composition (FDC) Layer Attention, Multi-
ple Role Representation Crossover (MRRC) Attention Layer and
the Language Decoder. FDC Layer Attention helps in generating
the weighted attention from RCNN features, MRRC Attention
Layer acts as intermediate representation processing and helps
in generating the next word attention, while Language Decoder
helps in estimation of the likelihood for the next probable word
in the sentence. We demonstrated effectiveness of FDC, MRRC,
regional object feature attention and reinforcement learning for
effective learning to generate better captions from images. The
performance of our model enhanced previous performances by
35.3% and created a new standard and theory for representation
generation based on logic, better interpretability and contexts.

Index Terms—language modeling, representation learning, ten-
sor product representation, image description, sequence genera-
tion, image understanding, automated textual feature extraction

I. INTRODUCTION

B IG data is struck with volume and variety of data and is
creating huge challenges to merge them for analysis and

inference. While large part of data is in images and videos
and helping in better expression, entertainment and communi-
cation, it is difficult for machines to understand, merge, recom-
mend and track the sentiments and trends of the specific and
generalized happenings. To overcome this, captioning research
must explore its fullest potential, for generalized and domain
adaptation. Image captioning architectures [1] demonstrated
diverse ways of effective sentence generation from visual
features through various ways of representation generation and
compositions from image features like Vgg [51], ResNet ([89],
[54], [73]), Inception [47] etc, mostly relying on object and
attribute detectors to describe images ([51], [53], [87]) and
later focused on attention based model ([49], [47], [60], [54],
[38], [45], [15]) and semantic factorization [73]. Recent works
with top-down objects from image regions ([41], [6]) has used
hierarchical models. This architecture [41] has some serious
drawbacks and we have introduced some solutions that are
more robust and capable of introducing truly interpret-able
representation instead of just relying on the network to learn

them independently. Also, our architecture has much lower
number of weights and can be trained in less than 20 epochs,
while their architecture requires 50 epoch of rigorous training
and then fine-tuning. Another drawback is related to global
overview, derived out of average of all regional components.
An overlap of a happy person and a sad one will produce
only sad context or a negative way of representation because
of the structural nature of the situation, which machine fails to
interpret. Averaging suppresses many informative objects and
overlapping average never works. The compositional charac-
teristics of image-attention LSTM and intermediate transfer
layer has limitations and creates a heuristic weighted selection
(as a in [41]) for image regions {v1, . . . , vn}. Here, apart
from a 2048 dimension LSTM, the intermediate transfer layer
weights Wb ∈ Rb×d, Wh ∈ Rb×d, Wa ∈ Rb×d are more
than required. Hence, we curtailed the image-attention LSTM
and Wb and introduced Wh ∈ Rb×d and Wa ∈ Rb×d

with much lower weights and this can help in propagation
of information much faster. More details are provided in
Section IV. Our approach outperformed top-down approach
in [6] which used only this image caption data for training,
while our results were very close to top-down approach in
[41], which used three data (image captioning, VQA and
Visual Genome Question Answering) to train their system for
representation and use the features for different applications.
Hence, direct comparison of our result with [41] will be unfair
since we only use MSCOCO image caption dataset [73]. We
introduced a weighted image composition scheme to produce
Feature Distribution Composition (FDC) through selection of
the distribution of objects with the real global feature from the
original image feature. This helps in better and quick selection
of the weights for each corresponding regional object features.
Also the intermediate transfer layer creates a fat structure,
creating fan out situation for the information and further
propagation of information to the image-attention LSTM layer
get heavily diminished. Also, with lower gradient propagation,
learning is slow and it is difficult to work with low value
for initialization. Also, in [41], the intermediate self-attention
feedback are the hidden layer outputs (h1 and h2) and most
of the time propagates the initial generated errors, while the
correct word embedding need to be propagate through the
network for better learning. Overall, the model contains too
many information fusion and it is difficult to control such
mixing in a very heavy model with relatively lower resources
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(data and computation). We replaced these heavy weights
with a simple and light weighted model and paid attention
to composition of features from image features, global objects
representation from the original image and use of semantic
composition for construction of sentences. We showed that
our composition of feature representation is a much advanced
way of composition of representation that the system can
distinguish and decode as sentences, while our proposed R-
CNN feature composition architecture provides similar kind
of performance, when experimented with MSCOCO dataset.

The novelty of our work is multiple-fold. First, we advocate
that crossover of representation can enhance image captioning,
then we introduced a novel R-CNN features composition
architecture for composition of structural representation in
the form of Feature Distribution Composition (FDC) and
lastly combined crossover representation, feature distribution
composition and semantic composition for a better network.
Lastly, we used SCST reinforcement learning scheme [45] for
better performance enhancement and as a moderating way of
incorporating the cumulative topological effects of sequence
of the sentence and generate changes in the network weights.

The rest of the document is arranged with the details of
theory of tensor product and its influence on our architecture in
Section III, the description of the architecture and description
of the different feature composition techniques in Section
IV, the intricacies of our experiments, results and analysis in
Section V, revisit of the existing works in literature in Section
II, concluding remarks with future prospects in Section VI.

II. LITERATURE REVIEW

There are quite a number of works being done on im-
age captioning like [5] CNN features and hash-tags from
users as input, [6] with sentence ‘template’, [7] sentiment-
conveying image descriptions. [8] reported the comparison
of context-aware LSTM captioner and co-attentive discrim-
inator for image captioning. [9] used question features and
image features, [11] parsing tree StructCap, [12] sequence-to-
sequence framework, and [13] dual temporal modal, Image-
Text Surgery in [14], [15] attribute-driven attention, [16]
generative recurrent neural network, [17] MLAIC for bet-
ter representation. Also there is [18] text-guided attention,
[19] reference based LSTM, [21] adversarial neural network,
high-dimensional attentions [22], [23] coarse-to-fine skeleton
sentence, [24] specific styles, [25] structural relevance and
structural diversity, multimodal attention [26], [27] popular
brands caption [28] diversified captions, [29] stylish caption,
[30] sub-categorical styles, [31] personalized captions, [32]
studied actor-critic reinforcement learning, [33] scene-specific
attention contexts, [34] policy network for captions, [35] re-
inforcement learning based training, [36] distinguish between
similar kind for diversity, [37] improved with correctness of
attention in image, [39] adaptivity for attention, [40] used com-
bination of computer vision and machine translation, [42] used
adaptive re-weight loss function, [43] personalized captioning,
[46] high level semantic concept, [47] used visual features and
machine translation attention combinations, [56] different cap-
tion styles, [57] shifting attention, [58] characteristics of text

based representations, [62] variational autoencoder represen-
tation, [63] dependency trees embedding, [64] character-level
language modeling, [65] fixed dimension representation, [66]
3-dimensional convolutional networks, [67] human judgments,
out-of-domain data handling, [70] semantic attention, [73]
Semantic Compositional Network (SCN), [74] localize and
segment objects, [76] extra semantic attention, [78] content
planning and recognition algorithms, [80] new tree based
approach to composing expressive image descriptions, [81]
transposed weight sharing scheme, [82] different emotions
and sentiments, and [85] where nouns, verbs, scenes and
prepositions used for structuring sentence.

