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Abstract Nowadays, the speed up development and use of digital devices such as smartphones have 

put people at risk of internet crimes. The evidence of present crimes in a computer file can be easily 

unreachable by changing the prefix of a file or other algorithms. In more complex cases, either file 

divided into different parts or the parts of a file that has information about the file type are deleted, 

where the file fragment recognition issue is discussed. The known files are divided into different 

fragments, and different classification algorithms are used to solve the problems of file fragment 

recognition. A confusion matrix measures the accuracy of type recognition. The issue of identifying 

the type of file fragment due to its importance in cybercrime issues as well as antivirus has been highly 

emphasized and has been addressed in many articles. Increasing the accuracy in this field on the types 

of widely used files due to the sensitivity of the subject of recognizing the type of file under study is 

the main goal of researchers in this field. Failure to identify the correct type of file will lead to deviations 

of the results and evidence from the main issue or failure to conclude. In this paper, first, the file is 

divided into different fragments. Then, the file fragment features, which are obtained from Binary 

Frequency Distribution (BFD), are reduced by 2 feature reduction algorithms; Sequential Forward 

Selection algorithm (SFS) as well as Sequential Floating Forward Selection algorithm (SFFS) to delete 

sparse features that result in increased accuracy and speed. Finally, the reduced features are given to 3 

Multiclass classifier algorithms, Multilayer Perceptron (MLP), Support Vector Machines (SVM), and 

K-Nearest Neighbor (KNN) for classification and comparison of the results. The proposed recognition 

algorithm can recognize 6 types of useful files (PDF, TXT, JPG, DOC, HTML, EXE) and may 

distinguish a type of file fragments with higher accuracy than the similar works done.  

Keywords Multiclass classifier algorithms . Feature Reduction . File Fragments . File Fragment Recognition . 
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1 Introduction 
Computers deal with a large number of files with different formats, which are transmitted among 

networks. The format of a file is an initial design of it that tells the processor devices how to organize 

the file information and describe their decoding algorithm in digital storage devices. The security of 

computers and networks reduces without the correct detection of the file type [1-4]. Detecting the file 

type is a significant step in adequate proceed of operating systems, firewalls, intrusion detection 

systems, and anti-viruses.  

     The need to examine files on issues such as memory analysis and Internet crimes and the 

dependence of these activities on data components due to the nature of disk blocks as well as data 

transfer in the form of network packets makes it necessary to identify the type of file components. The 

skill of identifying a file fragment is important in many tasks, such as trying to recover data from a 

corrupted drive, detecting Internet crimes, including interrupt detection, decrypting memory, reverse 

engineering malware, and more. Content-based analysis is needed in the absence of other identifying 

information to classify file segments in digital forensics. When recovering data from a damaged media, 

the file fragments left in the damaged media or memory may contain important information that may 

appear corrupted or missing in the absence of a tool to identify the type of file fragment.  

     The content-based algorithm includes investigating the file content and using static techniques. The 

contents of the file are a chain of bytes, and each byte has 256 unique characters (0-255). Therefore, 

the calculation of the byte pattern rate, referred to as the byte distribution rate provides a recognizable 

pattern for different file types. 

     The use of SFS and SFFS feature reduction methods for the first time to select and reduce attributes 

in file components is presented in this article. The proposed method uses two methods to reduce the 

specificity of SFS and SFFS in combination with 3 algorithms MLP, KNN, SVM as a multi-class. In 

this paper, a total of 6 algorithms are proposed which are a combination of feature reduction methods 

and classification methods, and the results of all 6 methods are fully presented along with providing 

the best parameters for the file fragment identification problem depending on the part size (500 and 

100). An increase in classification accuracy is evident in these proposed algorithms compared to the 

presented algorithms. 

     The presented research is structured as the following. Section 2 presents related works. In Sect. 3 

brings the proposed methodology. Dataset of this research is discussed in Section 4. Performance 

evaluation is deliberated in Section 5. Finally, the conclusion of this research is discussed in Section 6. 

  
 

 

2 Related works 
This section deals with a lot of research that has been done in the field of File fragment recognition in 

recent years. 

    The research done in this article and other previous articles that have provided an algorithm for 

identifying file parts consists of 3 general sections: reviewing feature selection techniques 4, reviewing 

classification techniques 5 and finally selecting the appropriate technique from each section and 

presenting an efficient algorithm to identify file type 3 are formed.  



     Feature selection techniques focus on the problem of selecting effective features from a data sample 

that naturally reduce the dimensions of the data in question by eliminating undesirable features. Feature 

selection [5] needs to be examined from two perspectives: increasing the accuracy and decreasing the 

number of calculations in datasets, and according to our purpose of selecting the feature as well as the 

specific type of our data set (e.g., data streams [6]), the appropriate approach should be taken Be. 