III. IMAGE WEIGHTED TENSOR CROSSOVER &
REPRESENTATIONS THEORY

The concept is motivated by multiple extraction of different
aspects of the images and combining them, in absence of
enough trigger neurons for many unattended part of the
image features. Uniformly distribution of triggering of every
sector of the image is also not feasible. Hence, we pretend
that this overall combinations is an approximation event for
neural composition network function. Mathematically, we can
say for image I, we define an approximate context function
Φ(.) through the combination of individual neuron triggered
transformation of the image regions defined as σ(W1I + b1),
σ(W2I + b2) and so on. The structural component of features
in images are flattened through [89].

A. Approximation

Approximation has always lead to ease of computation,
but here we are focused on approximation for scalability.
For better approximation and compositional characteristics of
representations, our architecture learns to predict two near-
optimum representation tensors that can be combined to gen-
erate the maximum likelihood representation. The purpose
is to complement each other, but in case of presence in
both representations, non-linearity can neutralize such effects.
These near-optimum tensors are learned from data and are
generated as a function of visual features v for image I. For
example, we consider the time-independent representation R
in Equation 1,

R = f1(v)f2(v) (1)

with functions f1(.) and f2(.), we can also include time and
rewrite representation Rt as,

Rt =

i=t∑
i=0

cip
T
i (2)

where we interpret functions f1(.) and f2(.) as ci and pi
and are the context and positional significance vector for
the image and is used to generate partial global represen-
tation cip

T
i for each word in the sentence (or elements in

a topological sequence), where the word embedding vector
is defined as ci and the positional or semantic interpretation
is provided as pi. We retrieve back ci from decoder, since
we have defined likelihood and we know Rt as the structure
of sentence with positional significance {p1, p2, . . . , } for
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each word {c1, c2, . . . , }. Imposed orthogonality generates the
detection theory for decoding as pTi pj = 0 | ∀ i 6= j and
pTi pj = 1 | ∀ i = j, if we know ci. The approximate structure
of the function creates retrieval as c1pT1 p1, c2pT2 p2, c3pT3 p3 and
so on from each Rt. Equivalently, we can write, estimated ci
as ĉi,

ĉi = Rtpi = cip
T
i pi (3)

where Rt is Multiple Role Representation Crossover (MRRC).
To apply this concept for language generation, we have two
situations. One is where we know and defined one set of
vectors and we can retrieve the other, with the help of Rt from
contexts (here images). Another is when we derive both the
vectors and Rt from from contexts (here images) and retrieve
the other vectors. Experiments show that the latter is slightly
better and this is due to approximations.

For image caption generation problem, it is difficult to
retrieve whole Rt from I and hence we can define an ap-
proximate scheme where we compose partial Rt as f(v) and
add it to Rt−1 for partial sequence context and establishing
the topological dependency and thus retrieve context word ci
simultaneously from the image as attention. This architecture
can be represented mathematically as the following conditional
probability equation.

P(ci | f(v), c1, c2, . . .) = P(ci | f(v)) + P(ci | c1, c2, . . .)
= P(ci | f(v)) + P(ci | Rt−1)

(4)
We have P(ci | f(v), c1, c2, . . .) as the likelihood representa-
tion, attended as Rt. The overall mathematical interpretation
can be written as the following equation.

Rt = c1p
T
1 + c2p

T
2 + . . .+ f(v)

=

i=t∑
i=0

cip
T
i + f(v)

(5)

where f(v) can be regarded as structural correction by image
attention. The ideal situation would have been when ctp

T
t =

f(v) or ctpTt = f(v | ht−1) and is denoted as the following
equation.

Rt = c1p
T
1 + c1p

T
1 + . . .+ ctp

T
t

=

i=t∑
i=1

cip
T
i

(6)

where we know the sentence {w1, w2, . . . , wn} (for image
I) and we can easily retrieve Rt by adding cip

T
i to Rt−1

from image and retrieving back ci as cipTi pi (as pTi pi = 1)
through a sequence decoding technique. So apparently, we are
getting the next word ci from image I but through Rt−1, but
after each step we only know wi at time t and before time t
based on the decoded sequence, instead of all wi before and
after time t. This strategy will solve many problem related
to generation of a complex and combined representation for
the sentence and helps in scaling up the context diversity and
generation capability. Since this is a non-linear transformation
that is made to behave like reverse estimation, we will also
predict the positional or semantic interpretation representation,
an equivalent to topological information for a sequence. If time

factor is considered, the initial projection of the tensors goes
through the following series of updation,
• R0 ← Null
• R1 ← R0 + f1(v)
• New Word← w1 = R1 ∗ p1
• R2 ← R1 + w1 ∗ p1 + f1(v)
• Rt+1 ← Rt + wt ∗ pt + f1(v)

where pi is defined or trained from the data and
{w1, w2, . . . , wn} is sentence for image I. This idea is con-
verted into a form of structural neural function, where, we
train neural network to define the functions.

B. Divide and Conquer Strategy In Deep Learning

The fundamental difference between ”divide and conquer”
strategy and neural ensemble strategy is that the former
is focused on combination generation instead of utilization
individually as concatenated series. Here, our approach is to
divide the situation and later combine the inference, instead
of expecting details in single function. While approximation
is bounded through mathematical structures, the details of
the functional approximation is operated in a ”divide and
conquer” algorithm, where, instead of relying on some weights
to generalize well for all the images, we diversify the work to
different weights for better generalization. This is a perfect
example of ”divide and conquer” strategy in deep neural
network, mainly concentrating on task of decoding and related
to sequence generation and processing. Sequence processing is
computation intensive and contextual segregation is inevitable
for proper generation of topologically significant sequences.
While, most approaches are dependent on weighted transfor-
mation, the models lack generalization for sequence general-
ization and hence, we introduce the idea of Multiple Role
Representation Crossover for better learning of usefulness
from images. Mathematically, we can define this ”divide and
conquer” strategy in deep neural network as the following.

y = Φ(x) = Φ(Ψ1(x),Ψ2(x), . . . ,Ψn(x)) (7)

where we have defined Φ(.) as the transformation function
of pre-likelihood and Ψi(.) as the ith intermediate extraction
of contexts. Instead of characterizing each function Ψi(.) for
specific purposes, we define Ψi(.) as component function that
take their required role and is trained to that for different
situations.

C. Local Recurrent Strategy In Deep Learning

Local Recurrent Strategy is defined as identification of the
most relevant and useful context (local context) in the search
space instead of processing the whole context (global context).
In this work, we have devised this approach for our strategy
and is more like the swarm intelligence strategy, where the
swarm always tries to follow some local best for improvement
instead of global ones. Several local contexts will lead to
the sentence, instead of learning a global context for the
sentence. In this work, for sentence generation, the purpose is
identification of some of the best local structural context for
proper generation of the words for the sentence and these are
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derived from lower level image information. Mathematically,
we can consider the following equation as one kind of Local
Recurrent Strategy.

yt = Φ(I) = Φ(AtI) (8)

where we have defined Φ(.) as the transformation function
to pre-likelihood, the combination of local contexts AtI as
context for the sentence at time t through the adjustment
matrix At. This can be regarded as Local Recurrent Strategy
for the recurrent decoding, where the topology is established
through variables at the language decoder level. Local Recur-
rent Strategy helps in diversification of contexts through ”con-
text shifts” strategies and is generated from the image features
directly. Lastly, Local Recurrent Strategy helps in estimation
of contexts that are not biased that is not learned through
bias in the language decoder LSTM, where the learning of the
language decoder plays important role.

IV. ATTENTION COMPOSITION ARCHITECTURES

The main motivation of introducing this architecture is the
lack of previous architectures in defining a model that can
capture different aspects of the situation. Attention is not
generalized. But with series of local contexts can approach
generalization and is a much powerful tool. Our architecture is
composed of three components: Feature Distribution Composi-
tion (FDC) Attention, Multiple Role Representation Crossover
(MRRC) Attention and Semantic Composition based Lan-
guage decoder. FDC helps in feature composition from images,
MRRC helps in selection through prediction of the next words
through generation of semantics for the decoder LSTM layer.
Different concepts of attentions are introduced and fused in
the architecture that can generate the perfect combination for
image captions. Figure 2 provided a diagrammatic overview
of the architecture and subsequently, we provided more details
of the individual components.

A. Feature Distribution Composition Attention

Feature Distribution Composition Attention is characterized
for detention of the semantic composition from the regional
objects features and the semantic composition expresses more
with more regularization of the lower level extracted features.
Previous works on this kind of architecture utilized lower
level CNN based feature of images for caption generations.
CNN feature provides a limited and selective overview of the
images and the composition cannot be varied for the network
to be leveraged upon. But, RCNN features consist of series of
features in individual forms that can heuristically be selected
to compose a constructive component. Individually, the RCNN
features are much more sparse, but the weighted component
composition can be much more meaningful and constructive.
We define an effective and efficient way of weighted selection
scheme and call it Feature Distribution Composition (FDC)
Attention Layer. Compared to the bottom up approach [41],
it is much more effective and lower in the number of weights
and this scheme helped in out-perform previous works like
[6]. This architecture will perform much better than [41], if
compared on the same platform, as [41] is trained with data

from multiple sources. Mathematically, Feature Distribution
Composition (FDC) Attention, denoted as v̂t, can be derived
by the following set of equations.

v =
1

k

i=k∑
i=1

vi (9)

where {v1, v2, . . . , vk} are the regional CNN features and vi ∈
R2048 ∀ i ∈ {1, 2, . . . , k}. The initial parameters of the LSTM
for the language decoder is important as the hidden states are
related to establishment of the topological relationship and
time and we initialized them as the followings, considering
that the FDC is related to the top overview of the image.

h0, c0 = Wh0v,Wc0v (10)

where we have defined at ∈ Rb×d, at ∈ Rb×d for transforma-
tion of the features. The next task of this model is development
of the Intermediate Transfer Layer

at = Wa tanh(Whht−1) (11)

where at ∈ Rk×1, Wa ∈ Rmx×k, Wh ∈ Rd×mx , k is the
number of considered maximum regional features in images.

αt = softmax(at) (12)

where
i=k∑
i=1

αi,t = 1 and αt ∈ Rk×1 and the Feature Distribu-

tion Composition Attention v̂t is provided as a summation of
different regions to compose the attention.

v̂t =

i=k∑
i=1

viαi,t (13)

where we have v̂t ∈ Rb×2048 where b is the batch size
and d is the hidden layer dimension. Figure 1 provided a
pictorial overview of the Feature Distribution Composition
(FDC) Attention architecture and the attention can be utilized
for different applications. FDC helps in deciding the features
at a very high level of the whole image and mainly con-
centrates on determination of the combination of the lower
level features instead of pre-likelihood or distribution. Since,
we experimented different architectures and proposed different
fusion models, we will discuss the utility from each prospect.

B. Multiple Role Representation Crossover Attention

While, we utilized different features from the image for
fusion in the network, like the global view for initialization and
selection of weighted combination, we also introduce Multiple
Role Representation Crossover (MRRC) Attention, where the
aim is to provide attention, which is derived as a crossover
of different aspect of the network. Residual and skip-through
like architecture has been successful in many applications
for gathering different residuals of the network. Some of our
model do the same, where instead of utilization of the image
features, it gathers the transformed features from some node
of the network. Since, the depth of our MRRC architecture
is very shallow, compared to ResNet, our residual collection
can be any gate of the architecture, utilizing different aspects
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Fig. 1. Feature Distribution Composition (FDC) Attention Layer.

from images for generation and crossover the prospects to
generate a new one with variations and developing the ability
of the model to respond to those variations. Multiple Role
Representation Crossover (MRRC) Attention Generation layer
comprises of Image Weighted Tensors and are crossover-ed
to generate the required attention dependent on time and a
shifting weight scenario. The shifting of weights generate
ample variations for the language decoder to be able to derive
the sentences and generate diverse sentences. We can also call
this attention as Image Weighted Tensor Crossover (IWTC)
Attention when we use the FDC features as the prospects in
place of f(I) in Equation 14. Mathematically, Multiple Role
Representation Crossover (MRRC) Attention Generation layer
can be denoted by the following set of equations.

Tt = Ws12 σ(Ws11ht−1 + Ww1

t−1∑
i=0

Wexi + b1) ⊗

tanh(Ws22(f(I) σ(Ws21ht−1 + Ww
2

t−1∑
i=0

Wexi + b2)) + b3)

(14)

where we have x ∈ Rb×d. Figure 3 has given an overview
of the Multiple Role Representation Crossover Attention ar-
chitecture with more details of the involvement of the image
characteristics and compositions. Multiple Role Representa-
tion Crossover Attention works on contexts related to the
composition of the RCNN and thus can be considered as
a dual prospect of FDC. In many situations, the weights of
the neural network are biased to certain patterns and MRRC
neutralizes the situation through extra weights and variances.
This phenomenon is prevalent in statistics and is considered
as interaction, where the variations are captured into the
mathematical model through interaction term. However, due
to the limitations in the number of considered variables in
statistics, they are literally useless for intelligent systems.

Hence, in this work, we have devised such kind of situation,
where MRRC is derived from FDC and ht−1. ht−1 is the
next state derivation from the RCNN features and must not
confused as the hidden state of LSTM. In this work, we are
talking about MRRC architecture, which does not comply with
LSTM, as we never propagate the hidden state (like in LSTM).
Instead, we deal with transformed RCNN features. Hence, this
architecture is far different from the traditional recurrent neural
network architectures. It is to be noted that MRRC also deals
with the previous contexts and thus can be regarded as a much
enhanced criteria for context generation and the topologically
synchronized attention.

C. Language Decoder

Language Decoder operates alongside the attentions and
previous contexts. Unlike LSTM, this language decoder op-
erates on the influence of attentions and previous context and
does not explicitly depend on hidden states for sequential
relevance. The equations for Language Decoder is provided
as the followings.

it = σ(Wpipt + Wqiqt + WTiTt + bi) (15)

ft = σ(Wpfpt + Wqfqt + WTfTt + bf ) (16)

ot = σ(Wpopt + Wqoqt + WToTt + bo) (17)

gt = tanh(Wpgpt + Wqgqt + WTgTt + bg) (18)

ct = ft � ct−1 + it � gt (19)

ht = ot � tanh(ct) (20)

xt = max arg softmax(Whxht) (21)

where the attentions qt and Tt are derived from previous
blocks and the pt is the previous transformed context em-
bedding. While, most of the recurrent units are dependent on
attentions (ht−1, At) and pretext (Wext), our language model
depends on combinations, which are generated out of the local
context from the feature space and what to select as local
context is learned in the feature space. Next, we will discuss
the variations of architectures of these concepts and how they
are unique in generating the combinations of contexts.