     Classification techniques, which are presented in 3 types: supervised, semi-monitored and without 

harm, seek to classify the members of a database into different categories according to the target factors 

(distance distance), and researchers are always applying classification algorithms on New problems or 

their combination and innovation in their structure to solve their old problems (such as the structure of 

simultaneous use of classification and regression) [7] 

     Type recognition operations include the provision of an algorithm that identifies the purpose of the 

problem that can identify an object in an image [7] of a disease [8] and .... using classification techniques 

and other new solutions such as deep learning and purpose the final is to provide an algorithm that 

increases accuracy and speed while reducing the execution time of the problem compared to its previous 

methods. 

     In the following, we will have an overview of the articles that have worked on the issue of file 

identification and have provided algorithms along with presenting the results. 
 

    McDaniel and Heidari [9] were the first to develop an algorithm for recognizing the file types based 

on content. Their proposed algorithms are used to generate a "fingerprint" of each file, which are 

detected compared with the known types, and file types. The accuracy varies between 23% and 96% 

depending on the algorithm used. 
 

     Li et al. [10] made slight changes to the McDaniel's model, which increased its accuracy. They 

provided a set of central models and used the categorization to find the minimum number of centers set 

with good performance while using more data patterns. This research has the accuracy of 82% (single 

central) and 89.5% (multi-center) with 93.5% of more sample files. 
 

     Karresand and Shahmehri [11] provided an algorithm for file fragments, which used the BFD and 

the standard deviation concept for file type modelling. Karresand and Shahmehri proposed the Oscar 

methodology for detecting the file fragments. They generated single-center printing files but used a 

quadratic distance metric and a norm-1 as the metric distance to compare the center with the byte 

frequency distribution of the file. Although Oscar recognized any file type, they reported their 

algorithms for JPG files using the specified pair bytes of the optimized file and the detection rate of 

99.2%.  
 

    Veenman [12] extracted three features from the file's content. These features include: 

• Frequency byte distribution 

• The entropy obtained by frequency   byte distribution of files 

• The complexity of the algorithm or the Kolmogorov that uses the sequence of the substring 

Fisher’s linear discriminant analysis has been applied to these features to recognize the file types. 
 

     Calhoun and Coles [13] used a static algorithm and the linear FISHER one for a dataset containing 

100 fragments of 2 different file types with an accuracy of 60.3% -86% (depending on the tested bytes 

chain). They have developed the Veenman works by the constructed classification models and presented 

the linear discriminant to recognize the file types. Further, they have examined machine learning 

algorithms to solve the data classification problem and achieved a reasonable accuracy. 



 

     Sportielo and Zanero [14] have considered a set of SVM classifications for each file type. The results 

of several experiments show that the features based on the byte frequency distribution have the best 

performance for most of the examined file types, where the SVM is very effective in distinguishing file 

types from the data blocks. 
 

     Gopal et al. [15] introduced the File Type Recognition (FTI) as a significant issue in digital rules and 

provided a systematic review of the problem, algorithmic solutions, and evaluation methodologies. They 

analysed the power of various algorithms in examining the files and damaged fragments. They also 

proposed two criteria for replacement in performance measurement as follows: 

• Considering the file name extension as the correct tags (labels) 

• Considering the prediction by knowledge-based algorithms in healthy files as the correct tags 

(labels) 

The conclusion was that the SVM and KNN are better than COTS (Commercial off-the-shelf) in files 

where the extensions for sound files are available. Also, some COTS algorithms can detect the corrupted 

files by no means.  
 

     Moody and Erbacher [16] used the static analysis to recognize the file type (SADI), which includes 

the mean, standard deviation, average distance, standard deviation distance, and calculation of the bytes 

values. They used the fragments of 200 files from a dataset of 8 known files, which had a 74.2% result. 
 

     Dunham et al. [17] applied the neural networks for categorizing ten file types from a dataset, 

including 760 archived files with an accuracy of 91.5%. 
 

     Like et al. [18] adapted the BFD model with the Manhattan distance for comparison to determine 

whether the calculated files are executable or not. 
 

    Cao et al. [19] used the Gram frequency distribution and the vector space model with a 40.34% result. 

Ahmad et al. [16] presented two algorithms. First, they applied the cosine distance as a metric of 

similarity when comparing the file contents. Secondly, they divided the recognition process into two 

steps by Dividing and Conquering algorithms. In the first step, the similar files with the same byte 

frequency patterns are classified in different clusters. In the next phase, the classification, including 

various file types, is given to the neural networks to improve the categorization. They used 2000 

different file types with the accuracy of 90.19%. 
 

     Ahmad et al. [21] also proposed two new algorithms to reduce the classification time. First, they used 

the Feature Selection technique and KNN classifier. The second algorithm was the sample content 

technique in which they used a small portion of the file to achieve the byte frequency distribution. 

As described in this section, many works have been done in this approach, but then again, unfortunately, 

they did not specify their datasets.  Moreover, they used both different types of files and datasets, which 

caused impossible conditions to compare them correctly with each other.   
 

    In 2015, in an experiment, Nasser Alamri [22] compared six different file types (PDF, TXT, JPG, 

DOC, html, and EXE) with 5 algorithms presented on the specific database, and then provided the way 

of comparison in future studies. We also chose Nasser Alamri's article to compare the suggested 

algorithms. Thus, we applied the same database and file types with Alamri [22] that provides a 

reasonable and fairness comparison for the present study. The purpose of this research was to recognize 

the file fragment types with higher accuracy than the similar research works due to the widespread use 

of this issue as well as its sensitivity to the correct recognizing file type. In the following, the dataset, 



the methodology of the proposed algorithm, and the obtained results were described. Finally, the results 

of this study were compared with the results of Naser Alamri study in 2015. 
 

 

 

 

 

3 The proposed methodology 

We provide a proposed methodology in the following section using the content and statistical 

features. Four phases are included in the proposed methodology: in Sect, 3.1. An overview of the 

proposed methodology is discussed. Sect 3.2. presents the BFD Extraction and BFD Normalization, 

in Sect, 3.3. the feature reduction is discussed and Sect. 3.4 presents the classification. 

 

3.1 Phase 1: Overview of the proposed methodology 

The train and test sets are provided by dividing a file into small fragments. Hence, we fragment 

complete files, but at first, we cut the header and prefix of files, which may contain information about 

files type. Then, we divided the rest of each file into 2 fragments of 500 and 1000 bytes, to show the 

effect of fragment size on the accuracy of the presented methods in the study.  

     As illustrated in Figure 1, SFS and SFFS algorithms were used to reduce the fragment size of the 

studied file and select the dynamic features. The KNN, SVM, and MLP algorithms were employed as 

file type detection algorithms. The LIBSVM Package was employed for SVM classification and, 

MATLAB Toolbox Autoencoder was utilized for the neural network.  

 

Fig. 1 The Methodology implemented in this work 

 

3.2 Phase 2: BFD Extraction and BFD Normalization 

The byte frequency distribution (BFD) was used as the feature extraction algorithm. After obtaining 

the array bytes values rate, each member of the array was distributed by the byte frequency rate. 

Accordingly, the array was normalized to values between 0 and 1.  

BFD is a common method for extracting attributes from a bit string, and since the received bit string 

is encoded, using features such as Fourier transform or wavelet transform and the like cannot be 

helpful. Somehow modeled with BFD can be a helpful feature in identifying the file type. On the other 

hand, due to the fact that high speed is required in detecting the type of file in antivirus or firewalls, 



the algorithm should be used as fast as possible and with appropriate accuracy. SFS and SFFS 

algorithms, which are among the common sequential search algorithms, have a better speed than 

Enumeration or random search algorithms and on the other hand, they do not have a complex 

parameter setting compared to algorithms such as PSO or GA. Therefore, this group of algorithms has 

been used in this research. In addition, the final accuracy of the test on the data set indicates the high 

efficiency and suitability of the proposed algorithm [23, 24].  

    Figure 2 displays the BFD diagram for the 500-byte fragments and Figure 3 further shows the BFD 

diagram for 1000-byte fragments. 

 

Fig. 2 The BFD graph for the 500-fragment 



 

Fig. 3 The BFD graph for the 1000-fragment 

 

 

3.3 Phase 3: Feature Reduction 

Different feature selection algorithms strain to find the best subset among the n2 candidate subsets. 

These algorithms increase the accuracy and speed by eliminating the outliers. We adopted SFS and 

SFFS algorithms in the present study as feature reduction algorithms. We tried several parameters for 

k, and finally, the KNN algorithm with K = 5 was considered as the criterion for feature selection. 

With the algorithms mentioned, 256 features, which obtain from BFD, were reduced to 24 and 39 

features. We performed the feature selection process on all 500- and 1000-byte fragments. The 

corresponding results are given in Table 2. 

Preliminaries: In advance of describing the corresponding algorithms formally, the following 

definitions have to be introduced.  

 



Let  :1 ,k i i iX X X K X Y=     be the set of k features from the set  :1iY y i D=   of D  

available features.  

The value ( )iJ y  of the feature selection criterion function if only the thi feature ( )1,2,...iy i= =

used will be called the individual significance ( )0 jS y  of the feature. 