D. FDC-MRRC

Feature Distribution Composition - Multiple Role Repre-
sentation Crossover (FDC-MRRC) is the basic architecture,
where the main contributions are related to feature distribution
generation and fusion of image weighted crossover attention.
While FDC is about attention based on local enhancement,
IWT provides a compositional construction that correlates with
the local enhancement. This idea is motivated from the fact
that both global and local prospect is important for diversified
composition and establish local identity of feature space
from the visual features. Figure 2 provided a diagrammatic
overview of the FDC-MRRC architecture and their individual
components. Mathematically, we can define FDC-MRRC with
the following set of equations. Starting with regional image
features {v1, . . . , vn} for image I, v ∈ R2048 is the average
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Fig. 2. Overall FDC-MRRC Architecture With FDC, IWTC and RCNN Feature Fusion.

Fig. 3. Image Weighted Tensor Crossover (IWTC) Generation Layer. Here,
the regional image segments are decomosed to generate newer ones with better
comprehension and information.

of all the possibilities over the feature space that the image
represent.

v =
1

k

i=k∑
i=1

vi (22)

The initial parameters for the language decoder are initialized
as the following for time t = 0.

h0, c0 = Wh0v,Wc0v (23)

where the weights are defined as Wh0
∈ R2048×d, Wh0

∈
R2048×d and these parameters effectively helps in determina-
tion of the FDC for the language decoder. The intermediate
FDC component is defined as v̂t, through the help of the

hidden components, which constitutes the status of previous
composition and thus establishes the topological inference for
the next instructions.

at = Wa tanh(Whht−1) (24)

where at ∈ Rk×1, Wa ∈ Rm1×k, Wh ∈ Rd×m1 , k is the
number of considered regional features in images, m1 is an
intermediate dimension. Next, at is reduced to a softmax layer
and the new αt is used for FDC composition.

αt = softmax(at) (25)

with αt = {α1,t, . . . , αk,t} ∈ Rk×1 and FDC composition is,

v̂t =

i=k∑
i=1

viαi,t (26)

where we have v̂t ∈ Rb×2048 where b is the batch size and d is
the hidden layer dimension. We define new components qt and
pt with We ∈ RV×e as the embedding vector for languages
and is derived from Stanford GloVe and V is the vocabulary
size and e is the dimension of the embedding.

qt = v̂t (27)

pt = Wext−1 (28)

Next, we define the MRRC feature selection layer as Tt as
the following,

Tt = Ws12 σ(Ws11f(qt) + Ww1

t−1∑
i=0

Wexi + b1) ⊗

tanh(Ws22(qt σ(Ws21f(qt) + Ww
2

t−1∑
i=0

Wexi + b2)) + b3)

= Ws12 σ(Ws11ht−1 + Ww1

t−1∑
i=0

Wexi + b1) ⊗

tanh(Ws22(qt σ(Ws21ht−1 + Ww
2

t−1∑
i=0

Wexi + b2)) + b3)

(29)
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where we have defined ⊗ as an algebraic operation (like
tensor product or dot product or similar) for the matrices to
generate a feature vector using the different composition states
of the regional image features in ht−1, which is more than
hidden states of the language decoder. Here, we considered
⊗ = �, element-wise multiplication, as we try to rectify and
complement one context with the other context from the same
image sources. Finally, we have,

it = σ(Wpipt + Wqiqt + WTiTt + bi) (30)

ft = σ(Wpfpt + Wqfqt + WTfTt + bf ) (31)

ot = σ(Wpopt + Wqoqt + WToTt + bo) (32)

gt = tanh(Wpgpt + Wqgqt + WTgTt + bg) (33)

ct = ft � ct−1 + it � gt (34)

ht = ot � tanh(ct) (35)

where we have ht as the pre-likelihood estimation of the
topological sequence and is decoded as xt as in Equation 21.

Mathematically, Feature Distribution Composition - Mul-
tiple Role Representation Crossover (FDC-MRRC), denoted
as f

FDC1
(.), can be described as the followings probability

distribution estimation.

f
FDC1

(I) =
∏
k

Pr(wk | Tt, Φ(v1. . . . , vK), WL1
)

∏
i

Pr(Tt | f1(v1. . . . , vK), f2(v1. . . . , vK), W1)

=
∏
k

Pr(wk | Tt, Φ(

(
1

K

K∑
m=1

vm

)
,

(
N∑

m=1

vmαm

)
,WL1

))

∏
t

Pr(Tt | f1(v1. . . . , vK), f2(v1. . . . , vK), W1)

=
∏
k

QM (wk | Tt, Φ(

(
1

K

K∑
m=1

vm

)
,

(
N∑

m=1

vmαm

)
))

∏
t

QF (Tt | f1(v1. . . . , vK), f2(v1. . . . , vK))

(36)

using the weights of the LSTM in the architecture is denoted as
WL1

, wi as words of sentences, vi as regional image features,
aivm as intermediate learnt parameters, QM (.) and QF (.) are
the Image Caption generator and feature generator function
respectively. QF (.) derives Ti from v of I.

E. Semi-Factorized-FDC-MRRC

Semi-Factorized Feature Distribution Composition - Mul-
tiple Role Representation Crossover (Semi-Factorized-FDC-
MRRC) creates a factorized version of the qt before being
decoded for the topological interpretation. Figure 4 has pro-
vided a pictorial overview of the Semi-Factorized-FDC-MRRC
architecture. From the prospect of feature composition, this is
much more robust as these are dealing with factorization of the
feature space to create diversity. Also, the FDC features are
derived from regional local importance of the images based on

RPN (Region Prediction Network), whose works is to predict
the regions of importance based on previously accounted
probable regions. While, factorization for neural space is not
equivalent to matrix factorization based on heuristics. This
is because of the fact that such factorization do not scale
well for applications and difficult to find the optimal space
of factors. Also, for decoding tasks, such factorized model
may not be helpful and do not fit well. Hence, a weighted
factorization is introduced which helps in determination of
partial usefulness of the feature vector that can be utilized for
the model. Mathematically, we can define Semi-Factorized-
FDC-MRRC as the following equations, where most of the
notations are described for FDC-MRRC architecture.

v =
1

k

i=k∑
i=1

vi (37)

The initial parameters are initialized as,

h0, c0 = Wh0
v,Wc0v (38)

at = Wa tanh(Whht−1) (39)

αt = softmax(at) (40)

v̂t =

i=k∑
i=1

viαi,t (41)

The assembling and selector layer is defined for IWT as,

qt = v̂t (42)

pt = Wext−1 (43)

Tt = Ws12 σ(Ws11f(qt) + Ww1

t−1∑
i=0

Wexi + b1) ⊗

tanh(Ws22(qt σ(Ws21f(qt) + Ww
2

t−1∑
i=0

Wexi + b2)) + b3)

= Ws12 σ(Ws11ht−1 + Ww1

t−1∑
i=0

Wexi + b1) ⊗

tanh(Ws22(qt σ(Ws21ht−1 + Ww
2

t−1∑
i=0

Wexi + b2)) + b3)

(44)

The next equation introduces the factorization portion for the
FDC qt and is feed as qt,n in place of each qt for it, ft, ot and
gt of the language decoder. Equation 49 is called factorization
step as the shared weights are decomposed into relevant
slices of structured components with the help of a pre-trained
distribution of the objects in the images. The main reason of
factorization is to keep track of the composition of objects
in images. Normally, FDC composition from RCNN objects
feature representation will be heuristic and depend on the RPN
prediction of Faster-RCNN, hence, factorization can help in
establishing the structural properties between RCNN features
and distribution of objects much faster. Unlike, previous works
that operate on weights, directly related to the image features,
our architecture is dependent on FDC composition and the
factorized weights is expected to know the FDC composition
than the whole image.
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Fig. 4. Overall Semi-Factorized-FDC-MRRC Architecture With FDC, IWTC, Semantic and RCNN Feature Fusion.