The significance ( )1k jS X−  of the feature , 1, 2,...,jX j k=  in the set kX  is defined by: 

  ( ) ( ) ( )1k j k k jS X J X J X X− = − −  (1) 

 

The significance ( )1k jS f+  of the feature 𝑓𝑗from the set kY X−   

   : 1, 2,..., , ,    k i i i t t kY X f i D k f Y f X for all x X− = = −     (2) 

  

So, kX  is defined by 

  ( ) ( ) ( )1k j k j kS X J X f J X+ = + −  (3) 

 

For 1k =  the term feature significance in the set coincides with the term of individual significance. 

We shall say that the feature ( )jx b  from the set kX  is (a) the most significant (best) feature in the set  

kX  if: 

  ( ) ( ) ( ) ( )1 1 1 1max mink j i k k i k j i k k iS X S X J X x J X x−   −  =  − = −  (4) 

 

 (b) The least significant (worst) feature in the set kX if 

  ( ) ( ) ( ) ( )1 1 1 1min maxk j i k k i k j i k k iS X S X J X x J X x−   −  =  − = −  (5) 

 

We shall say that the feature jf  from the set kY X−  is (a) the most significant (best) feature with the 

set kX  if 

  ( ) ( ) ( ) ( )1 1 1 1max maxk j i D k k i k j i D k k iS f S f J X f J X f+   − +   −=  + = −  (6) 

 

 (b) The least significant (worst) feature concerning the set kX if 

  ( ) ( ) ( ) ( )1 1 1 1min mink j i D k k i k j i D k k iS f S f J X f J X f+   − +   −=  + = −  (7) 

 

Sequential Forward Selection (SFS) Algorithm: In the "sequential feature selection" (SFS) 

algorithm, the process starts with an empty set. Then, in each repetition, a feature is added to the 



answer set by employing the evaluation function used. This is repeated until the selection of the 

required features [25]. Using SFS, we achieved 24 features and 36 for 500-byte and 1000-byte 

fragments, respectively. The Sequential Forward Selection (SFS) Algorithm SFS is shown in Figure 

4. 

 

Fig. 4 The Sequential Forward Selection (SFS) Algorithm 

 

Sequential Floating Forward Selection (SFFS) Algorithm: First, the sequential floating forward 

selection (SFFS) algorithm begins with an empty set of features. For each step, the best feature that 

satisfies the criterion function is placed in the current set. That is, one stage of the sequential forward 

selection is performed. The SFFS progresses with dynamic increasing or decreasing of the feature 

numbers to achieve the optimal number of them [26]. Using SFFS, we obtained 36 and 39 features for 

the 500-byte and 1000-byte fragments, respectively. The Sequential Floating Forward Selection 

(SFFS) Algorithm SFFS is shown in Figure 5. 

 

Fig. 5 Sequential Floating Forward Selection (SFFS) Algorithm 

 

Algorithm SFS: Pseudo code for Sequential Forward Selection (SFS) Algorithm 

1: Procedure Sequential Forward Selection (SFS) 

2:    Start with an empty set  0 0y =   

3:    Choose the next best features 

4:    ( )arg max
kx y j kx y x+

= +  

5:    Update set 

6:    ( )arg max
kx y j kx y x s+

= +  

7:    Return to Step 3 

 

4: End Procedure 

Algorithm SFFS: Pseudo code for Sequential Floating Forward Selection (SFFS) Algorithm 

1: Procedure Sequential Floating Forward Selection (SFFS) 

2:    Start with an empty set  0 0y =  

3:    Choose the next best features 

4:     Update set 

5:     1 11, k kk k y y x+

+ += + = +  

5:     Choose the worst features 

6:    ( )arg max
kx y j kx y x−

= −  

7:    If ( )k kj y x y−  

8:    11, k kk k y y x−

+= + = −  

9:    Return to Step 3 

7:    Else 

8:   Return to Step 2 

 

4: End Procedure 



3.4 Phase 4: Classification 

At the stage of categorizing the type of file fragments, the acquired features are used as inputs in three 

algorithms, KNN, SVM, and MLP as described below. 

    The KNN algorithm is a simple supervised algorithm that stores all available cases in different 

categories based on a similarity measure and classifies new cases [27]. The k parameter displays the 

number of closest neighbors in the feature space. We used a KNN algorithm with k = 4, 6, 8, and 10; 

the results are illustrated in table 3 for 1000-byte and table 5 for 500-byte fragments. 

    The SVM algorithm is a supervised algorithm that performs classification by finding the 

hyperplane, which maximizes the margin between the two classes [27]. In this study of file fragment 

recognition, we use SVM algorithm as the second classification approaches with Radial Basis 

Function (RBF) kernel as well as a different c parameter, c = 0.1, 0.2, 0.3, as shown in table 3 for 

1000-byte and table 5 for 500-byte fragments. 

    The MLP is the third classification algorithm used in the study. It is a type of feedforward neural 

network, which may differentiate data that is not linearly separable [27]. We use MLP with 1 hidden 

layer and sigmoid activation function as shown in Figure 6 and the result in Table 3 for 1000-byte and 

table 5 for 500-byte fragments. 

 

 

 

Fig. 6 The MLP used model in this study 

We tried several parameters in each algorithm to obtain the best result. The corresponding results are 

given in Table 4 for 1000-byte and Table 6 for 500-byte fragments. 

The classifiers presented in this article classify the results into 6 categories (PDF, TXT, JPG, DOC, 

HTML, EXE) which are widely used file types as 6 class classifiers and the results presented in this 

article are related to the multi-class mode. The results presented in this article are the result of 10 

repetitions of experiments with different parameters and the ratio of training data to test data in the 

form of 70.30, 80.20 and 90.90 to evaluate the effect of changing the percentage of test and the most, 

which, as expected, the best results in each section it is related to the ratio of 90/90. (Table 5) In the 

MLP method, the lowest accuracy for 1000-byte parts is related to the training rate of 70.30 with a 

result of 92% for MLP, 91% for KNN (k = 10) and 94% for SVM (c = 0.1). (Table 6) In the MLP 

method, the lowest accuracy for 500-byte parts is related to the training rate of 70.30 with a result of 

92% for MLP, 94% for KNN (k = 10) and 94% for SVM (c = 0.1). 

 

 



4 Dataset 
Most published research in this area has used data that is often not clearly described and is not publicly 

available, and as a result, it is not possible to directly apply different approaches to each other or to 

new techniques that address this issue. Focused have been compared. Some researchers compared 

their approaches to different datasets, but the results of one research project were not consistent with 

another. As a result, one journal may present evidence that one particular approach performs better 

than the other (on their data), and another journal may present conflicting results with the previous 

journal. Our goal is to select the same data set with the background paper to provide a fair framework 

for comparison with other approaches to file type identification to assess the accuracy of their 

classification with the same types of file types that in Nasser Al-Amri article in exactly the same 

conditions run on this data set and their results are given for comparison.  

     The standardized Govdocs1 dataset, containing 1,000 lists of 1,000 content files, was used in this 

research. From 3 random folders of this database, we extracted 100 files from each sample of TXT, 

JPG, HTML, and PDF (totally 600 files) with a minimum size of 4Kb. The EXE files were obtained 

from Windows system files by considering their minimum size. The data applied in the program are 

standard data that are used extensively in similar studies; these are available at the following address: 

http://digitalcorpora.org/corpora/govdocs.  

 

    In the present research, we focused on the file types included in the dataset section; the statistical 

descriptions are given in Table 1. 

Table 1: Files types 

Minimum size Maximum size Average size Number Type 

12,800 9,023,488 345,796 100 DOC 

4,724 6,440,448 187,498 100 EXE 

4,061 1,063,025 391,526 100 TXT 

4,008 16,497,395 76,370 100 HTML 

4,023 7,778,639 162,012 100 JPG 

4,710 10,891,418 608,778 100 PDF 

 

 

 

 

 

 

5 Performance evaluation 

The proposed method performance is assessed in the following section. 
 

 

5.1 Simulation results 

In this section, the results obtained from the implementation are analyzed, and finally, the result of the 

proposed algorithm is compared with other available algorithms. We presented the results of the 



implementation of the proposed solution in two parts of 1000-byte and 500-byte fragments. For both 

1000-byte and 500-byte fragments, we reduced the features obtained from BFD components via SFS 

and SFFS algorithms. At that point, we gave the reduced set of features to the SVM, KNN, and MLP 

Multi class classifier algorithms. The accuracies of the multi class classifiers are given in the tables. The 

results presented in the tables are the outcomes of 10 repetitions of the algorithm with various 

parameters. The best result of each classifier algorithm with a different combination of the training rate 

and the corresponding parameters of the feature reduction algorithm for 1000-item fragments are shown 

in Table 3. 

Table 2: Feature reduced results 

The Number of  features 

selected For 500 fragments 

The Number of  features selected For 

1000 fragments 

Algorithm 

24 36 SFS 

35 39 SFFS 

 

 

Table 3: Results of 1000 fragments () 

Parameter Multi class 

Classifier 

Algorithm Number of features Train/Test Accuracy 

 
MLP SFFS 39 90/10 95% 

K=4 KNN SFS 36 90/10 96% 

K=6 KNN SFS 36 90/10 97% 

K=8 KNN SFFS 39 90/10 97% 

K=10 KNN SFS 36 90/10 97% 

C=0.1 SVM SFFS 39 90/10 97% 

C=0.2 SVM SFFS 39 90/10 98% 

C=0.3 SVM SFFS 39 90/10 98% 

 

The best results obtained in 1000-byte fragments with the best possible combinations are given in 

Table 4 below. 