Mathematically, Semi-Factorized Feature Distribution Com-
position - Multiple Role Representation Crossover (Semi-
Factorized-FDC-MRRC), denoted as f

FDC2
(.), can be de-

scribed as the followings probability distribution estimation.

f
FDC2

(I) =
∏
k

Pr(wk | Tt, Φ(v1. . . . , vK), S, WL1)

∏
t

Pr(Tt | f1(v1. . . . , vK), f2(v1. . . . , vK), W1)

=
∏
k

Pr(wk | Tt, Φ(

(
1

K

K∑
m=1

vm

)
,

(
N∑

m=1

vmαm

)
, S)

, WL1
)

∏
t

Pr(Tt | f1(v1. . . . , vK), f2(v1. . . . , vK), W1)

=
∏
k

QM (wk | Tt, Φ(

(
1

K

K∑
m=1

vm

)
,

(
N∑

m=1

vmαm

)
, S))

∏
t

QF (Tt | f1(v1. . . . , vK), f2(v1. . . . , vK))

(45)

using the weights of the LSTM in the architecture is denoted as
WL1

, wi as words of sentences, vi as regional image features,
aivm as intermediate learnt parameters, QM (.) and QF (.) are
the Image Caption generator and feature generator function
respectively. QF (.) derives Ti from v of I, S is the semantic
feature map.

1) Pseudo-Weights: The tags are pseudo-weights that are
not learned but derived from a model and is expected to
behave like weights. As an adaptive weight concept, these
make different impacts on the feature composition. These are
also called tag based weighted metrics and form a series of
tensors working with each other. We can have any number of
such tensors (parameters), however, for prove of concept and

feasibility of learning, we have considered three matrix prod-
uct setup, reducing the learnable weights with high performing
model derivatives. We consider W decomposition is given by,

W = Wpr
diag(Wqq) Wps

= Wpr
diag(WqΦ(v1, v2, . . . , vk)) Wps

(46)

where Wpr
and Wps

are two matrices accessed by
all possible training scenarios and captions, while
diag(Wqq) or diag(WqΦ(v1, v2, . . . , vk)) is a model
derived transformation of the scenarios vectors. diag(Wqq)
or diag(WqΦ(v1, v2, . . . , vk)) also represents common
linguistic topological features to establish the grammar in
sentences and encourage appearance of adverb and adjective
level complexity. diag(.), accounts for k semantic aspects
in the form of orthogonal spaces to capture the required
features. Each slice of the weight tensor (diagonal matrices)
corresponds to a concept and varies in size with the dataset.

2) Dynamic Factorization: In this work, we will discuss
Dynamic Factorization, as this has the potential of demon-
strating much better variation in representation for caption
generation. Dynamic Factorization helps in better and opti-
mized decomposition of the lower level components (regional
features of the images) and creates the chances of rectification
in case of low usefulness of the factorization context vectors
(semantics) from images. Figure 5 provide a diagram dif-
ferentiating Dynamic Factorization with Static Factorization.
Mathematically, we can define this new factorization approach
(Dynamic Factorization) as the following,

W = Wpr
diag(Wqq) Wps

= Wpr
diag(WqΦ(v1, v2, . . . , vk)) Wps

(47)
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Fig. 5. Dynamic Factorization and Static Factorization

Compared to the previous factorization approach (Static Fac-
torization), which were defined as,

W = Wpr
diag(Wqq) Wps

= Wpr
diag(WqΦ(v)) Wps

= Wpr
diag(WqS) Wps

(48)

where Φ(.) is a functional transformation. Finally, we define
the equation for the new qt,n as,

qt,n = Wq,mS �Wq,nqt (49)

where qt,n ∈ Rb×d, qt ∈ Rb×999, S ∈ Rb×999, Wq,m ∈
R999×d, Wq,n ∈ R2048×d. The final Language Decoder is
defined as the followings and in place of Wq∗ ∈ R2048×d,
we have Wq∗ ∈ Rd×d for ∗ = i/f/o/g and for some value
of dimension m2.

it = σ(Wpipt + Wqiqt,n + WTiTt + bi) (50)

ft = σ(Wpfpt + Wqfqt,n + WTfTt + bf ) (51)

ot = σ(Wpopt + Wqoqt,n + WToTt + bo) (52)

gt = tanh(Wpgpt + Wqgqt,n + WTgTt + bg) (53)

ct = ft � ct−1 + it � gt (54)

ht = ot � tanh(ct) (55)

where ht is pre-likelihood estimation of the topological se-
quence and is decoded as xt as in Equation 21.

F. Full-Factorized-FDC-MRRC

Full-Factorized Feature Distribution Composition - Multiple
Role Representation Crossover (Full-Factorized-FDC-MRRC)
uses more factorized components for the language decoders
for better enhancement of the features for the language de-
coder, where apart from decomposition of the weights for the
image features FDC, the previous context embedding is also
disintegrated. This disintegration of the language embedding
brings stability in representation, which are unable to capture

(or approximated) by weights. Figure 6 provided the Full-
Factorized-FDC-MRRC architecture details in a diagrammatic
form for better perception of the network. The equations for
the mathematical details of Full-Factorized-FDC-MRRC is
denoted as the followings,

v =
1

k

i=k∑
i=1

vi (56)

h0, c0 = Wh0
v,Wc0v (57)

at = Wa tanh(Whht−1) (58)

αt = softmax(at) (59)

v̂t =

i=k∑
i=1

viαi,t (60)

qt = v̂t (61)

pt = Wext−1 (62)

Tt = Ws12 σ(Ws11f(qt) + Ww1

t−1∑
i=0

Wexi + b1) ⊗

tanh(Ws22(qt σ(Ws21f(qt) + Ww
2

t−1∑
i=0

Wexi + b2)) + b3)

= Ws12 σ(Ws11ht−1 + Ww1

t−1∑
i=0

Wexi + b1) ⊗

tanh(Ws22(qt σ(Ws21ht−1 + Ww
2

t−1∑
i=0

Wexi + b2)) + b3)

(63)

For every ∗ = i/f/o/g, we define separate factorization of
the different language components and can be defined as the
followings.

p∗,t = Wp,∗mS �Wp,∗npt (64)

q∗,t = Wq,∗mS �Wq,∗nqt (65)

where Wp,∗m ∈ R999×d, Wp,∗n ∈ Re×d, e is the dimension
of the embedding for We ∈ RV×e, V is the vocabulary size,
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Fig. 6. Overall Full-Factorized-FDC-MRRC Architecture With FDC, IWTC, Semantic and RCNN Feature Fusion.

Wq,∗m ∈ R999×d, Wq,∗n ∈ R2048×d. It is a definite practice in
neural network to factorize the language components. This is
because of their concrete structures in feature space, acquired
through transfer learning like word embedding and language
distribution from images. However, these factorized weights
help in better topic modeling and understanding the required
direction of operation instead of estimating the representation
into a definite direction through non-linear transformation
based estimations of distribution. Unlike previous language
decoders, we have Wp∗ ∈ Rd×d and Wq∗ ∈ Rd×d for the
following equations.

it = σ(Wpipi,t + Wqiqi,t + WTiTt + bi) (66)

ft = σ(Wpfpf,t + Wqfqf,t + WTfTt + bf ) (67)

ot = σ(Wpopo,t + Wqoqo,t + WToTt + bo) (68)

gt = tanh(Wpgpg,t + Wqgqg,t + WTgTt + bg) (69)

ct = ft � ct−1 + it � gt (70)

ht = ot � tanh(ct) (71)

where ht is pre-likelihood estimation of the topological se-
quence and is decoded as xt as in Equation 21.

Mathematically, Full-Factorized Feature Distribution Com-
position - Multiple Role Representation Crossover (Full-

Factorized-FDC-MRRC), denoted as f
FDC3

(.), can be de-
scribed as the followings probability distribution estimation.

f
FDC3

(I) =
∏
k

Pr(wk | Tt, Φ(v1. . . . , vK), S, fL(WL1 , S))

∏
i

Pr(Tt | f1(v1. . . . , vK), f2(v1. . . . , vK), W1)

=
∏
k

Pr(wk | Tt, Φ(

(
1

K

K∑
m=1

vm

)
,

(
N∑

m=1

vmαm

)
, S),

fL(WL1
, S))

∏
t

Pr(Tt | f1(v1. . . . , vK), f2(v1. . . . , vK), W1)

=
∏
k

QM (wk | Tt, Φ(

(
1

K

K∑
m=1

vm

)
,

(
N∑

m=1

vmαm

)
, S))

∏
t

QF (Tt | f1(v1. . . . , vK), f2(v1. . . . , vK))

(72)

using the weights of the LSTM in the architecture is denoted as
WL1

, wi as words of sentences, vi as regional image features,
aivm as intermediate learnt parameters, QM (.) and QF (.) are
the Image Caption generator and feature generator function
respectively. QF (.) derives Ti from v of I, S is the semantic
feature map.

G. Semi-FDC-Factorized-Semantic-MRRC

Semi Feature Distribution Composition Factorized - Se-
mantic - Multiple Role Representation Crossover (Semi-FDC-
Factorized-Semantic-MRRC) operates on more refinement of
the feature space decomposition through the utilization of
semantic distribution for IWT Crossover Attention generation,
which was previously dependent on regional image features.
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Fig. 7. Overall Semi-FDC-Factorized-Semantic-MRRC Architecture With FDC, IWTC, Semantic and RCNN Feature Fusion.

Regional image features are generated on the prediction of
RPN and its position in the feature vector {v1, v2, . . . , vk}
is random as there is no criteria to establish the correctness
of the sequence. However, since the features are extracted
on a fine tuned model, it is expected that the model learned
to establish the relative topological usefulness. Regional im-
age features have this drawback and when we counter it
through semantic based IWT Crossover attention, there ws
enhancement in performance. Figure 7 provided the figure for
Semi-FDC-Factorized-Semantic-MRRC architecture in details.
Mathematical equations that govern the Semi-FDC-Factorized-
Semantic-MRRC architecture can be denoted as the followings
and most of the dimensions and notations are similar as before
unless stated.

v =
1

k

i=k∑
i=1

vi (73)

h0, c0 = Wh0
v,Wc0v (74)

at = Wa tanh(Whht−1) (75)

αt = softmax(at) (76)

qt = v̂t =

i=k∑
i=1

viαi,t (77)

pt = Wext−1 (78)

The MRRC equation has been replaced with a function of
semantic level representation S as f(S) has replaced f(qt) to
generate the MRRC attention. While, most of the factorization
of vectors were helping in characterization, we introduce

MRRC attention as characterized attention and is defined as
the following equation.

Tt = Ws12 σ(Ws11f(S) + Ww1

t−1∑
i=0

Wexi + b1) ⊗

tanh(Ws22(S σ(Ws21f(qt) + Ww
2

t−1∑
i=0

Wexi + b2)) + b3)

= Ws12 σ(Ws11S + Ww1

t−1∑
i=0

Wexi + b1) ⊗

tanh(Ws22(S σ(Ws21ht−1 + Ww
2

t−1∑
i=0

Wexi + b2)) + b3)

(79)

The Language Decoder follows similar strategy as Semi-
Factorized-FDC-MRRC, but the factorization is aided by the
qt instead of S. From this approach, we introduce the notion
of a Dynamic Factorization scheme instead of Static Fac-
torization. While Static Factorization is defined as Equation
48, Dynamic Factorization is defined as Equation 47. Here,
we have used Dynamic Factorization where the factorized
component changes with time and context and performed
much better than previous models.

qt,n = Wh,mf(qt−1)�Wh,nqt = Wh,mht−1�Wh,nqt (80)

it = σ(Wpipt + Wqiqt,n + WTiTt + bi) (81)

ft = σ(Wpfpt + Wqfqt,n + WTfTt + bf ) (82)

ot = σ(Wpopt + Wqoqt,n + WToTt + bo) (83)

gt = tanh(Wpgpt + Wqgqt,n + WTgTt + bg) (84)

ct = ft � ct−1 + it � gt (85)

ht = ot � tanh(ct) (86)



JOURNAL OF XXXX, VOL. XX, NO. X, AXX 20XX 12

where ht is pre-likelihood estimation of the topological se-
quence and is decoded as xt as in Equation 21.

Mathematically, Semi Feature Distribution Composition
Factorized - Semantic - Multiple Role Representation
Crossover (Semi-FDC-Factorized-Semantic-MRRC), denoted
as f

FDC4
(.), can be described as the followings probability

distribution estimation.

f
FDC4

(I) =
∏
k

Pr(wk | Tt, Φ(v1. . . . , vK), S, WL1
)

∏
t

Pr(Tt | f1(v1. . . . , vK , S), f2(v1. . . . , vK , S), W1)

=
∏
k

Pr(wk | Tt, Φ(

(
1

K

K∑
m=1

vm

)
,(

Wxht−1

N∑
m=1

vmαm Wy

)
, S), WL1

)

∏
t

Pr(Tt | f1(v1. . . . , vK , S), f2(v1. . . . , vK , S), W1)

=
∏
k

QM (wk | Tt, Φ(

(
1

K

K∑
m=1

vm

)
,

(
N∑

m=1

vmαm

)
, S))

∏
t

QF (Tt | f1(v1. . . . , vK , S), f2(v1. . . . , vK , S))

(87)

using the weights of the LSTM in the architecture is denoted as
WL1 , wi as words of sentences, vi as regional image features,
aivm as intermediate learnt parameters, QM (.) and QF (.) are
the Image Caption generator and feature generator function
respectively. QF (.) derives Ti from v of I, S is the semantic
feature map.