 

Table 4: The best results of 1000 fragments 

Multi class 

Classifier 

algorithm Number of features Train∕test accuracy 

MLP SFFS 39 90/10 95% 

KNN SFS and SFFS 36 or 39 90/10 97% 

SVM SFFS 39 90/10 98% 

 



According to Table 4, the MLP algorithm with 96% accuracy, the KNN algorithm with an accuracy 

of 97%, and the SVM algorithm with an accuracy of 98% completed their process in the 1000-byte 

fragments. Accordingly, the SVM algorithm is considered the best algorithm for recognizing the 1000-

byte files with an accuracy of 98%. 

The best result of each classifier algorithm with a different combination of the training rate and the 

corresponding parameters of the feature reduction algorithm for 500-item fragments are shown in 

Table 5. 

 

Table 5: Results of 500 fragments 

Parameter Multi class 

Classifier 

Algorithm Number of 

features 

Train / Test Accuracy 

 
MLP SFFS 35 90/10 96% 

K=4 KNN SFFS 35 90/10 98% 

K=6 KNN SFFS 35 90/10 98% 

K=8 KNN SFFS 35 90/10 98% 

K=10 KNN SFFS 35 90/10 98% 

C=0.1 SVM SFFS 35 90/10 98% 

C=0,2 SVM SFFS 35 90/10 97% 

C=0,3 SVM SFFS 35 90/10 98% 

C=0.4 SVM SFFS 35 90/10 98% 

 

In the MLP method, the lowest accuracy for 1000-byte parts is related to the training rate of 70.30 

with a result of 92% for MLP, 91% for KNN (k = 10) and 94% for SVM (c = 0.1). 

The best results obtained in 500-byte fragments with the best possible combinations are given in Table 

6. 

Table 6: The best results of 500 fragments 

Multi class Classifier Algorithm Number of features Train / Test Accuracy 

MLP SFFS 35 90/10 96% 

KNN SFS &  SFFS 36  or  39 90/10 98% 

SVM SFFS 39 90/10 98% 

 

According to Table 6, the MLP algorithm with 95% accuracy, the KNN algorithm with an accuracy 

of 98%, and the SVM algorithm with an accuracy of 98% completed their process in the 500-byte 

fragments. Accordingly, the KNN and SVM algorithms are considered the best algorithms for 

recognizing the 500-byte files with an accuracy of 98%. 

According to Table 6 in the MLP method, the lowest accuracy for 500-byte components is related to 

the training rate of 70.30 with a result of 92% for MLP, 94% for KNN (k = 10) and 94% for SVM (c 

= 0.1). 



5.2 Analysis of the research results 

The best results of the research by comparing two SFS and SFFS algorithms, as well as both 500-byte 

and 1000-byte fragments, are presented in Table 7. 

Table 7: Results to be compared 

Multi class Classifier Number of features Fragment size Train / Test Accuracy 

MLP-s 35 500   Byte 90/10 96% 

K-NN-s 35 500   Byte 90/10 98% 

SVM-s 35 500   Byte 90/10 98% 

 

Referring to Table 7, the MLP algorithm provides its best result on the 500-byte fragments with SFFS 

feature reduction algorithm by selecting 35 features. The best result recorded for the MLP algorithm in 

this study is 96%. The KNN algorithm also provides its best result on the 500-byte fragments with the 

SFFS feature reduction algorithm by selecting 35 features. The best result recorded for the KNN 

algorithm in the current study is 98%. The SVM algorithm also provides its best result on the 500-byte 

fragments with the SFFS feature reduction algorithm by selecting 35 features. The best result recorded 

for the SVM algorithm in this research is 98%. We called these proposed algorithms SVM-s, KNN-s, 

and MLP-s, respectively. 

As specified by the results, by increased length of the fragments from 500 to 1000 bytes, the examined 

algorithms provide either weaker or similar results with a minimal alteration, which can be due to a 

small difference in the number of features obtained from SFS and SFFS reductions algorithms for 1000-

bytes fragments compared to 500-byte fragments. 

As illustrated in Table 7, the SVM and KNN algorithms with similar accuracy of 98% are at the highest 

place, and the MLP algorithm with an accuracy of 96% occurs in a lower place. This means feature 

reduction by SFFS algorithm will provide better results than the SFS algorithm for 1000-byte and 500-

byte fragments. Moreover, the SVM and KNN algorithms have a better performance than the MLP 

algorithm. 

 

5.3 Comparison of the proposed algorithm with other algorithms 

The study in the field of recognizing the file type includes a large number of file types as well as different 

databases. This leads to complexity in the comparison and conclusion of the research. In 2015, in an 

experiment, Nasser Alamri selected 6 different file types (PDF, TXT, JPG, DOC, html, and EXE) and 

reduced the features via the PCA feature reduction. Then and there, he compared the reduced features 

set with 5 algorithms of SVM, KNN, the neural network based on the core function radius, the neural 

network with perceptron core, and linear discriminant analysis on the same database. The relevant 

database has randomly extracted the sample data from the Govdoc dataset, and 100 samples were taken 

from each file of which the subsets are also randomly extracted. The results are shown in Table 8. We 

also matched a variety of file types with the files provided to compare our work with another research. 



Table 8: Results obtained in Alamri′s 2015 paper 

Multi class Classifier Number of features Fragment Train∕test Accuracy 

LDA 64 500   Byte 90/10 93% 

SVM 64 500   Byte 80/20 94% 

K-NN 8 500   Byte 90/10 97% 

NN-RBF 4 1000 Byte 80/20 88% 

NN-MLP 64 500   Byte 90/10 94% 

 

As shown in Table 8, the KNN algorithms with the accuracy of 97% and the NN-RBF algorithm with 

an accuracy of 88% have the least accuracy in the Nasser Alamri paper. Figure 7 shows the comparison 

between our proposed research algorithms and the Alamri's paper. 

 

Fig. 7 Comparison of the proposed algorithm of this research with the results of Alamri's paper (2015) 

 

In Figure 7, the MLP-s column describes the MLP classification algorithm by SFFS feature reduction 

approach, and the K-NN-s column represents the K-NN classification algorithm by the same approach. 

Further, the SVM-s column represents the SVM classification algorithm by SFFS feature reduction 

approach. According to Figure 7, the KNN-s, SVM, and MLP-s approaches by respectively 1%, 4%, and 

2% increase in the accuracy rate show the increasing trend in the accuracy of this research compared to 

Alamri’s. Also, KNN and SVM algorithms combined with the SFFS feature reduction approach indicate 

the highest accuracy of the categorization (98%) among the eight algorithms examined. 

 

6 Conclusion 

File type’s detection is an essential task for many security programs. Although there are lots of programs 

to deal with detection of computer file types, there are just minimal algorithms for detecting them. 

However, the primary issue in detecting the file type is the classification of the file fragments since there 
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are no headers (a part of the file containing information about the file type) or systemic file information, 

which can specify the file type. The general algorithm to classify file fragments is to examine the histogram 

of its byte frequency and sometimes analyze other statistics obtained. The statistical distance between the 

histogram and the known distributions of different files types can be calculated, which will be used to 

distinguish different data types. Based on recent research, although the classification of file fragments in 

many common file types can be done with high accuracy, this algorithm has some limitations to detect the 

type of file, running time and accuracy. A higher degree of accuracy obtained in this study compared with 

previous studies. In this paper, the problem of recognizing the file fragment was begun by considering 

1000-byte and 500-byte fragments of each file. The BFD algorithm extracted the features of each file 

fragment. Then, by two SFS and SFFS feature reduction algorithms, the features extracted from each 

fragment were reduced to 24-39 features depending on the length of the file fragment. The reduced features 

were considered as inputs of three MLP, KNN, and SVM classification algorithms to obtain the accuracy 

of the classification algorithms. The best result in this study was achieved as 98%. 

 

Conflict of Interest  

The authors declare that they have no conflict of interest. 

 

DATA Availability Statement 

The data of this paper is the result of simulation and all the data are presented in the form of graphs inside 

the paper. There is no private data in this article. 

 

Funding 

None 

 

Informed consent statement 

None 

 

 

Reference 

1. Chen, Q., Liao, Q., Jiang, Z. L., Fang, J., Yiu, S., Xi, G., ... & Liu, D. (2018, May). File fragment classification 

using grayscale image conversion and deep learning in digital forensics. In 2018 IEEE Security and Privacy 

Workshops (SPW) (pp. 140-147). IEEE. 

2. Chun, S., Hwang, I., Son, W., Chang, J. H., & Park, W. (2018). Recognition, classification, and prediction of the 

tactile sense. Nanoscale, 10(22), 10545-10553. 

3. Fapohunda, F. (2018). U.S. Patent No. 9,928,284. Washington, DC: U.S. Patent and Trademark Office. 

4. Wang, J., Liu, S., & Song, H. (2018). Fractal research on the edge blur threshold recognition in big data 

classification. Mobile Networks and Applications, 23(2), 251-260. 