H. Semi-FDC-Factorized-FDC-MRRC

Semi Feature Distribution Composition - Multiple Role
Representation Crossover (Semi-FDC-Factorized-FDC-
MRRC) provided another architecture, where we explored
Dynamic Factorization techniques along with MRRC with the
regional image features. However, compared to Semi-FDC-
Factorized-Semantic-MRRC, this model was outperformed
due to the absence of semantic distribution component
S. Figure 8 provided the diagram for the Semi-FDC-
Factorized-FDC-MRRC model, used for the experiments. The
mathematical representation of Semi-FDC-Factorized-FDC-
MRRC is presented as the followings.

v =
1

k

i=k∑
i=1

vi (88)

h0, c0 = Wh0v,Wc0v (89)

at = Wa tanh(Whht−1) (90)

αt = softmax(at) (91)

qt = v̂t =

i=k∑
i=1

viαi,t (92)

pt = Wext−1 (93)

There are qt components for the MRRC representation Tt

equation, while the rest Language Decoder equations are same
as Semi-FDC-Factorized-Semantic-MRRC.

Tt = Ws12 σ(Ws11f(qt) + Ww
1

t−1∑
i=0

Wexi + b1) ⊗

tanh(Ws22(qt σ(Ws21f(qt) + Ww
2

t−1∑
i=0

Wexi + b2)) + b3)

= Ws12 σ(Ws11ht−1 + Ww
1

t−1∑
i=0

Wexi + b1) ⊗

tanh(Ws22(qt σ(Ws21ht−1 + Ww
2

t−1∑
i=0

Wexi + b2)) + b3)

(94)

qt,n = Wh,mf(qt−1)�Wh,nqt = Wh,mht−1�Wh,nqt (95)

it = σ(Wpipt + Wqiqt,n + WTiTt + bi) (96)

ft = σ(Wpfpt + Wqfqt,n + WTfTt + bf ) (97)

ot = σ(Wpopt + Wqoqt,n + WToTt + bo) (98)

gt = tanh(Wpgpt + Wqgqt,n + WTgTt + bg) (99)

ct = ft � ct−1 + it � gt (100)

ht = ot � tanh(ct) (101)

where ht is pre-likelihood estimation of the topological se-
quence and is decoded as xt as in Equation 21.

Mathematically, Semi Feature Distribution Composition
- Multiple Role Representation Crossover (Semi-FDC-
Factorized-FDC-MRRC), denoted as f

FDC5
(.), can be de-

scribed as the followings probability distribution estimation.

f
FDC4

(I) =
∏
k

Pr(wk | Tt, Φ(v1. . . . , vK), S, WL1
)

∏
t

Pr(Tt | f1(v1. . . . , vK), f2(v1. . . . , vK), W1)

=
∏
k

Pr(wk | Tt, Φ(

(
1

K

K∑
m=1

vm

)
,(

Wxht−1

N∑
m=1

vmαm Wy

)
, S), WL1

)

∏
t

Pr(Tt | f1(v1. . . . , vK), f2(v1. . . . , vK), W1)

=
∏
k

QM (wk | Tt, Φ(

(
1

K

K∑
m=1

vm

)
,

(
N∑

m=1

vmαm

)
, S))

∏
t

QF (Tt | f1(v1. . . . , vK), f2(v1. . . . , vK))

(102)

using the weights of the LSTM in the architecture is denoted as
WL1

, wi as words of sentences, vi as regional image features,
aivm as intermediate learnt parameters, QM (.) and QF (.) are
the Image Caption generator and feature generator function
respectively. QF (.) derives Ti from v of I, S is the semantic
feature map.
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Fig. 8. Overall Semi-FDC-Factorized-FDC-MRRC Architecture With FDC, IWTC and RCNN Feature Fusion.

I. Reinforcement Learning

There are hardly any improvement with reinforcement learn-
ing [90] for bigger model as these architectures as the one-
point error gradient can hardly provide scope of better optima
for a system with so many variable weights. However, we
did get some improvement for the best performing model
Semi-FDC-Factorized-Semantic-MRRC. We define the Self-
critical Sequence Training (SCST) [45] as Equation 103 or
more precisely as Equation 104, where it utilizes the gradient
of rewards associated with the sequences of generation for
optimization and when the neural network is optimized with
this reward difference, the procedure is known to be reinforce-
ment learning, though the functional changes in neural network
is not equivalent to the probability function determination.
Mathematically, for image caption problem, the gradient of
reward for reinforcement learning is defined as,

δL(w)

δw
= − 1

2b
γ
∑
i

Φ(y, y′) (103)

δL(w)

δw
= − 1

2b
γ
∑
i

Φ({y1, . . . , yc1}, {y′1, . . . , y′c2}) (104)

where Φ(.) is the evaluation function or the reward func-
tion that evaluates certain aspects of the generated captions
{y1, . . . , yc} ∈ y′ and the baseline captions {y′1, . . . , y′c} ∈ y
and c1 and c2 is the length of the captions considered.

V. RESULTS & ANALYSIS

We performed different experiments with this data with
varied dimension and different initialization approaches, along
with different fine-tuning possibilities. The learning character-
istics were better with 2−e learning rate while the best initial-
ization strategy is with xavier initialization. Normal(0, 0.05)
strategy of initialization worked in many of our experiments,
but it is time consuming and may be required to run the

program for more than 20 epochs for better results. With
resource and time constraints, we find xavier initialization had
the best strategy, where the initialization is considered with
a distribution spanned over the whole layer instead of the
network. We used 100 dimension word embedding but got
this transformed from 300 dimension word embedding from
GloVe. The image features and the RCNN features used were
derived from ResNet architecture, and we used the already
extracted features from [73] and [41] works.

A. Dataset Description

In this part, we will provide some insights of the MSCOCO
data and different tricks for training. MSCOCO consists
of 123287 train images and 566747 train sentence, where
each image is associated with at least five sentences from
a vocabulary of 8791 words. There are 5000 images (with
25010 sentences) for validation and 5000 images (with 25010
sentences) for testing. We used the same data split as described
in Karpathy et al [51]. For SCN network, two sets of image
features are being used: one is ResNet features with 2048
dimension feature vector and another is a MLP transformed
representation called tag features with feature vector of 999
dimension and consisted of the probability of occurrence for
the most appearing set of tags as incidents in the dataset.

B. Training & Dimension Description

We trained the models, once at a time, mainly due to limited
resources and establishing the concepts are more important
than trying to outperform a model, whose data is not publicly
available. we tried various combination of dimension, but
found that 1024 was best and our K80 GPU can handle it with
feasible time for experiments. However, there is very narrow
improvement between the 512 and 1024 dimension model.
We ran the experiments for around 20/25 epochs and stopped
when there was no significant improvement on validation set.
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C. Quantitative Analysis

Numerical results shows that our model outperformed much
better than any of the older works, considering that we are
using their extracted data. Gradual improvement in feature
extraction will provide better improvements. There are many
works being done, where they report improvements but never
share the data. Our model is both theoretically and practically
robust and given any data, it has the potential to outperform
the base model. Table II provided the comparison of our
results with all the previous works in this sector. We have
only considered the works, where the data are available for
comparison. Later, in Table I, we have provided another similar
comparison, but with Reinforcement Learning technique for
performance enhancement. However, Reinforcement Learning
techniques like SCST never guarantee better performance, it
keeps some scope open for experiments for these kinds of
heuristic gradient to pull down the optimum to better optima,
that can generate better captions based on a single comparison
metrics.