5. Quan, Q., He, F., & Li, H. (2020). A multi-phase blending method with incremental intensity for training detection 

networks. The Visual Computer, 1-15. 



6. Li, H., He, F., Liang, Y., & Quan, Q. (2019). A dividing-based many-objective evolutionary algorithm for large-

scale feature selection. Soft Computing, 1-20. 

7. Li, H., He, F., & Chen, Y. (2020). Learning dynamic simultaneous clustering and classification via automatic 

differential evolution and firework algorithm. Applied Soft Computing, 96, 106593. 

8. Quan, Q., He, F., & Li, H. (2020). A multi-phase blending method with incremental intensity for training detection 

networks. The Visual Computer, 1-15. 

9. McDaniel, M., & Heydari, M. H. (2003, January). Content based file type detection algorithms. In 36th Annual 

Hawaii International Conference on System Sciences, 2003. Proceedings of the (pp. 10-pp). IEEE. 

10. Li, W. J., Wang, K., Stolfo, S. J., & Herzog, B. (2005, June). Fileprints: Identifying file types by n-gram analysis. 

In Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop (pp. 64-71). IEEE. 

11. Karresand, M., & Shahmehri, N. (2006, June). File type identification of data fragments by their binary structure. 

In Proceedings of the IEEE Information Assurance Workshop (pp. 140-147). 

12. Veenman, C. J. (2007, August). Statistical disk cluster classification for file carving. In Third international 

symposium on information assurance and security (pp. 393-398). IEEE. 

13. Calhoun, W. C., & Coles, D. (2008). Predicting the types of file fragments. digital investigation, 5, S14-S20. 

14. Sportiello, L., & Zanero, S. (2012, January). Context-based file block classification. In IFIP International 

Conference on Digital Forensics (pp. 67-82). Springer, Berlin, Heidelberg. 

15. Gopal, S., Yang, Y., Salomatin, K., & Carbonell, J. (2011, December). Statistical learning for file-type 

identification. In 2011 10th international conference on machine learning and applications and workshops (Vol. 1, 

pp. 68-73). IEEE. 

16. Moody, S. J., & Erbacher, R. F. (2008, May). Sádi-statistical analysis for data type identification. In 2008 Third 

international workshop on systematic approaches to digital forensic engineering (pp. 41-54). IEEE. 

17. Dunham, J. G., Sun, M. T., & Tseng, J. C. (2005, January). Classifying file type of stream ciphers in depth using 

neural networks. In The 3rd ACS/IEEE International Conference onComputer Systems and Applications, 2005. 

(p. 97). IEEE. 

18. Zhang, L., & White, G. B. (2007, March). An approach to detect executable content for anomaly based network 

intrusion detection. In 2007 IEEE International Parallel and Distributed Processing Symposium (pp. 1-8). IEEE. 

19. Cao, D., Luo, J., Yin, M., & Yang, H. (2010, October). Feature selection based file type identification algorithm. 

In 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (Vol. 3, pp. 58-62). 

IEEE. 

20. Ahmed, I., Lhee, K. S., Shin, H., & Hong, M. (2010). Content-based file-type identification using cosine similarity 

and a divide-and-conquer approach. IETE Technical Review, 27(6), 465-477. 

21. Ahmed, I., Lhee, K. S., Shin, H. J., & Hong, M. P. (2011, January). Fast content-based file type identification. In 

IFIP International Conference on Digital Forensics (pp. 65-75). Springer, Berlin, Heidelberg. 

22. Alamri, N. S., & Allen, W. H. (2015, April). A comparative study of file-type identification techniques. In 

SoutheastCon 2015 (pp. 1-5). IEEE. 

23. Xiaohui, D., Huapeng, L., Yong, L., Ji, Y., & Shuqing, Z. (2020). Comparison of swarm intelligence 

algorithms for optimized band selection of hyperspectral remote sensing image. Open Geosciences, 

12(1), 425-442. 

24. Chen, K. H., Chen, L. F., & Su, C. T. (2014). A new particle swarm feature selection method for 

classification. Journal of Intelligent Information Systems, 42(3), 507-530. 

25. Whitney, A. W. (1971). A direct method of nonparametric measurement selection. IEEE Transactions on 

Computers, 100(9), 1100-1103. 

26. Pudil, P., Novovičová, J., & Kittler, J. (1994). Floating search methods in feature selection. Pattern recognition 

letters, 15(11), 1119-1125. 

27. Kulkarni, S., & Harman, G. (2011). An elementary introduction to statistical learning theory (Vol. 853). John 

Wiley & Sons. 