D. Qualitative Analysis

Quantitative analysis can never the perfect judge for lan-
guage generator, though the spectrum of the context can
be judged statistically. Hence, we have included some in-
stances of the generated captions, which has shown significant
improvement in quality of the descriptions. Figure 9 and
Figure 10 provided some instances of generated captions using
all the architectures. It is difficult to judge from numerical
results (in Table I or Table II) if a model is better than the
other and didn’t improved captions. The following qualitative
analysis will reflect some of them as it is very difficult to
conclude such claims from the quantitative numerical figures
related to languages. Most of the caption generated work used
diverse evaluation methods for the generated captions, but
there are requirement of analysis of quality and grammatically
correctness. There are captions which are true is some sense,
but due to the limited proficiency of the language evaluation
models, it has unable to capture them. Figure 9 and Figure 10
provided qualitative instances among various models.

VI. DISCUSSION

In this work, we analyzed the prospect of fusion of tensor
product based structuring with semantic tag feature and RCNN
features and demonstrated that these three combination can
work well and create a state-of-the-art architecture for caption
generation through adopting better representation generation
and the ability to segregate the attrubutional features of the
objects and activities from the images to the sentences. This
architecture has adopted several existing features being offered
through transfer learning and utilized these into a coherent
model that is sensitive to different variations of the represen-
tation and thus help in better and longer sentence generation.
The main contribution of this work is marked by the analysis
of interaction of semantic features, RCNN features and tensor
product. While RCNN is focused on regional objects, semantic
features are focused on creation of a combination of objects
and interaction useful for decoding of the word sequence,

and tensor product is used for orthogonal combination of
the features that can be decoded for the segregation of the
visual features. We were being able to create high performance
with these combination and out-performed some of the present
works.
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TABLE I
PERFORMANCE EVALUATION AND COMPARISON BETWEEN DIFFERENT ARCHITECTURES WITHOUT REINFORCEMENT LEARNING

Algorithm CIDEr-D Bleu 4 Bleu 3 Bleu 2 Bleu 1 ROUGE L METEOR SPICE
Human [46] 0.85 0.22 0.32 0.47 0.66 0.48 0.2 –

Neural Talk [51] 0.66 0.23 0.32 0.45 0.63 – 0.20 –
MindsEye [53] – 0.19 – – – – 0.20 –

Google [47] 0.94 0.31 0.41 0.54 0.71 0.53 0.25 –
LRCN [55] 0.87 0.28 0.38 0.53 0.70 0.52 0.24 –

Montreal [49] 0.87 0.28 0.38 0.53 0.71 0.52 0.24 –
m-RNN [60] 0.79 0.27 0.37 0.51 0.68 0.50 0.23 –

[76] 0.81 0.26 0.36 0.49 0.67 – 0.23 –
MSR [50] 0.91 0.29 0.39 0.53 0.70 0.52 0.25 –

[57] 0.84 0.28 0.38 0.52 0.70 – 0.24 –
bi-LSTM [44] – 0.244 0.352 0.492 0.672 – – –

MSR Captivator [54] 0.93 0.31 0.41 0.54 0.72 0.53 0.25 –
Nearest Neighbor [87] 0.89 0.28 0.38 0.52 0.70 0.51 0.24 –

MLBL [86] 0.74 0.26 0.36 0.50 0.67 0.50 0.22 –
ATT [70] 0.94 0.32 0.42 0.57 0.73 0.54 0.25 –

[46] 0.92 0.31 0.41 0.56 0.73 0.53 0.25 –
Adaptive [39] 1.085 0.332 0.439 0.580 0.742 – 0.266 –

MSM [38] 0.986 0.325 0.429 0.565 0.730 – 0.251 –
ERD [88] 0.895 0.298 – – – – 0.240 –

Att2in [45] 1.01 0.313 – – – – 0.260 –
NBT [6] 1.07 0.347 – – 0.755 – 0.271 0.201

Attribute-Attention [15] 1.044 0.338 0.443 0.579 0.743 0.549 – –
LSTM [73] 0.889 0.292 0.390 0.525 0.698 – 0.238 –
SCN [73] 1.012 0.330 0.433 0.566 0.728 – 0.257 –

Up-Down∗∗ [41] 1.054 0.334 – – 0.745 0.544 0.261 0.192
Up-Down† [41] 1.135 0.362 – – 0.772 0.564 0.270 0.203

FDC-MRRC 1.073 0.351 0.459 0.595 0.752 0.557 0.265 0.198
Semi-Factorized-FDC-MRRC 1.075 0.349 0.456 0.591 0.748 0.557 0.265 0.195
Full-Factorized-FDC-MRRC 1.078 0.349 0.456 0.592 0.751 0.556 0.266 0.196

Semi-FDC-Factorized-Semantic-MRRC 1.080 0.352 0.460 0.598 0.755 0.559 0.265 0.197
Semi-FDC-Factorized-FDC-MRRC 1.073 0.348 0.453 0.589 0.749 0.554 0.265 0.195

**Visual Feature from ResNet Architecture is used
†R-CNN Visual Feature from ResNet Architecture is Used

TABLE II
PERFORMANCE EVALUATION AND COMPARISON BETWEEN DIFFERENT ARCHITECTURES WITH REINFORCEMENT LEARNING FINE-TUNING

Algorithm CIDEr-D Bleu 4 Bleu 3 Bleu 2 Bleu 1 ROUGE L METEOR SPICE
Adaptive [39] 1.085 0.332 0.439 0.580 0.742 – 0.266 –

MSM [38] 0.986 0.325 0.429 0.565 0.730 – 0.251 –
ERD [88] 0.895 0.298 – – – – 0.240 –

Att2in [45] 1.01 0.313 – – – – 0.260 –
NBT [6] 1.07 0.347 – – 0.755 – 0.271 0.201

[15] 1.044 0.338 0.443 0.579 0.743 0.549 – –
LSTM [73] 0.889 0.292 0.390 0.525 0.698 – 0.238 –
SCN [73] 1.012 0.330 0.433 0.566 0.728 – 0.257 –

Up-Down∗∗ [41] 1.054 0.334 – – 0.745 0.544 0.261 0.192
Up-Down† [41] 1.135 0.362 – – 0.772 0.564 0.270 0.203

Up-Down∗∗ + RL [41] 1.111 0.340 – – 0.766 0.549 0.265 0.202
Up-Down† + RL [41] 1.201 0.363 – – 0.798 0.569 0.277 0.214

FDC-MRRC 1.078 0.351 0.457 0.598 0.754 0.557 0.267 0.199
Semi-Factorized-FDC-MRRC 1.079 0.350 0.457 0.593 0.749 0.556 0.265 0.195
Full-Factorized-FDC-MRRC 1.075 0.351 0.457 0.593 0.751 0.555 0.266 0.196

Semi-FDC-Factorized-Semantic-MRRC 1.082 0.353 0.460 0.597 0.753 0.557 0.266 0.197
Semi-FDC-Factorized-FDC-MRRC 1.075 0.351 0.457 0.592 0.749 0.557 0.264 0.196

**Visual Feature from ResNet Architecture is used
†R-CNN Visual Feature from ResNet Architecture is Used
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Fig. 9. Qualitative Analysis. Part 1. Here, 1 → Semi-FDC-Factorized-Semantic-MRRC : 2 → Semi-FDC-Factorized-FDC-MRRC 3 → FDC-MRRC 4 →
Semi-Factorized-FDC-MRRC 5 → Full-Factorized-FDC-MRRC
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